Cu-Catalyzed Selective Coupling of Alkynes with danB-Bpai

Qi Li, ^a Dezhao Zhang, ^a Tanyu Song, ^a Xiaodong Tang, ^a Jun-An Ma^b and Chun Zhang*, ^a, c

^{a.} Institute of Molecular Plus, Department of Chemistry, State Key Laboratory of Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, 92 Weijin Road, Tianjin 300072, China.

^{b.} Department of Chemistry, State Key Laboratory Synthetic Biology, Tianjin University, Tianjin 300072, China.

^c Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, Tianjin 300072, P. R. China.

^{*}E-mail: chunzhang@tju.edu.cn.

Table of Contents

1. General Considerations	3
2. The effect of different reaction conditions	4
3. General procedure for making products	15
4. General Procedure for danB-Bpai	16
5. Analytical data for compounds	17
6. Product transformations	37
7. Mechanism experiment	41
8. References	44
9. NMR Spectra	42

1. General Considerations

All manipulations were conducted with Schlenk tube. 1 H-NMR spectra were recorded on BrukerAVIII-400 spectrometers, JNM-ECZ400S/L1 and JNM-ECZ600R/S1 spectrometers. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard and DMSO- D_6 ($\delta = 2.5$ ppm). 13 C-NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ ($\delta = 77.00$ ppm) and DMSO- D_6 ($\delta = 39.52$ ppm). 11 B-NMR spectra were obtained by using the same NMR spectrometers. 19 F-NMR spectra were obtained by the same NMR High resolution mass spectrometry (HRMS) data were obtained on a QTOF mass analyzer with electrospray ionization (ESI) through a Waters Acquity UPLC Class I/Xevo G2 Q-Tof. Substrates were purchased from Aldrich, TCI, Acros, Energy, Aladdin, or synthesized according to the procedures outlined below. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

2. The effect of different reaction conditions

Table S1 The effect of different copper catalyst^a

Entry	[Cu]	2a yield% ^b	3a yield% ^b
1	CuBr SMe ₂	57	18
2	CuCN	12	2
3	$Cu(OAc)_2$	33	0
4	CuO	0	0
5	CuF_2	89	trace
6	$CuCl_2$	70	10
7	$CuBr_2$	56	30
8	Cu(acac) ₂	86	0

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), Copper catalyst (0.02 mmol, 10 mol%), L₁(0.02 mmol, 10 mol%), MeOLi (0.3 mmol, 1.5 equiv.), MeOH (0.4 mmol, 2.0 equiv.), ⁱPr₂O (1.5 mL), 65 °C, 12 h. ^b Isolated yield.

Table S2. The effect of different ligands on the formation of alkenyl Bdan^a

Entry	Ligand	2a yield% ^b	3a yield% ^b
1	L_1	89	trace
2	L_2	90	0
3	L_3	82	trace
4	L_4	0	0
5	L_5	49	5

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuF₂ (0.02 mmol, 10 mol%), Ligand (0.02 mmol, 10 mol%), MeOLi (0.3 mmol, 1.5 equiv.), MeOH (0.4 mmol, 2.0 equiv.), ⁱPr₂O (1.5 mL), 65 °C, 12 h. ^b Isolated yield.

Table S3. The effect of different base on the formation of alkenyl Bdan^a

Entry	Base	2a yield% ^b	3a yield% ^b
1	MeOLi	90	trace
2	MeONa	93	trace
3	MeOK	0	0
4	^t BuOLi	65	trace
5	^t BuONa	30	trace
6	^t BuOK	0	0

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuF₂ (0.02 mmol, 10 mol%), PPh₃ (0.02 mmol, 10 mol%), Base (0.3 mmol, 1.5 equiv.), MeOH (0.4 mmol, 2.0 equiv.), ⁱPr₂O (1.5 mL), 65 °C, 12 h. ^b Isolated yield.

Table S4. The effect of different solvent on the formation of alkenyl Bdan^a

Entry	Solvent	2a yield% ^b	3a yield% ^b
1	ⁱ Pr ₂ O	93	trace
2	DME	61	trace
3	Dioxane	25	trace
4	THF	88	trace
5	ClCH ₂ CH ₂ Cl	82	trace
6	Cyclohexane	96	trace
7	DMA	29	trace
8	CH ₃ CN	49	trace

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuF₂ (0.02 mmol, 10 mol%), PPh₃ (0.02 mmol, 10 mol%), MeONa (0.3 mmol, 1.5 equiv.), MeOH (0.4 mmol, 2.0 equiv.), Solvent (1.5 mL), 65 °C, 12 h. ^b Isolated yield.

Table S5. The effect of different proton source on the formation of alkenyl Bdan^a

Entry	[H]	2a yield% ^b	3a yield% ^b
1	MeOH	96	trace
2	EtOH	96	trace
3	ⁱ PrOH	92	trace
4	CH ₃ COOH	8	11

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuF₂ (0.02 mmol, 10 mol%), PPh₃ (0.02 mmol, 10 mol%), MeONa (0.3 mmol, 1.5 equiv.), [H] (0.4 mmol, 2.0 equiv.), Cyclohexane (1.5 mL), 65 °C, 12 h. ^b Isolated yield.

Table S6. The effect of different temperature on the formation of alkenyl Bdan^a

Entry	T °C	2a yield% ^b	3a yield% ^b
1	65	96	trace
2	55	96	trace
3	45	96	trace
4	35	96	trace
5	25	87	trace

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuF₂ (0.02 mmol, 10 mol%), PPh₃ (0.02 mmol, 10 mol%), MeONa (0.3 mmol, 1.5 equiv.), MeOH (0.4 mmol, 2.0 equiv.), Cyclohexane (1.5 mL),T °C, 12 h. ^b Isolated yield.

Table S7. The effect of different ligands on the formation of alkenyl Bpai^a

Entry	L	2a yield% ^b	3a yield% ^b
1	L_1	56	30
2	L_2	59	27
3	L_3	8	77
4	L_4	42	trace
5	L_5	57	trace
6	Xantphos	53	47

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuBr₂ (0.02 mmol, 10 mol%), L (0.02 mmol, 10 mol%), MeOLi (0.3 mmol, 1.5 equiv.), MeOH (0.4 mmol, 2.0 equiv.), ⁱPr₂O (1.5 mL), 65 °C, 12 h. ^b Isolated yield.

Table S8. The effect of different base on the formation of alkenyl Bpai^a

Entry	Base	2a yield% ^b	3a yield% ^b
1	MeOLi	8	77
2	MeONa	70	0
3	MeOK	58	0
4	^t BuOLi	8	60
5	^t BuONa	66	0
6	^t BuOK	28	trace

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuBr₂ (0.02 mmol, 10 mol%), PCy₃ (0.02 mmol, 10 mol%), Base (0.3 mmol, 1.5 equiv.), MeOH (0.4 mmol, 2.0 equiv.), ⁱPr₂O (1.5 mL), 65 °C, 12 h. ^b Isolated yield.

Table S9. The effect of different solvent on the formation of alkenyl Bpai^a

Entry	Solvent	2a yield% ^b	3a yield% ^b
1	ⁱ Pr ₂ O	8	77
2	DME	17	7
3	Dioxane	0	0
4	THF	21	trace
5	ClCH ₂ CH ₂ Cl	7	49
6	Cyclohexane	17	44
7	DMA	41	0
8	CH ₃ CN	12	5

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuBr₂ (0.02 mmol, 10 mol%), PCy₃ (0.02 mmol, 10 mol%), MeOLi (0.3 mmol, 1.5 equiv.), MeOH (0.4 mmol, 2.0 equiv.), Solvent (1.5 mL), 65 °C, 12 h. ^b Isolated yield.

Table S10. The effect of different proton source on the formation of alkenyl Bpai^a

Entry	[H]	2a yield% ^b	3a yield% ^b
1	MeOH	8	77
2	H_2O	14	13
3	EtOH	18	46
4	ⁱ PrOH	12	23
5	CH ₃ COOH	0	0

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuBr₂ (0.02 mmol, 10 mol%), PCy₃ (0.02 mmol, 10 mol%), MeOLi (0.3 mmol, 1.5 equiv.), [H] (0.4 mmol, 2.0 equiv.), ⁱPr₂O (1.5 mL), 65 °C, 12 h. ^b Isolated yield.

Table S11. The effect of different temperature on the formation of alkenyl $Bpai^a$

Entry	T °C	2a yield% ^b	3a yield% ^b
1	70	5	31
2	65	8	77
3	55	8	73
4	45	10	57
5	35	6	10

^a **1a** (0.2 mmol, 1.0 equiv.), danB-Bpai (0.24 mmol, 1.2 equiv.), CuBr₂ (0.02 mmol, 10 mol%), PCy₃ (0.02 mmol, 10 mol%), MeOLi (0.3 mmol, 1.5 equiv.), MeOH (0.4 mmol, 2.0 equiv.), ⁱPr₂O (1.5 mL), T °C, 12 h. ^b Isolated yield.

3. General procedure for making products

General procedure A:

In a 25 mL dry Schlenk tube, which contained a stirring bar, was charged with danB-Bpai (83.04 mg, 0.24 mmol, 1.2 equiv.), CuF₂ (2.1 mg, 0.02 mmol, 10 mol%), PPh₃ (5.3 mg, 0.02 mmol, 10 mol%), and MeONa (16.2 mg, 0.3 mmol, 1.5 equiv.). The tube was then evacuated and back-filled under N₂ flow (this sequence was repeated three times). Anhydrous Cyclohexane (1.5 mL), alkenyl (0.2 mmol, 1.0 equiv.), and MeOH (12.8 mg, 0.4 mmol, 2.0 equiv.) were added subsequently under N₂. The tube was stirred at 35 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EA and H₂O, then extracted with EA. The organic layer was combined and dried over Na₂SO₄. Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography (PE/EA) to afford the product 2.

