Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2025

DFT-Guided Additive Design for BaTiO₃-Based MLCCs Exhibiting Excellent Insulation Reliability

Gi Joo Bang,* Hyo-Ki Hong, Seong Hun Kim, Juhun Park, Kang-Sahn Kim, and Giwoong Ha*

Materials Computation Group, Corporate R&D Institute, Samsung Electro-Mechanics Co., Ltd., Suwon, Gyeonggi-Do, 16674, Republic of Korea

Corresponding Author

*E-mail: gijoo.bang@samsung.com

*E-mail: giwoong.ha@samsung.com

Computational details

Spin-polarized density functional theory (DFT) methods were performed using the Vienna Package Ab-initio projector-augmented Simulation (VASP) with (PAW) pseudopotentials. 1-3 The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional⁴ was employed for the exchange-correlation energy. A $3 \times 3 \times 3$ supercell of cubic perovskite BaTiO₃ was used, and atomic positions were constrained for all atoms beyond a 4 Å radius from the dopant or oxygen vacancy (V_0). In single-doped BaTiO₃, a dopant atom replaced one atom at either the A-site or B-site, corresponding to a doping concentration of 3.7 at%. For co-doped BaTiO₃, both two dopant atoms were simultaneously substituted within the same supercell. Based on our calculations revealing strong interactions between dopants and V_0 within 2^{nd} nearest neighbor distance (Figure S8), we considered only configurations where all dopants were located within 2^{nd} nearest neighbor sites of V_0 for codoped $BaTiO_3$ with V_0 . Structural optimization was performed until the energy difference and residual atomic forces converged to less than 10⁻⁵ eV and 0.05 eV/Å, respectively. A planewave cutoff energy of 500 eV was used. A 2 × 2 × 2 k-point mesh generated using the Monkhorst-Pack⁵ was employed to sample the Brillouin zone. An on-site Coulomb repulsion correction (Hubbard U) was applied to the highly localized Ti 3d, Mn 3d, and Ce 4f orbitals, with values of 4 eV, 5.04 eV and 5 eV, respectively. For heavy rare-earth elements (Tb, Dy, and Er), we used pseudopotentials treating 4f orbitals as core states. To investigate the possible oxidation states of Ce within BaTiO₃, we employed electron or hole injection in the supercell. Specifically, using the NELECT tag in VASP, electron (hole) injection was conducted by adding (subtracting) electrons in the supercell. The solution energy ($^{E_{S}}$) of Ce in BaTiO $_{3}$ and interaction energy ($^{E}_{int}$) between the dopant and $V_{
m O}$ were calculated following the

methodology described by previous literature.^{6–9} The detailed calculation procedures of E_S and $^{E_{int}}$ are described in the following section. For co-doped BaTiO₃, the $^{E_{int}}$ between dopant combinations (D₁-D₂) and V_0 , was calculated by subtracting the $^{E_{int}}$ of the D₁-D₂ combination from the $^{E_{int}}$ of the entire D₁-D₂- V_0 . The error correction of triplet O₂ molecule was performed using the standard enthalpy of the reaction, H₂(g) + 1/2 O₂(g) \rightarrow H₂O(g), as determined experimentally.¹⁰

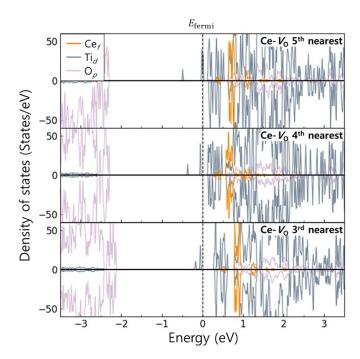
Calculation of $^{E_{\scriptscriptstyle S}}$ and $^{E_{int}}$

The E_S represents the energy required for a dopant to be incorporate into the A- or B-site of BaTiO $_3$ in a particular doping configuration. When the dopant element possesses a different oxidation state compared with Ba $^{2+}$ or Ti $^{4+}$, E_S is calculated for all doping configurations that achieve charge compensation through the formation of electron, hole, or vacancies. For example, doping with Ce $^{3+}$ at the A-site results in the formation of $1e^-$ or $0.5V_{Ba}$ or $0.25V_{Ti}$ to maintain charge neutrality. The E_S in each of these doping forms is calculated according to the following equation:

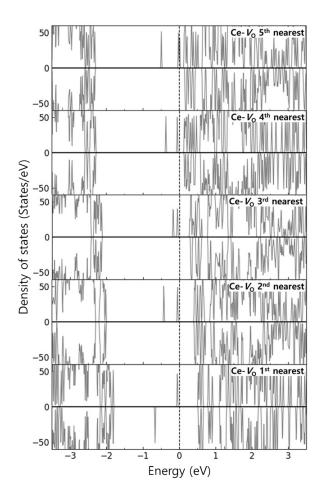
(i)
$$E_s[Ce_{Ba} + e^-] = E[Ba_{n-1}CeTi_nO_{3n}] - E[Ba_nTi_nO_{3n}] + \mu_{Ba} - \mu_{Ce}$$

$$\begin{split} (ii) \; E_s \big[Ce_{Ba} + 0.5 V_{Ba} \big] \\ &= E \big[Ba_{n-1} CeTi_n O_{3n} : \Delta n_{_{e^{^-}}} = -1 \big] + 0.5 E \big[Ba_{n-1} Ti_n O_{3n} : \Delta n_{_{e^{^-}}} = +2 \big] - 1.5 E \big[Ba_n Ti_n O_{3n} \big] \\ &+ 1.5 \mu_{Ba} - \mu_{Ce} \end{split}$$

$$\begin{split} (iii) \, E_s \big[Ce_{Ba} + 0.25 V_{Ti} \big] \\ &= E \Big[Ba_{n-1} CeTi_n O_{3n} : & \Delta n_{e^-} = -1 \Big] + 0.25 E \Big[Ba_n Ti_{n-1} O_{3n} : & \Delta n_{e^-} = +4 \Big] - 1.25 E \big[Ba_n Ti_n O_{3n} \Big] \\ &+ \mu_{Ba} + 0.25 \mu_{Ti} - \mu_{Ce} \end{split}$$


where E is the total energy obtained from DFT calculations, $^{\mu_i}$ is the chemical potential of element i , and $^{\Delta n}{}_e{}^-$ is the number of electrons adjusted in the DFT calculation using the NELECT tag in VASP. Because the DFT energies of dopant-substituted and vacancy-formed supercells include contributions from the generation of electrons or holes, this adjustment were conducted to remove those contributions. To calculate the Es under experimental conditions, we defined five equilibrium conditions and obtained the corresponding $^\mu i$. Specifically, $^\mu i$ are determined from reference materials under the following equilibrium conditions: BaTiO3-TiO2-Ti (Ti-rich & Reducing), BaTiO3-TiO2-O2 (Ti-rich & Oxidative), BaTiO3-BaO-O2 (Ba-rich & Oxidative), BaTiO3-BaO-Ba (Ba-rich & Reducing), and BaTiO3-Ba-Ti (Ba/Ti=1 & Reducing). In addition, Ce2O3 is used as the reference material to obtain $^\mu Ce$.

The $^{E}_{int}$ represents the interaction energy between the dopants and V_{0} , indicating the degree of stabilization of V_{0} induced by the dopant. Assuming Ce doping at the A-site, $^{E}_{int}$ is calculated according to the following equation:


$$\begin{split} E_{int} &= E \big[B a_{n-1} CeTi_n O_{3n-1} : \Delta n_{e^-} = &- 3 \big] - E \big[B a_{n-1} CeTi_n O_{3n} : \Delta n_{e^-} = &- 1 \big] - E \big[B a_{n-1}$$

where the first three terms represent the energies of Ce_{Ba} -doped $BaTiO_3$ with V_O , Ce_{Ba} -doped $BaTiO_3$, and $BaTiO_3$ with V_O , respectively, and the last term represents the energy of pristine $BaTiO_3$. Similar to E_S calculations, contributions to the energy from electron or hole generation were removed by adjusting the number of electrons. In calculations of E_S and E_{int} , the correction terms associated with electron addition/subtraction were not included,

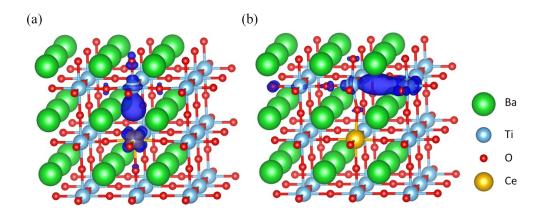
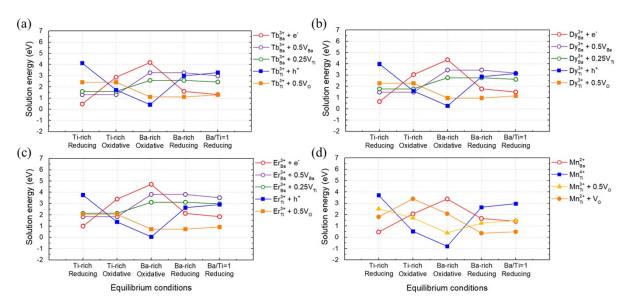
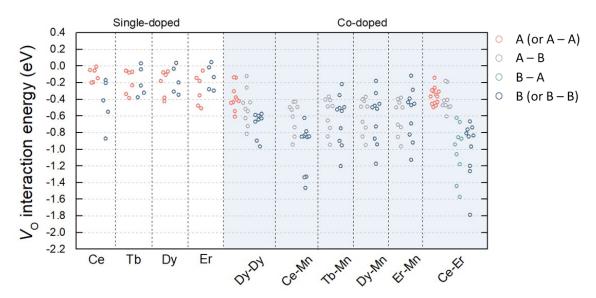
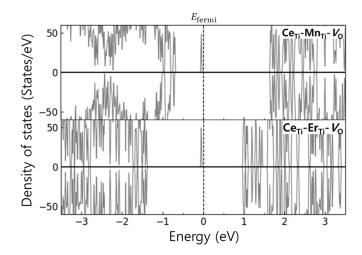
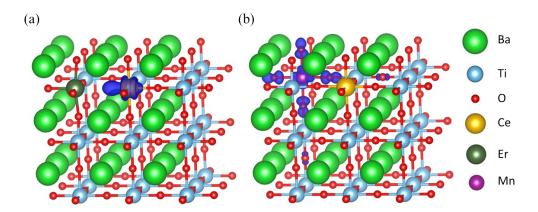