General procedure B:

$$R^{1} = R^{2} + danB-Bpai \qquad \begin{array}{c} CuBr_{2} \ (10 \ mol\%), \ PCy_{3} \ (10 \ mol\%) \\ \hline MeOLi \ (1.5 \ equiv.), \ MeOH \ (2.0 \ equiv.) \\ \hline {}^{j}Pr_{2}O \ (1.5 \ mL), \ 65 \ {}^{o}C, \ 12 \ h \\ \hline \\ R^{2} \\ \hline \\ 3 \\ \end{array}$$

In a 25 mL dry Schlenk tube, which contained a stirring bar, was charged with danB-Bpai (83.04 mg, 0.24 mmol, 1.2 equiv.), CuBr₂ (4.5 mg, 0.02 mmol, 10 mol%), PCy₃ (5.6 mg, 0.02 mmol, 10 mol%), and MeOLi (11.4 mg, 0.3 mmol, 1.5 equiv.). The tube was then evacuated and back-filled under N_2 flow (this sequence was repeated three times). Anhydrous iPr₂O (1.5 mL), alkenyl (0.2 mmol, 1.0 equiv.), and MeOH (12.8 mg, 0.4 mmol, 2.0 equiv.) were added subsequently under N_2 . The tube was stirred at 65 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EA and H_2 O, then extracted with EA. The organic layer was combined and dried over Na_2SO_4 . Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography (PE/EA) to afford the product 3.

4. General Procedure for danB-Bpai

A 100 mL round-bottom flask equipped with a stirring bar was charged with (1S,2S,3R,5S)-(+)-2,3-pinanediol (1.7)10 mmol, g, tetrakis(dimethylamino)diboron (4.0 g, 20 mmol, 2.0 equiv.) in CH₂Cl₂ (40 mL). The reaction mixture was stirred at room temperature for 4 hours, after which 1,8-diaminonaphthalene (4.7 g, 30 mmol, 3.0 equiv.) was added to the system and stirring was continued at room temperature for 6 hours. The reaction mixture was concentrated by rotary evaporation and purified by silica gel chromatography (PE/EA) to afford the product **danB-Bpai** with 1.8g (53% yield). TLC (PE:EA): $R_f = 0.7$; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.06 \text{ (dd}, J = 8.3, 7.2 \text{ Hz}, 2\text{H}), 6.98 \text{ (dd}, J = 8.4, 1.0 \text{ Hz}, 2\text{H}), 6.26 \text{ (dd}, J = 8.4, 1.0 \text{ Hz}, 2\text{Hz}, 2\text{Hz}, 2\text{Hz}), 6.26 \text{ (dd}, J = 8.4, 1.0 \text{ Hz}, 2\text{Hz}, 2\text{Hz}, 2\text{Hz}), 6.26 \text{ (dd}, J = 8.4, 1.0 \text{ Hz}, 2\text{Hz}, 2\text{$ 7.3, 1.0 Hz, 2H), 6.18 (s, 2H), 4.28 (dd, J = 8.8, 1.9 Hz, 1H), 2.41 – 2.33 (m, 1H), 2.22 (m, 1H), 2.07 (t, J = 5.5 Hz, 1H), 1.96 - 1.85 (m, 2H), 1.42 (s, 3H), 1.31 (s, 3H), 1.10 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H)ppm; ¹³C NMR (101 MHz, CDCl₃) δ 140.5, 136.4, 127.5, 121.1, 117.6, 105.5, 86.2, 77.6, 51.1, 39.6, 38.0, 35.3, 28.8, 27.1, 26.6, 24.0 ppm; ¹¹**B NMR** (128 MHz, CDCl₃) δ 28.3 (large singlets) ppm; $[\alpha]_D^{25} = +11.2$ (c=1.0, CH₂Cl₂), **HRMS** (ESI) m/z calcd for C₂₀H₂₅B₂N₂O₂ (M + H)⁺ :347.2102, found 347.2109. This compound can be separated by silica gel column chromatography and does not deteriorate when stored at room temperature.

5. Analytical data for compounds

(E)-2-styryl-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2a)^[1]: The general procedure was followed, using **phenylacetylene** (1a, 20.4 mg, 0.2 mmol), **danB-Bpai** (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE: EA = 100: 1) afforded product 2a as a yellow solid (52.0 mg, 96% yield); $\mathbf{R_f} = 0.2$ (PE: EA = 50: 1); ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.47 (m, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.28 (m, 1H), 7.13 (d, J = 1.1 Hz, 1H), 7.12 – 7.08 (m, 2H), 7.02 (dd, J = 8.3, 1.1 Hz, 2H), 6.33 (dd, J = 7.3, 1.1 Hz, 2H), 6.28 (d, J = 18.6 Hz, 1H), 5.80 (s, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 141.1, 137.5, 136.3, 128.7, 127.6, 126.8, 119.8, 117.6, 105.8 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, CDCl₃) δ 27.5 (large singlets) ppm.

(E)-2-(2-methylstyryl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2b)^[2]: The general procedure was followed, using 2-methylphenylacetylene (1b, 23.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2b as a yellow solid (55.7 mg, 98% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 5.4, 3.7 Hz, 1H), 7.37 (d, J = 18.5 Hz, 1H), 7.23 – 7.16 (m, 3H), 7.12 (dd, J = 8.2, 7.2 Hz, 2H), 7.02 (dd, J = 8.3, 1.0 Hz, 2H), 6.36 (dd, J = 7.3, 1.0 Hz, 2H), 6.20 (d, J = 18.4 Hz, 1H), 5.82 (s, 2H), 2.44 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 141.1, 136.8, 136.3, 135.8, 130.5, 128.4, 127.6, 126.2, 125.6, 119.8, 117.6, 105.8, 19.9 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, CDCl₃) δ 27.7 (large singlets) ppm.

(E)-2-(3-methylstyryl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2c)[: The general procedure was followed, using 3-methylphenylacetylene (1c, 23.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2c as a yellow solid (55.7 mg, 98% yield); $\mathbf{R_f} = 0.2$ (PE : EA= 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.34 – 7.23 (m, 3H), 7.15 – 7.06 (m, 4H), 7.02 (dd, J = 8.3, 1.0 Hz, 2H), 6.33 (dd, J = 7.3, 1.0 Hz, 2H), 6.27 (d, J = 18.6 Hz, 1H), 5.80 (s, 2H), 2.37 (s, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 143.7, 141.1, 138.2, 137.4, 136.3, 129.5, 128.5, 127.6, 127.5, 123.9, 119.8, 117.5, 105.7, 21.4 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 27.6 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $\mathbf{C_{19}H_{18}BN_2}$ (M + H)⁺ :285.1563, found 285.1566.

(E)-2-(4-methylstyryl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2d)^[2]: The general procedure was followed, using 4-methylphenylacetylene (1d, 23.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2d as a yellow solid (54.9 mg, 96% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.44 – 7.34 (m, 2H), 7.17 (d, J = 7.8 Hz, 2H), 7.13 – 7.06 (m, 3H), 7.01 (dd, J = 8.4, 1.0 Hz, 2H), 6.33 (dd, J = 7.2, 1.0 Hz, 2H), 6.22 (d, J = 18.5 Hz, 1H), 5.80 (s, 2H), 2.35 (s, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 143.5, 141.1, 138.7, 136.3, 134.8, 129.4, 127.6, 126.7, 119.8, 117.5, 105.7, 21.3 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 27.5 (large singlets) ppm.

(E)-2-(4-(tert-butyl)styryl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2e)^[3]: The general procedure was followed, using 4-(tert-butyl)phenylacetylene (1e, 31.6 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2e as a yellow solid (63.9 mg, 98% yield); $\mathbf{R_f} = 0.3$ (PE : EA = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 7.19 – 7.08 (m, 3H), 7.02 (dd, J = 8.3, 1.0 Hz, 2H), 6.36 (dd, J = 7.3, 1.0 Hz, 2H), 6.28 (d, J = 18.6 Hz, 1H), 5.85 (s, 2H), 1.34 (s, 9H)ppm; ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 143.5, 141.2, 136.3,

134.8, 127.6, 126.5, 125.6, 119.8, 117.5, 105.7, 34.7, 31.2 ppm (the carbon next to boron could not be detected); ^{11}B NMR (128 MHz, CDCl₃) δ 29.3 (large singlets) ppm.

(E)-2-(4-(trimethylsilyl)styryl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborini (2f): The general procedure was followed, ne using (4-Ethynylphenyl)trimethylsilane (1f, 34.9 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product **2f** as a yellow solid (67.1 mg, 98% yield); $\mathbf{R_f} = 0.3$ (PE : EA =50 : 1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 – 7.45 (m, 4H), 7.15 (d, J = 10.4 Hz, 1H), 7.13 - 7.09 (m, 2H), 7.02 (dd, J = 8.3, 1.0 Hz, 2H), 6.38 - 6.31 (m, 3H), 5.85 (s, 2H), 0.28 (s, 9H)ppm; ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 141.4, 141.1, 137.8, 136.3, 133.7, 127.6, 126.0, 119.8, 117.6, 105.7, -1.2 ppm (the carbon next to boron could not be detected); ¹¹**B NMR** (128 MHz, CDCl₃) δ 27.4 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $C_{21}H_{24}BN_2Si(M + H)^+$: 343.1802, found 343.1806.

(E)-2-(4-methoxystyryl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2g)^[4]: The general procedure was followed, using 4-Ehynylanisole (1g, 26.4 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 20 : 1) afforded product 2g as a yellow solid (55.4 mg, 92% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 10 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 2H), 7.16 – 7.05 (m, 3H), 7.01 (dd, J = 8.4, 1.0 Hz, 2H), 6.94 – 6.86 (m, 2H), 6.35 (dd, J = 7.3, 1.0 Hz, 2H), 6.14 (d, J = 18.5 Hz, 1H), 5.82 (s, 2H), 3.82 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 143.2, 141.2, 136.3, 130.4, 128.1, 127.6, 119.8, 117.5, 114.1, 105.7, 55.3 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, CDCl₃) δ 28.3 (large singlets) ppm.

(E)-3-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)vinyl)aniline (2h): The general procedure was followed, using 4-Ethynylaniline (1h, 23.4 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 5 : 1) afforded product 2h as a yellow solid (56.0 mg, 98% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 2 : 1); ¹H NMR (400 MHz, DMSO- D_6) δ 7.99 (s, 2H), 7.33 – 7.21 (m, 3H), 7.05 (t, J = 7.8 Hz, 2H), 6.85 (dd, J = 8.3, 1.0 Hz, 2H), 6.67 – 6.55 (m, 2H), 6.45 (dd, J = 7.4, 1.0 Hz, 2H), 6.00 (d, J = 18.5 Hz, 1H), 5.43 (s, 2H) ppm; ¹³C NMR (101 MHz, DMSO- D_6) δ 149.6, 144.7, 142.7, 136.1, 127.9, 127.7, 125.7, 119.5, 115.8, 113.9, 105.1 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, DMSO- D_6) δ 31.5 (large singlets) ppm; HRMS (ESI) m/z calcd for $C_{18}H_{17}BN_3$ (M + H)⁺ :286.1515, found 286.1519.

(E)-2-(2-([1,1'-biphenyl]-3-yl)vinyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazab orinine (2i): The general procedure was followed, using 4-biphenylacetylene (1i, 35.7 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 50 : 1) afforded product 2i as a yellow solid (65.2 mg, 94% yield); $\mathbf{R_f} = 0.1$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.64 – 7.60 (m, 4H), 7.57 (d, J = 8.6 Hz, 2H), 7.48 – 7.42 (m, 2H), 7.39 – 7.33 (m, 1H), 7.21 – 7.09 (m, 3H), 7.03 (dd, J = 8.3, 1.0 Hz, 2H), 6.39 – 6.31 (m, 3H), 5.85 (s, 2H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 143.1, 141.4, 141.1, 140.5, 136.5, 136.3, 128.8, 127.6, 127.5, 127.4, 127.2, 127.0, 119.8, 117.6, 105.8 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 28.3 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $\mathbf{C}_{24}\mathbf{H}_{20}\mathbf{B}\mathbf{N}_{2}$ (M + H) $^{+}$:347.1719, found 347.1724.

$$F_3C$$
 $\mathbf{2j}$
 \mathbf{Bdan}

(E)-2-(4-(trifluoromethyl)styryl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazabori nine (2j)^[4]: The general procedure was followed, using 4-(Trifluoromethyl)phenylacetylene (1j, 30.4 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 50 : 1) afforded product 2j as a yellow solid (65.6 mg, 97% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 20 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H), 7.14 – 7.01 (m, 5H), 6.40 – 6.30 (m, 3H), 5.80 (s, 2H) ppm; ¹³C NMR (101

MHz, CDCl₃) δ 141.9, 140.9, 136.3, 130.3, 130.0, 127.6, 126.8, 125.6 (q, J = 14.7 Hz), 122.7, 119.9, 117.8, 105.9 ppm (the carbon next to boron could not be detected); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.5 ppm; ¹¹**B NMR** (128 MHz, CDCl₃) δ 27.7 (large singlets) ppm.

(E)-2-(4-chlorostyryl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2k)^[4]: The general procedure was followed, using 4-Chlorophenylacetylene (1k, 27.3 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2k as a yellow solid (50.2 mg, 82% yield); $\mathbf{R_f} = 0.1$ (PE : EA = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.36 – 7.31 (m, 2H), 7.14 – 7.01 (m, 5H), 6.36 (dd, J = 7.2, 1.1 Hz, 2H), 6.27 (d, J = 18.6 Hz, 1H), 5.83 (s, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 141.0, 136.3, 136.0, 134.3, 128.9, 127.9, 127.6, 119.8, 117.7, 105.8 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, CDCl₃) δ 27.6 (large singlets) ppm.

(E)-2-(4-bromostyryl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2l)^[4]: The general procedure was followed, using 4-Bromophenylacetylene (1l, 36.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2l as a yellow solid (68.4 mg, 98% yield); $\mathbf{R_f} = 0.1$ (PE : EA = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.5 Hz, 2H), 7.37 – 7.34 (m, 2H), 7.12 (dd, J = 8.3, 7.2 Hz, 2H), 7.05 – 7.01 (m, 3H), 6.35 (dd, J = 7.3, 1.1 Hz, 2H), 6.29 (d, J = 18.5 Hz, 1H), 5.82 (s, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 141.0, 136.4, 136.3, 131.8, 128.2, 127.6, 122.6, 119.8, 117.7, 105.8 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, CDCl₃) δ 27.6 (large singlets) ppm.

(E)-4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)vinyl)benzaldehyde

(2m): The general procedure was followed, using **4-Ethynylbenzaldehyde** (1m, 26.0 mg, 0.2 mmol), **danB-Bpai** (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 10 : 1) afforded product **2m** as a yellow solid (60.6 mg, 97% yield); **R**_f = 0.2 (PE : EA = 5 : 1); ¹**H NMR** (400 MHz, DMSO- D_6) δ 10.01 (s, 1H), 8.19 (s, 2H), 7.95 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 18.4 Hz, 1H), 7.06 (t, J = 7.8 Hz, 2H), 6.88 (d, J = 8.1 Hz, 2H), 6.57 (d, J = 18.6 Hz, 1H), 6.46 (d, J = 7.3 Hz, 2H) ppm; ¹³**C NMR** (101 MHz, DMSO- D_6) δ 192.6, 143.4, 142.6, 142.3, 136.1, 135.8, 130.2, 127.7, 127.1, 119.8, 116.2, 105.4 ppm (the carbon next to boron could not be detected); ¹¹**B NMR** (128 MHz, DMSO- D_6) δ 30.4 (large singlets) ppm; **HRMS** (ESI) m/z calcd for C₁₉H₁₆BNO₂ (M + H)⁺ :299.1355, found 299.1359.

(E)-1-(4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)vinyl)phenyl)ethan-1-one (2n)^[2]: The general procedure was followed, using 4-Acetylphenylacetylene (1n , 28.8 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 10 : 1) afforded product 2n as a yellow solid (61.2 mg, 98% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 5 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 7.18 – 7.09 (m, 3H), 7.07 – 7.00 (m, 2H), 6.43 (d, J = 18.6 Hz, 1H), 6.36 (dd, J = 7.2, 1.0 Hz, 2H), 5.88 (s, 2H), 2.61 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 142.3, 141.9, 140.9, 136.7, 136.3, 128.8, 127.6, 126.8, 119.9, 117.8, 105.9, 26.7 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, CDCl₃) δ 28.1 (large singlets) ppm.

(E)-4-(2-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)vinyl) methyl benzoate (2o): The general procedure was followed, using 4-(Methoxycarbonyl)phenylacetylene (1o, 32.0 mg, 0.2 mmol), danB-Bpai (83.04)

mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 10 : 1) afforded product **20** as a yellow solid (64.3 mg, 98% yield); $\mathbf{R_f} = 0.3$ (PE : EA = 5 : 1); ¹**H NMR** (400 MHz, DMSO- D_6) δ 8.17 (s, 2H), 8.04 – 7.97 (m, 2H), 7.69 – 7.62 (m, 2H), 7.49 (d, J = 18.6 Hz, 1H), 7.06 (dd, J = 8.2, 7.4 Hz, 2H), 6.87 (dd, J = 8.3, 1.0 Hz, 2H), 6.52 (d, J = 18.7 Hz, 1H), 6.45 (dd, J = 7.4, 1.0 Hz, 2H), 3.86 (s, 3H) ppm; ¹³**C NMR** (101 MHz, DMSO- D_6) δ 166.0, 142.6, 142.3, 142.2, 136.1, 129.9, 129.1, 127.7, 126.7, 119.8, 116.2, 105.4, 52.2 ppm (the carbon next to boron could not be detected); ¹¹**B NMR** (128 MHz, DMSO- D_6) δ 31.9 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $C_{20}H_{18}BN_2O_2$ (M + H)⁺ :329.1461, found 329.1465.