as it can cancel out when the valence band maximum is assumed to be identical for all systems. 6,7

Figure S1. Projected DOS of Ce-doped BaTiO₃ with a V_0 located at the third, fourth and fifth nearest oxygen site from Ce_{Ti} . The energy states located within the band gap and below the Fermi energy indicate the electron trap states. The Fermi energy is set to 0 eV. The line color indicates the states originating from each atomic orbital (Ce f-, Ti d-, and O p-orbital). Positive (negative) DOS values correspond to majority (minority) spin states. The total DOS is shown in Figure S2.

Figure S2. The total DOS of Ce-doped BaTiO₃ with V_0 . Positive (negative) DOS values correspond to majority (minority) spin states.

Figure S3. The partial charge density of Ce-doped BaTiO₃ with a V_0 located at the (a) first and (b) second nearest oxygen site from Ce_{Ti}. The isosurface level is set to 0.005 e/Å³, and the region of electron localization are represented by the blue lobes.


Figure S4. Solution energy (E_s) of (a) Tb, (b) Dy, (c) Er, and (d) Mn at the A-/B-site in BaTiO₃.

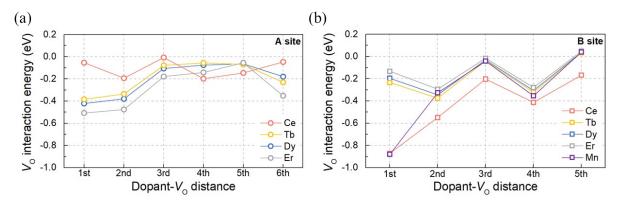

Figure S5. Interaction energy ($^{E}_{int}$) between various dopants/dopant combinations and V_{0} . For codoped BaTiO₃, we considered only configurations where all dopants were within the second nearest neighbor of V_{0} . The data color indicates the doping site for each dopant.

Figure S6. The total DOS of Ce_{Ti} – Mn_{Ti} and Ce_{Ti} – Er_{Ti} doped $BaTiO_3$ with V_O . Positive (negative) DOS values correspond to majority (minority) spin states.

Figure S7. The partial charge density of (a) Ce_{Ti} - Er_{Ti} and (b) Ce_{Ti} - Mn_{Ti} doped $BaTiO_3$ with a V_O . The isosurface level is set to 0.005 e/Å³, and the region of electron localization are represented by the blue lobes.

Figure S8. Interaction energy ($^{E}_{int}$) between V_{0} and various dopants doped at the (a) A-site, (b) B-site in BaTiO₃.

References

- 1. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953.
- 2. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15.
- 3. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.
- 4. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 5. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188.
- 6. A. Honda, S. Higai, Y. Motoyoshi, N. Wada and H. Takagi, *Trans. Mater. Res. Soc. Jpn.*, 2010, **35**, 217.
- 7. A. Honda, S. Higai, Y. Motoyoshi, N. Wada and H. Takagi, *Jpn. J. Appl. Phys.*, 2011, **50**, 09NE01.
- 8. S. Chikada, T. Kubota, A. Honda, S. Higai, Y. Motoyoshi, N. Wada and K. Shiratsuyu, *J. Appl. Phys.*, 2016, **120**, 142122.
- 9. X. Cheng, Y. Zhen, P. Zhao, K. Hui, M. Xiao, L. Guo, Z. Fu, X. Cao, L. Li and X. Wang, *J. Am. Ceram. Soc.*, 2023, **106**, 5294.
- 10. A. S. Rosen, J. M. Notestein and R. Q. Snurr, ACS Catal., 2019, 9, 3576.