(E)-2-(2-(naphthalen-2-yl)vinyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazabori nine (2p): The general procedure was followed, using 2-Ethynyl-naphthalene (1p, 30.4 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 20 : 1) afforded product 2p as a yellow solid (56.8 mg, 89% yield); $\mathbf{R_f} = 0.4$ (PE : EA= 10 : 1); $^1\mathbf{H}$ NMR (400 MHz, DMSO- D_6) δ 8.20 (s, 2H), 8.01 – 7.89 (m, 4H), 7.78 (dd, J = 8.6, 1.7 Hz, 1H), 7.63 (d, J = 18.6 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.08 (t, J = 7.8 Hz, 2H), 6.89 (dd, J = 8.3, 1.0 Hz, 2H), 6.57 – 6.46 (m, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, DMSO- D_6) δ 143.9, 142.5, 136.1, 135.3, 133.2, 133.1, 128.5, 128.3, 127.7, 127.7, 126.9, 126.6, 126.5, 123.5, 123.2, 119.8, 116.1, 105.3 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, DMSO- D_6) δ 31.3 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $\mathbf{C}_{22}\mathbf{H}_{18}\mathbf{B}\mathbf{N}_{2}$ (M + H) $^+$:321.1563, found 321.1567.

(E)-2-(2-(naphthalen-1-yl)vinyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazabori nine (2q): The general procedure was followed, using 1-Ethynyl-naphthalene (1q, 30.4 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2q as a yellow solid (58.1 mg, 91% yield); $\mathbf{R_f} = 0.2$ (PE : EA= 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 8.22 (dd, J = 8.4, 1.3 Hz, 1H), 7.95 – 7.81 (m, 3H), 7.71 (dt, J = 7.2, 1.0 Hz, 1H), 7.58 – 7.46 (m, 3H), 7.13 (dd, J = 8.3, 7.2 Hz, 2H), 7.04 (dd, J = 8.3, 1.1 Hz, 2H), 6.40 – 6.33 (m, 3H), 5.89 (s, 2H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 141.1, 140.6, 136.3, 135.5, 133.6, 131.0, 128.8, 128.6, 127.6, 126.3, 125.9, 125.6, 124.0, 123.5, 119.9, 117.6, 105.8 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR

(128 MHz, CDCl₃) δ 28.0 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $C_{22}H_{18}BN_2 (M + H)^+$:321.1563, found 321.1567.

2r

(E)-2-(2-(thiophen-2-yl)vinyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborini ne (2r): The general procedure was followed, using 2-Ethynylthiophene (1r, 21.6 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 50 : 1) afforded product 2r as a yellow solid (44.8 mg, 81% yield); $\mathbf{R_f} = 0.5$ (PE : EA = 10 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 7.10 (dd, J = 8.3, 7.2 Hz, 2H), 7.07 – 7.05 (m, 1H), 7.03 – 6.98 (m, 3H), 6.31 (dd, J = 7.2, 1.1 Hz, 2H), 6.04 (d, J = 18.3 Hz, 1H), 5.75 (s, 2H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 144.0, 141.0, 136.3, 136.1, 127.7, 127.5, 127.1, 125.8, 119.8, 117.6, 105.8 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 27.6 (large singlets) ppm; HRMS (ESI) m/z calcd for $\mathbf{C}_{16}\mathbf{H}_{14}\mathbf{B}\mathbf{N}_{2}\mathbf{S}$ (M + H) $^{+}$:277.0970, found 277.0974.

29

(E)-2-(2-(thiophen-3-yl)vinyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborini ne (2s): The general procedure was followed, using 3-Ethynylthiophene (1s, 21.6 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 50 : 1) afforded product 2s as a yellow solid (51.6 mg, 93% yield); $\mathbf{R_f} = 0.1$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 3H), 7.13 – 7.05 (m, 3H), 7.01 (dd, J = 8.2, 1.1 Hz, 2H), 6.31 (dd, J = 7.2, 1.1 Hz, 2H), 6.04 (d, J = 18.5 Hz, 1H), 5.75 (s, 2H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 141.1, 141.1, 137.3, 136.3, 127.5, 126.3, 124.8, 124.0, 119.7, 117.5, 105.7 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 27.9 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $\mathbf{C}_{16}\mathbf{H}_{12}\mathbf{B}\mathbf{N}_{2}$ (M - H) $^{-}$:275.0814, found 275.0817.

2t

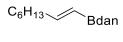
(E)-2-(2-(pyridin-3-yl)vinyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2t): The general procedure was followed, using 3-Ethynylpyridine (1t, 20.6 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by

chromatography on silica gel (PE : EA = 5 : 1) afforded product **2t** as a yellow solid (26.2 mg, 48% yield); $\mathbf{R_f} = 0.5$ (EA); $^1\mathbf{H}$ NMR (400 MHz, DMSO- D_6) δ 8.70 (d, J = 2.2 Hz, 1H), 8.52 (dd, J = 4.7, 1.6 Hz, 1H), 8.17 (s, 2H), 7.96 (d, J = 8.0 Hz, 1H), 7.50 – 7.40 (m, 2H), 7.06 (t, J = 7.8 Hz, 2H), 6.88 (d, J = 8.2 Hz, 2H), 6.54 – 6.42 (m, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, DMSO- D_6) δ 149.4, 148.3, 142.3, 140.4, 136.1, 133.2, 132.8, 127.7, 124.1, 119.8, 116.1, 105.3 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 30.5 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $\mathbf{C}_{17}\mathbf{H}_{15}\mathbf{B}\mathbf{N}_3$ (M + H) $^+$:272.1359, found 272.1362.

2u

(E)-2-(2-(quinolin-3-yl)vinyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinin e (2u): The general procedure was followed, using 3-Ethynylquinoline (1u, 30.6 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 5 : 1) afforded product 2u as a yellow solid (56.0 mg, 87% yield); $\mathbf{R_f} = 0.4$ (PE : EA = 1 : 1); $^1\mathbf{H}$ NMR (400 MHz, DMSO- D_6) δ 9.14 (d, J = 2.2 Hz, 1H), 8.41 (d, J = 2.2 Hz, 1H), 8.23 (s, 2H), 8.09 – 8.00 (m, 2H), 7.76 (m, 1H), 7.69 – 7.59 (m, 2H), 7.07 (t, J = 7.8 Hz, 2H), 6.94 – 6.84 (m, 2H), 6.68 (d, J = 18.8 Hz, 1H), 6.49 (dd, J = 7.4, 1.0 Hz, 2H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, DMSO- D_6) δ 149.2, 147.3, 142.4, 140.6, 136.1, 132.8, 130.6, 129.8, 128.7, 128.6, 127.7, 127.1, 125.9, 119.8, 116.2, 105.4 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, DMSO- D_6) δ 30.7 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $\mathbf{C}_{21}\mathbf{H}_{17}\mathbf{B}\mathbf{N}_3$ (M + H)⁺ :322.1515, found 322.1519.

2v


(Z)-2-(1,2-diphenylvinyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2v)^[1]: The general procedure was followed, using **Diphenylacetylene** (1v, 35.6 mg, 0.2 mmol), **danB-Bpai** (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2v as a yellow solid (43.5 mg, 63% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.30 (m, 3H), 7.18 – 6.99 (m, 13H), 6.29 (dd, J = 7.2, 1.1 Hz, 2H), 5.68 (s, 2H) ppm ; ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 140.8, 137.3, 136.7, 136.3, 129.8, 129.0, 128.6, 128.0, 127.6, 127.5, 126.7, 119.7, 117.6, 105.9 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, CDCl₃) δ 28.9 (large singlets) ppm.

2w

(Z)-2-(1-phenylprop-1-en-2-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborin ine (2w)^[5]: The general procedure was followed, using 1-Phenylpropyne (1w, 23.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2v as a yellow solid (46.4 mg, 78% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.34 – 7.29 (m, 1H), 7.18 – 7.13 (m, 5H), 7.11 – 7.07 (m, 3H), 7.03 (dd, J = 7.3, 1.8 Hz, 3H), 7.00 (d, J = 1.1 Hz, 1H), 6.29 (dd, J = 7.2, 1.1 Hz, 2H), 5.68 (s, 2H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 137.7, 136.9, 136.3, 129.2, 128.1, 127.5, 127.0, 119.7, 117.5, 105.8, 15.8 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, CDCl₃) δ 29.6 (large singlets) ppm.

2x

(Z)-2-(1-phenylbut-1-en-2-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborini ne (2x)^[5]: The general procedure was followed, using 1-Butynylbenzene (1x, 26.0 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2x as a yellow solid (42.1 mg, 74% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 2H), 7.34 – 7.26 (m, 3H), 7.12 (dd, J = 8.3, 7.2 Hz, 2H), 7.03 (dd, J = 8.3, 1.0 Hz, 2H), 6.95 (s, 1H), 6.37 (dd, J = 7.3, 1.0 Hz, 2H), 5.84 (s, 2H), 2.43 (qd, J = 7.5, 1.0 Hz, 2H), 1.15 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 137.8, 136.3, 136.1, 128.7, 128.2, 127.6, 127.0, 119.8, 117.6, 105.8, 22.7, 14.9 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128 MHz, CDCl₃) δ 29.0 (large singlets) ppm.

(E)-2-(oct-1-en-1-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (2y)^[6]: The general procedure was followed, using 1-Octyne (1y, 22.0 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 2y as a pale yellow oil (49.5 mg, 89% yield); $\mathbf{R_f} = 0.3$ (PE : EA = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 6.94 (m, 4H), 6.38 – 6.23 (m, 3H), 5.66 (s, 2H), 5.52 (dt, J = 18.0, 1.6 Hz, 1H), 2.25 – 2.10 (m, 2H), 1.42 (q, J = 7.5 Hz, 2H), 1.37 – 1.22 (m, 6H), 0.96 – 0.83 (m, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 141.2, 136.3, 127.5, 119.7, 117.3, 105.5, 35.9, 31.7,

28.9, 28.6, 22.6, 14.1 ppm (the carbon next to boron could not be detected); ^{11}B NMR (128 MHz, CDCl₃) δ 27.3 (large singlets) ppm.

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((E)-styryl)hexahydro-4,6-methanobenzo[d][$(3a)^{[7]}$: 1,3,2|dioxaborole The general procedure followed, was phenylacetylene (1a, 20.4 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3a as a pale yellow oil (43.4 mg, 77% yield); $\mathbf{R_f} = 0.4$ (PE: EA = 50 : 1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.47 (m, 2H), 7.41 (d, J = 18.4 Hz, 1H), 7.36 - 7.27 (m, 3H), 6.20 (d, J = 18.5 Hz, 1H), 4.37 (dd, J = 8.8, 1.9 Hz, 1H), 2.38 (m, 1H), 2.24 (m, 1H), 2.11 (dd, J = 6.0, 4.8 Hz, 1H), 1.97 – 1.90 (m, 2H), 1.45 (s, 3H), 1.30 (s, 3H), 1.20 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 149.4, 137.4, 128.8, 128.5, 127.0, 85.8, 77.8, 51.3, 39.5, 38.1, 35.5, 28.6, 27.1, 26.4, 24.0 ppm (the carbon next to boron could not be detected); ¹¹B NMR (128) MHz, CDCl₃) δ 29.5 (large singlets) ppm.

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((E)-2-methylstyryl)hexahydro-4,6-methano benzo[d][1,3,2]dioxaborole (3b): The general procedure was followed, using 2-methylphenylacetylene (1b, 23.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3b as a pale yellow oil (43.4 mg, 73% yield); $\mathbf{R_f} = 0.3$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 18.3 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.21 – 7.17 (m, 2H), 7.16 – 7.13 (m, 1H), 6.11 (d, J = 18.3 Hz, 1H), 4.37 (dd, J = 8.8, 1.9 Hz, 1H), 2.42 (s, 3H), 2.40 – 2.34 (m, 1H), 2.29 – 2.21 (m, 1H), 2.11 (dd, J = 6.1, 4.8 Hz, 1H), 1.98 – 1.90 (m, 2H), 1.45 (s, 3H), 1.31 (s, 3H), 1.22 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H) ppm; 13 C NMR (101 MHz, CDCl₃) δ 147.0, 136.7, 130.4, 128.6, 126.1, 125.7, 85.8, 77.8, 51.3, 39.5, 38.2, 35.5, 28.7, 27.1, 26.5, 24.0, 19.8 ppm (the carbon next to boron could not be detected); 11 B NMR (128 MHz, CDCl₃) δ 30.1 (large singlets) ppm; **HRMS** (ESI) m/z calcd for C₁₉H₂₆BO₂ (M + H) + :297.2026, found 297.2029.

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((E)-3-methylstyryl)hexahydro-4,6-methano benzo[d][1,3,2]dioxaborole (3c): The general procedure was followed, using 3-methylphenylacetylene (1c, 23.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3c as a pale yellow oil (37.1 mg, 63% yield); $\mathbf{R_f} = 0.3$ (PE : EA= 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 18.4 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.26 – 7.20 (m, 1H), 7.10 (dt, J = 7.3, 1.6 Hz, 1H), 6.17 (d, J = 18.4 Hz, 1H), 4.36 (dd, J = 8.7, 1.9 Hz, 1H), 2.43 – 2.37 (m, 1H), 2.36 – 2.33 (m, 3H), 2.24 (m, 1H), 2.11 (dd, J = 6.0, 4.8 Hz, 1H), 1.96 – 1.89 (m, 2H), 1.45 (s, 3H), 1.30 (s, 3H), 1.20 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H) ppm; 13 C NMR (101 MHz, CDCl₃) δ 149.6, 138.0, 137.4, 129.7, 128.4, 127.7, 124.2, 85.7, 77.8, 51.3, 39.5, 38.1, 35.5, 28.6, 27.1, 26.4, 24.0, 21.4 ppm (the carbon next to boron could not be detected); 11 B NMR (128 MHz, CDCl₃) δ 29.4 (large singlets) ppm; HRMS (ESI) m/z calcd for $C_{19}H_{26}BO_2$ (M + H) $^+$:297.2026, found 297.2029.

3d

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((E)-4-methylstyryl)hexahydro-4,6-methano benzo[d][1,3,2]dioxaborole (3d): The general procedure was followed, using 4-methylphenylacetylene (1d, 23.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3d as a pale yellow solid (38.4 mg, 64% yield); $\mathbf{R_f} = 0.3$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 3H), 7.15 (d, J = 7.9 Hz, 2H), 6.13 (d, J = 18.4 Hz, 1H), 4.37 (dd, J = 8.7, 1.9 Hz, 1H), 2.43 – 2.36 (m, 1H), 2.35 (s, 3H), 2.28 – 2.21 (m, 1H), 2.11 (dd, J = 6.1, 4.9 Hz, 1H), 1.93 (m, 2H), 1.45 (s, 3H), 1.31 (s, 3H), 1.20 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H) ppm; 13 C NMR (101 MHz, CDCl₃) δ 149.4, 139.0, 134.8, 129.3, 127.0, 85.7, 77.8, 51.4, 39.5, 38.2, 35.5, 28.7, 27.1, 26.4, 24.0, 21.3 ppm (the carbon next to boron could not be detected); 11 B NMR (128 MHz, CDCl₃) δ 30.8 (large singlets) ppm; **HRMS** (ESI) m/z calcd for C₁₉H₂₄BO₂ (M - H) $^{-}$:295.1870, found 295.1873.

3€

 $(3aR,4R,6R,7aS)-2-((E)-4-(tert-butyl)styryl)-3a,5,5-trimethylhexahydro-4,6-meth \\anobenzo[d][1,3,2]dioxaborole (3e): The general procedure was followed, using$

4-(tert-butyl)phenylacetylene (**1e**, 31.6 mg, 0.2 mmol), **danB-Bpai** (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product **3e** as a colorless oil (42.8 mg, 63% yield); **R**_f = 0.4 (PE : EA = 50 : 1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (dd, J = 8.6, 6.4 Hz, 3H), 7.38 – 7.35 (m, 2H), 6.15 (d, J = 18.4 Hz, 1H), 4.37 (dd, J = 8.7, 1.9 Hz, 1H), 2.43 – 2.34 (m, 1H), 2.28 – 2.20 (m, 1H), 2.11 (dd, J = 6.0, 4.8 Hz, 1H), 1.97 – 1.90 (m, 2H), 1.45 (s, 3H), 1.31 (d, J = 4.0 Hz, 12H), 1.20 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 152.1, 149.3, 134.8, 126.8, 125.5, 85.7, 77.8, 51.4, 39.5, 38.2, 35.5, 34.7, 31.2, 28.6, 27.1, 26.4, 24.0 ppm (the carbon next to boron could not be detected); ¹¹**B NMR** (128 MHz, CDCl₃) δ 29.5 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $C_{22}H_{32}BO_2$ (M + H)⁺ :339.2495, found 339.2499.

(4-((E)-2-((3aR,4R,6R,7aS)-3a,5,5-trimethylhexahydro-4,6-methanobenzo[d][1,3, 2]dioxaborol-2-yl)vinyl)phenyl) trimethyl silane (4t): The general procedure was followed, using (4-Ethynylphenyl)trimethylsilane (1f, 34.9 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3f as a pale yellow oil (47.9 mg, 68% yield); $\mathbf{R_f} = 0.4$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 4H), 7.40 (d, J = 18.4 Hz, 1H), 6.22 (d, J = 18.4 Hz, 1H), 4.37 (dd, J = 8.7, 1.9 Hz, 1H), 2.38 (m, 1H), 2.23 (m, 1H), 2.11 (dd, J = 6.0, 4.8 Hz, 1H), 1.97 – 1.90 (m, 2H), 1.45 (s, 3H), 1.30 (s, 3H), 1.21 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H), 0.26 (s, 9H) ppm; 13 C NMR (101 MHz, CDCl₃) δ 149.5, 141.5, 137.8, 133.6, 126.2, 85.8, 77.8, 51.3, 39.5, 38.1, 35.5, 28.6, 27.1, 26.4, 24.0, -1.2 ppm (the carbon next to boron could not be detected); 11 B NMR (128 MHz, CDCl₃) δ 29.2 (large singlets) ppm; HRMS (ESI) m/z calcd for $C_{21}H_{32}BO_2Si$ (M + H) $^+$:355.2264, found 355.2269.

(3aR,4R,6R,7aS)-2-((E)-4-methoxystyryl)-3a,5,5-trimethylhexahydro-4,6-methan obenzo[d][1,3,2]dioxaborole (3g)^[7]: The general procedure was followed, using **4-Ehynylanisole** (1g, 26.4 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 50 : 1) afforded product 3g as a pale yellow oil (31.2 mg, 50% yield); $\mathbf{R_f} = 0.4$ (PE : EA = 20 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.36 (d, J = 18.4 Hz, 1H), 6.89 – 6.84 (m, 2H), 6.04 (d, J = 18.4 Hz, 1H), 4.36 (dd, J = 8.7, 1.9 Hz, 1H), 3.80 (s,

3H), 2.43 - 2.34 (m, 1H), 2.28 - 2.20 (m, 1H), 2.10 (dd, J = 6.0, 4.8 Hz, 1H), 1.97 - 1.89 (m, 2H), 1.44 (s, 3H), 1.30 (s, 3H), 1.20 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H) ppm; ¹³C **NMR** (101 MHz, CDCl₃) δ 160.2, 149.0, 130.3, 128.4, 113.9, 85.6, 77.7, 55.2, 51.3, 39.5, 38.1, 35.5, 28.6, 27.1, 26.4, 24.0 ppm (the carbon next to boron could not be detected); ¹¹B **NMR** (128 MHz, CDCl₃) δ 29.3 (large singlets) ppm.

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((E)-4-(trifluoromethyl)styryl)hexahydro-4,6 -methanobenzo[d][1,3,2]dioxaborole (3h): The general procedure was followed, using 4-(Trifluoromethyl)phenylacetylene (1j, 30.4 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3h as a white solid (39.5 mg, 56% yield); $\mathbf{R_f} = 0.4$ (PE : EA = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 1.6 Hz, 4H), 7.41 (d, J = 18.5 Hz, 1H), 6.29 (d, J = 18.4 Hz, 1H), 4.39 (dd, J = 8.7, 1.8 Hz, 1H), 2.45 – 2.35 (m, 1H), 2.29 – 2.22 (m, 1H), 2.12 (dd, J = 6.1, 4.9 Hz, 1H), 1.98 – 1.90 (m, 2H), 1.46 (s, 3H), 1.31 (s, 3H), 1.19 (d, J = 11.0 Hz, 1H), 0.88 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 140.8, 127.1, 125.5 (q, 14.7 Hz), 86.0, 78.0, 51.3, 39.5, 38.2, 35.4, 28.6, 27.0, 26.4, 24.0 ppm (the carbon next to boron could not be detected); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 ppm; ¹¹B NMR (128 MHz, CDCl₃) δ 29.2 (large singlets) ppm; HRMS (ESI) m/z calcd for C₁₉H₂₃BF₃O₂ (M + H)⁺ :351.1743, found 351.1747.

(3aR,4R,6R,7aS)-2-((E)-2-([1,1'-biphenyl]-4-yl)vinyl)-3a,5,5-trimethylhexahydro-4,6-methanobenzo[d][1,3,2]dioxaborole (3i): The general procedure was followed, using 4-biphenylacetylene (1i, 35.7 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3i as a white solid (43.0 mg, 60% yield); $\mathbf{R_f} = 0.5$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 6H), 7.48 – 7.40 (m, 3H), 7.36 – 7.32 (m, 1H), 6.23 (d, J = 18.4 Hz, 1H), 4.38 (dd, J = 8.7, 1.8 Hz, 1H), 2.45 – 2.35 (m, 1H), 2.30 – 2.21 (m, 1H), 2.12 (dd, J = 6.1, 4.8 Hz, 1H), 1.99 – 1.91 (m, 2H), 1.46 (s, 3H), 1.31 (s, 3H), 1.22 (d, J = 10.9 Hz, 1H), 0.88 (s, 3H) ppm; 13 C NMR (101 MHz, CDCl₃) δ 148.9, 141.5, 140.5, 136.4, 128.8, 127.5, 127.4, 127.2, 127.0, 85.8, 77.8,

51.3, 39.5, 38.2, 35.5, 28.6, 27.1, 26.4, 24.0 ppm (the carbon next to boron could not be detected); ${}^{11}B$ NMR (128 MHz, CDCl₃) δ 29.2 (large singlets) ppm; HRMS (ESI) m/z calcd for $C_{24}H_{26}BO_2$ (M - H) $^{-1}$: 357.2026, found 357.2030.

(3aR,4R,6R,7aS)-2-((E)-4-bromostyryl)-3a,5,5-trimethylhexahydro-4,6-methano benzo[d][1,3,2]dioxaborole (3j): The general procedure was followed, using 4-Bromophenylacetylene (1l, 36.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3j as a pale yellow solid (43.2 mg, 60% yield); $\mathbf{R_f} = 0.4$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.48 – 7.44 (m, 2H), 7.37 – 7.29 (m, 3H), 6.17 (d, J = 18.4 Hz, 1H), 4.37 (dd, J = 8.7, 1.9 Hz, 1H), 2.38 (m, 1H), 2.24 (m, 1H), 2.13 – 2.08 (m, 1H), 1.97 – 1.88 (m, 2H), 1.45 (s, 3H), 1.30 (s, 3H), 1.18 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 148.0, 136.3, 131.7, 128.5, 122.8, 85.9, 77.8, 51.3, 39.4, 38.1, 35.4, 28.6, 27.0, 26.4, 24.0 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 29.2 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $\mathbf{C}_{18}\mathbf{H}_{23}\mathbf{B}\mathbf{B}\mathbf{r}\mathbf{O}_{2}$ (M + H) $^{+}$:361.0974, found 361.0978.

1-(4-((E)-2-((3aR,4R,6R,7aS)-3a,5,5-trimethylhexahydro-4,6-methanobenzo[d][1, 3,2]dioxaborol-2-yl)vinyl)phenyl)ethan-1-one (3k): The general procedure was followed, using **4-Acetylphenylacetylene (1n**, 28.8 mg, 0.2 mmol), **danB-Bpai** (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 50 : 1) afforded product **3k** as a colorless oil (34.7 mg, 54% yield); **R**_f = 0.2 (PE : EA = 20 : 1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.99 – 7.89 (m, 2H), 7.60 – 7.54 (m, 2H), 7.42 (d, J = 18.4 Hz, 1H), 6.32 (d, J = 18.4 Hz, 1H), 4.39 (dd, J = 8.7, 1.8 Hz, 1H), 2.60 (s, 3H), 2.40 (m, 1H), 2.25 (m, 1H), 2.12 (dd, J = 6.1, 4.9 Hz, 1H), 1.99 – 1.90 (m, 2H), 1.46 (s, 3H), 1.31 (s, 3H), 1.19 (d, J = 11.0 Hz, 1H), 0.88 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 197.57, 147.93, 141.80, 136.93, 128.70, 127.07, 86.02, 77.94, 51.28, 39.45, 38.17, 35.45, 28.61, 27.05, 26.65, 26.42, 24.01 ppm (the carbon next to boron could not be detected); ¹¹**B NMR** (128 MHz, CDCl₃) δ 29.88 (large singlets) ppm; **HRMS** (ESI) m/z calcd for C₂₀H₂₆BO₃ (M + H)⁺ :325.1975, found 325.1979.

4-((E)-2-((3aR,4R,6R,7aS)-3a,5,5-trimethylhexahydro-4,6-methanobenzo[d][1,3,2] **dioxaborol-2-yl)vinyl) methyl benzoate (3l):** The general procedure was followed, using **4-(Methoxycarbonyl)phenylacetylene (1o**, 32.0 mg, 0.2 mmol), **danB-Bpai** (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 50 : 1) afforded product **3l** as a white solid (41.5 mg, 61% yield); **R**_f = 0.3 (PE : EA = 20 : 1); ¹¹**H NMR** (400 MHz, CDCl₃) δ 8.04 – 7.99 (m, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 18.5 Hz, 1H), 6.30 (d, J = 18.4 Hz, 1H), 4.38 (dd, J = 8.8, 1.8 Hz, 1H), 3.91 (s, 3H), 2.45 – 2.35 (m, 1H), 2.29 – 2.22 (m, 1H), 2.11 (dd, J = 6.1, 4.9 Hz, 1H), 1.97 – 1.90 (m, 2H), 1.46 (s, 3H), 1.31 (s, 3H), 1.19 (d, J = 11.0 Hz, 1H), 0.88 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 166.8, 148.1, 141.7, 130.1, 129.9, 126.9, 86.0, 77.9, 52.1, 51.3, 39.5, 38.2, 35.5, 28.6, 27.1, 26.4, 24.0 ppm (the carbon next to boron could not be detected); ¹¹**B NMR** (128 MHz, CDCl₃) δ 29.8 (large singlets) ppm; **HRMS** (ESI) m/z calcd for C₂₀H₂₆BO₄ (M + H)⁺ :341.1924, found 341.1928.

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((E)-2-(naphthalen-2-yl)vinyl)hexahydro-4,6 -methanobenzo[d][1,3,2]dioxaborole (3m): The general procedure was followed, using 2-Ethynyl-naphthalene (1p, 30.5 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3m as a white solid (40.9 mg, 62% yield); $\mathbf{R_f} = 0.4$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.86 – 7.77 (m, 4H), 7.75 – 7.70 (m, 1H), 7.58 (d, J = 18.4 Hz, 1H), 7.49 – 7.41 (m, 2H), 6.32 (d, J = 18.4 Hz, 1H), 4.39 (dd, J = 8.7, 1.9 Hz, 1H), 2.44 – 2.35 (m, 1H), 2.29 – 2.22 (m, 1H), 2.13 (dd, J = 6.0, 4.9 Hz, 1H), 1.99 – 1.92 (m, 2H), 1.46 (s, 3H), 1.30 (s, 3H), 1.23 (d, J = 11.0 Hz, 1H), 0.87 (s, 3H) ppm; 13 C NMR (101 MHz, CDCl₃) δ 149.4, 134.9, 133.7, 133.4, 128.4, 128.2, 128.0, 127.6, 126.4, 126.2, 123.3, 85.8, 77.8, 51.3, 39.5, 38.1, 35.5, 28.6, 27.1, 26.4, 24.0 ppm (the carbon next to boron could not be detected); 11 B NMR (128 MHz, CDCl₃) δ 29.2 (large singlets) ppm; HRMS (ESI) m/z calcd for $C_{22}H_{24}BO_2$ (M - H) :331.1870, found 331.1873.

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((E)-2-(naphthalen-1-yl)vinyl)hexahydro-4,6 -methanobenzo[d][1,3,2]dioxaborole (3n): The general procedure was followed, using 1-Ethynyl-naphthalene (1q, 30.4 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3n as a pale yellow oil (33.2 mg, 50% yield); $\mathbf{R_f} = 0.2$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 8.28 – 8.19 (m, 2H), 7.85 – 7.71 (m, 3H), 7.54 – 7.42 (m, 3H), 6.30 (d, J = 18.2 Hz, 1H), 4.40 (dd, J = 8.7, 1.9 Hz, 1H), 2.44 – 2.36 (m, 1H), 2.25 (m, 1H), 2.13 (dd, J = 6.0, 4.9 Hz, 1H), 2.01 – 1.90 (m, 2H), 1.48 (s, 3H), 1.34 – 1.24 (m, 4H), 0.86 (s, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 146.3, 135.2, 133.5, 131.0, 129.0, 128.4, 126.1, 125.7, 125.5, 124.0, 123.7, 85.8, 77.8, 51.3, 39.5, 38.1, 35.5, 28.7, 27.1, 26.5, 24.0 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 29.2 (large singlets) ppm; HRMS (ESI) m/z calcd for $\mathbf{C}_{22}\mathbf{H}_{26}\mathbf{BO}_{2}$ (M + H) $^{+}$:333.2026, found 333.2030.

3о

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((E)-2-(thiophen-2-yl)vinyl)hexahydro-4,6-m ethanobenzo[d][1,3,2]dioxaborole (3o): The general procedure was followed, using 2-Ethynylthiophene (1r, 21.6 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3o as a pale yellow oil (32.4 mg, 56% yield); $\mathbf{R_f} = 0.4$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 18.1 Hz, 1H), 7.23 (dt, J = 5.0, 1.0 Hz, 1H), 7.09 – 7.07 (m, 1H), 6.98 (dd, J = 5.1, 3.6 Hz, 1H), 5.93 (d, J = 18.1 Hz, 1H), 4.35 (dd, J = 8.7, 1.8 Hz, 1H), 2.37 (m, 1H), 2.28 – 2.20 (m, 1H), 2.09 (dd, J = 6.1, 4.9 Hz, 1H), 1.96 – 1.87 (m, 2H), 1.43 (s, 3H), 1.30 (s, 3H), 1.18 (d, J = 11.0 Hz, 1H), 0.86 (s, 3H) ppm; 13 C NMR (101 MHz, CDCl₃) δ 143.9, 141.7, 127.6, 127.6, 126.2, 85.7, 77.8, 51.3, 39.4, 38.1, 35.5, 28.6, 27.0, 26.4, 24.0 ppm (the carbon next to boron could not be detected); 11 B NMR (128 MHz, CDCl₃) δ 29.3 (large singlets) ppm; HRMS (ESI) m/z calcd for C_{16} H₂₂BO₂S (M + H)⁺:289.1433, found 289.1436.

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((E)-2-(thiophen-3-yl)vinyl)hexahydro-4,6-m ethanobenzo[d][1,3,2]dioxaborole (3p): The general procedure was followed, using 3-Ethynylthiophene (1s, 21.6 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3p as a pale yellow oil (33.4 mg, 58% yield); $\mathbf{R_f} = 0.4$ (PE : EA = 50:1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.39 (d, J=18.4 Hz, 1H), 7.33 – 7.30 (m, 2H), 7.29 – 7.27 (m, 1H), 5.97 (d, J=18.4 Hz, 1H), 4.36 (dd, J=8.7, 1.8 Hz, 1H), 2.38 (m, 1H), 2.28 – 2.20 (m, 1H), 2.10 (dd, J=6.1, 4.9 Hz, 1H), 1.97 – 1.89 (m, 2H), 1.44 (s, 3H), 1.30 (s, 3H), 1.19 (d, J=11.1 Hz, 1H), 0.87 (s, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 143.1, 126.1, 125.0, 124.8, 85.8, 77.8, 51.4, 39.5, 38.2, 35.5, 28.6, 27.1, 26.4, 24.0 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 29.8 (large singlets) ppm; **HRMS** (ESI) m/z calcd for C₁₆H₂₀BO₂S (M - H)⁻:287.1277, found 287.1280.

3-((E)-2-((3aR,4R,6R,7aS)-3a,5,5-trimethylhexahydro-4,6-methanobenzo[d][1,3,2] **Idioxaborol-2-yl)vinyl)pyridine** (**3q**): The general procedure was followed, using **3-Ethynylpyridine** (**1t**, 20.6 mg, 0.2 mmol), **danB-Bpai** (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 10 : 1) afforded product **3q** as a colorless oil (31.9 mg, 56% yield); **R**_f = 0.4 (PE : EA = 2 : 1); **1H NMR** (400 MHz, CDCl₃) δ 8.65 (d, J = 68.8 Hz, 2H), 7.82 (d, J = 7.9 Hz, 1H), 7.43 – 7.28 (m, 2H), 6.28 (d, J = 18.5 Hz, 1H), 4.39 (dd, J = 8.7, 1.8 Hz, 1H), 2.40 (m, 1H), 2.31 – 2.21 (m, 1H), 2.11 (dd, J = 6.1, 4.9 Hz, 1H), 1.99 – 1.86 (m, 2H), 1.46 (s, 3H), 1.31 (s, 3H), 1.19 (d, J = 10.9 Hz, 1H), 0.88 (s, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃) δ 149.7, 149.0, 145.7, 133.1, 86.0, 77.9, 51.3, 39.4, 38.2, 35.4, 28.6, 27.0, 26.4, 24.0 ppm (the carbon next to boron could not be detected); ¹¹**B NMR** (128 MHz, CDCl₃) δ 29.9 (large singlets) ppm; **HRMS** (ESI) m/z calcd for C₁₇H₂₃BNO₂ (M + H) ⁺ :284.1822, found 284.1825.

(3aR,4R,6R,7aS)-2-((Z)-1,2-diphenylvinyl)-3a,5,5-trimethylhexahydro-4,6-metha nobenzo[d][1,3,2]dioxaborole (3r): The general procedure was followed, using Diphenylacetylene (1v, 35.6 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE : EA = 100 : 1) afforded product 3r as a pale yellow oil (36.2 mg, 51% yield); $\mathbf{R_f} = 0.3$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.31 – 7.25 (m, 2H), 7.24 – 7.17 (m, 3H), 7.14 – 7.03 (m, 5H), 4.38 (dd, J = 8.7, 1.9 Hz, 1H), 2.39 – 2.22 (m, 2H), 2.11 (dd, J = 6.0, 4.8 Hz, 1H) 1.96 – 1.89 (m, 2H), 1.45 (s, 3H), 1.28 (d, J = 12.5 Hz, 4H), 0.85 (s, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 143.1, 140.5, 136.9, 129.9, 128.6, 128.3, 127.8, 127.6, 126.3, 86.1, 78.3, 51.3, 39.5, 38.1, 35.6, 28.6, 27.1, 26.6, 24.0 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 29.8 (large singlets) ppm; HRMS (ESI) m/z calcd for $\mathbf{C}_{24}\mathbf{H}_{28}\mathbf{BO}_{2}$ (M + H) $^+$:359.2182, found 359.2187.

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((*Z*)-1-phenylprop-1-en-2-yl)hexahydro-4,6-methanobenzo[d][1,3,2]dioxaborole (3s): The general procedure was followed, using 1-Phenylpropyne (1w, 23.2 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE) afforded product 3s as a pale yellow oil (38.0 mg, 64% yield); $\mathbf{R_f} = 0.5$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 4H), 7.27 – 7.21 (m, 2H), 4.38 (dd, J = 8.7, 1.9 Hz, 1H), 2.44 – 2.35 (m, 1H), 2.25 (m, 1H), 2.11 (dd, J = 6.1, 4.8 Hz, 1H), 2.01 (d, J = 1.9 Hz, 3H), 1.94 (m, 2H), 1.45 (s, 3H), 1.30 (s, 3H), 1.22 (d, J = 10.9 Hz, 1H), 0.87 (s, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 142.3, 137.9, 229.3, 128.0, 127.1, 85.9, 78.0, 51.3, 39.5, 38.1, 35.6, 28.7, 27.1, 26.5, 24.0, 16.0 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 23.0 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $\mathbf{C}_{19}\mathbf{H}_{26}\mathbf{BO}_{2}$ (M + H) $^{+}$:297.2026, found 297.2029.

(3aR,4R,6R,7aS)-3a,5,5-trimethyl-2-((Z)-1-phenylbut-1-en-2-yl)hexahydro-4,6-m ethanobenzo[d][1,3,2]dioxaborole (3t): The general procedure was followed, using 1-Butynylbenzene (1x, 26.0 mg, 0.2 mmol), danB-Bpai (83.04 mg, 0.24 mmol). Purification of this material by chromatography on silica gel (PE) afforded product 3t

as a pale yellow oil (31.6 mg, 51% yield); $\mathbf{R_f} = 0.5$ (PE : EA = 50 : 1); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 4.4 Hz, 4H), 7.23 (d, J = 8.2 Hz, 2H), 4.37 (dd, J = 8.7, 1.8 Hz, 1H), 2.40 (m, 3H), 2.29 – 2.22 (m, 1H), 2.15 – 2.09 (m, 1H), 1.99 – 1.89 (m, 2H), 1.49 – 1.42 (m, 3H), 1.30 (s, 3H), 1.22 (d, J = 10.9 Hz, 1H), 1.12 (t, J = 7.5 Hz, 3H), 0.87 (s, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 141.4, 137.8, 128.9, 128.1, 127.0, 85.8, 77.9, 51.3, 39.5, 38.1, 35.6, 28.7, 27.1, 26.5, 24.0, 22.7, 14.7 ppm (the carbon next to boron could not be detected); $^{11}\mathbf{B}$ NMR (128 MHz, CDCl₃) δ 23.0 (large singlets) ppm; **HRMS** (ESI) m/z calcd for $\mathbf{C}_{20}\mathbf{H}_{28}\mathbf{BO}_{2}$ (M + H) $^+$:311.2182, found 311.2186.

6. Product transformations

In a 50 mL dry Schlenk tube, which contained a stirring bar, was charged with danB-Bpai (415.2 mg, 1.2 mmol, 1.2 equiv.), CuF₂ (10.1 mg, 0.1 mmol, 10 mol%), PPh₃ (26.2 mg, 0.1 mmol, 10 mol%), and MeONa (81.0 mg, 1.5 mmol, 1.5 equiv.). The tube was then evacuated and back-filled under N₂ flow (this sequence was repeated three times). Anhydrous Cyclohexane (7.5 mL), Phenylacetylene (102 mg, 1.0 mmol, 1.0 equiv.), and MeOH (64.1 mg, 2.0 mmol, 2.0 equiv.) were added subsequently under N₂. The tube was stirred at 35 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EA and H₂O, then extracted with EA. The organic layer was combined and dried over Na₂SO₄. Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography to afford the product **2a** (260.7mg, 96% yield).

In a 50 mL dry Schlenk tube, which contained a stirring bar, was charged with danB-Bpai (415.2 mg, 1.2 mmol, 1.2 equiv.), CuBr₂ (22.3 mg, 0.1 mmol, 10 mol%), PCy₃ (28.0 mg, 0.1 mmol, 10 mol%), and MeOLi (57.0 mg, 1.5 mmol, 1.5 equiv.). The tube was then evacuated and back-filled under N₂ flow (this sequence was repeated three times). Anhydrous iPr₂O (7.5 mL), Phenylacetylene (102 mg, 1.0 mmol, 1.0 equiv.), and MeOH (64.1 mg, 2.0 mmol, 2.0 equiv.) were added subsequently under N₂. The tube was stirred at 65 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EA and H₂O, then extracted with EA. The organic layer was combined and dried over Na₂SO₄. Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography to afford the product 3a (183.3 mg, 65% yield).

Step 1:

In a 25 mL Schlenk tube, which contained a stirring bar, was charged with **2a** (81.3 mg, 0.3 mmol, 1.0 equiv.) in THF (3.0 mL). 5M sulfuric acid (0.18 mL, 0.9 mmol, 3.0 equiv.) and pinacol (177.3 mg, 1.5 mmol, 5.0 equiv.) were added .The tube was stirred at room temperature for 18 hours. The reaction mixture was diluted with EA and H₂O, then extracted with EA. The organic layer was combined and dried over Na₂SO₄. Then filtered and concentrated by rotary evaporation to afford the product (E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane.

Step 2:

In a 25 mL Schlenk tube, which contained a stirring bar, was charged with Pd(PPh₃)₄ (34.7 mg, 0.03 mmol, 10 mol%) and K₂CO₃ (124.4 mg, 0.9 mmol, 3.0 equiv.). The tube was then evacuated and back-filled under N2 flow (this sequence repeated three times). To solution (E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane in THF (1.8 mL), H₂O (0.2 mL), and Ethyl 4-iodobenzoate (248.5 mg, 0.9 mmol, 3.0 equiv.) were added subsequently under N₂. The tube was stirred at 85 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EA and H₂O, then extracted with EA. The organic layer was combined and dried over Na₂SO₄. Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography (PE : EA = 100 : 1) to afford the product $\mathbf{4}^{[8]}$ (42.4 mg, 56% yield) as a yellow solid; $\mathbf{R_f} = 0.3 \; (\text{PE} : \text{EA} = 50 : 1); \, ^1\mathbf{H} \; \mathbf{NMR} \; (400 \; \text{MHz}, \; \text{CDCl}_3) \; \delta \; 8.03 \; (\text{d}, \; J = 1.00 \; \text{m}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.00 \; \text{d}) \; \delta \; 6.03 \; (\text{d}, \; J = 1.$ 8.4 Hz, 2H), 7.57 - 7.50 (m, 4H), 7.37 (t, J = 7.5 Hz, 2H), 7.31 - 7.27 (m, 1H), 7.21(d, J = 16.3 Hz, 1H), 7.12 (d, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.3 Hz, 1H), 7.12 (d, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 16.2 Hz, 1H), 1H 7.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 141.7, 136.7, 131.1, 123.0, 129.2, 128.7, 128.2, 127.6, 126.7, 126.2, 60.9, 14.3 ppm.

Step 1:

In a 25 mL Schlenk tube, which contained a stirring bar, was charged with **2a** (108.4 mg, 0.4 mmol, 1.0 equiv.) in THF (4.0 mL). 5M sulfuric acid (0.24 mL, 1.2

mmol, 3.0 equiv.) and pinacol (236.3 mg, 2.0 mmol, 5.0 equiv.) were added .The tube was stirred at room temperature for 18 hours. The reaction mixture was diluted with EA and H₂O, then extracted with EA. The organic layer was combined and dried over Na₂SO₄. Then filtered and concentrated by rotary evaporation to afford the product (E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane.

Step 2:

In a 25 mL Schlenk tube, which contained a stirring bar, was charged with $Pd(PPh_3)_2Cl_2$ (28.1mg, 0.04 mmol, 10 mol%), Na_2CO_3 (84.8 mg, 0.8 mmol, 2.0 equiv.) and TsCl (38.1 mg, 0.2 mmol, 0.5 equiv.). The tube was then evacuated and back-filled under N_2 flow (this sequence was repeated three times). To a solution of (E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane in tBuOH (1.5 mL) and H_2O (1.5 mL) were added subsequently under N_2 . The tube was stirred at 35 °C for 12 hours. The reaction mixture was diluted with EA and H_2O , then extracted with EA. The organic layer was combined and dried over Na_2SO_4 . Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography (PE) to afford the product $\mathbf{5}^{[9]}$ (19.4 mg, 47% yield) as a white solid; $\mathbf{R_f} = 0.5$ (PE); $^1\mathbf{H}$ NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 8.3, 1.4 Hz, 4H), 7.33 (dd, J = 8.3, 6.9 Hz, 4H), 7.26 – 7.21 (m, 2H), 6.99 – 6.94 (m, 2H), 6.71 – 6.65 (m, 2H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, CDCl₃) δ 137.3, 132.8, 129.2, 128.6, 127.5, 126.4 ppm.

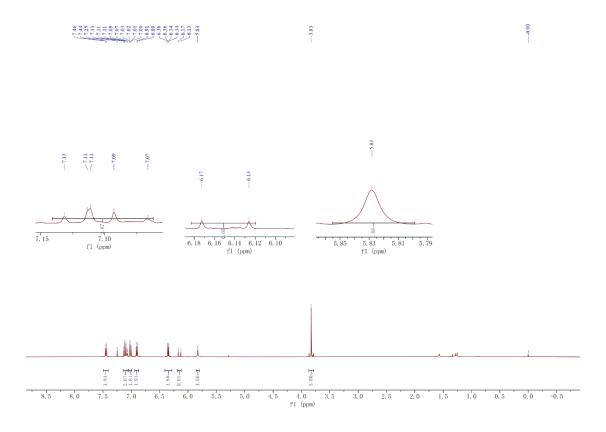
In a 25 mL Schlenk tube, which contained a stirring bar, was charged with **3a** (84.7 mg, 0.3 mmol, 1.0 equiv.), $Cu(OAc)_2$ (108.9 mg, 0.6 mmol, 2.0 equiv.), Et_3N (121.4 mg, 1.2 mmol, 4.0 equiv.), and EtOH (2.0 mL). The tube was stirred at 25 °C for 12 hours. The reaction mixture was diluted with EA and H_2O , then extracted with EA. The organic layer was combined and dried over Na_2SO_4 . Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography (PE) to afford the product $\mathbf{6}^{[9]}$ (37.3 mg, 84% yield) as a colorless oil; $\mathbf{R_f} = 0.4$ (PE); $^1\mathbf{H}$ NMR (400 MHz, $CDCl_3$) δ 7.28 – 7.18 (m, 4H), 7.15 – 7.09 (m, 1H), 6.98 (d, J = 12.9 Hz, 1H), 5.83 (d, J = 13.0 Hz, 1H), 3.89 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H) ppm; $^{13}\mathbf{C}$ NMR (101 MHz, $CDCl_3$) δ 147.9, 136.5, 128.5, 125.5, 125.0, 105.8, 65.4, 14.8 ppm.

In a 25 m Schlenk tube, which contained a stirring bar, was charged with **3a** (84.7 mg, 0.3 mmol, 1.0 equiv.), NaBO₃ 4H₂O (138.5 mg, 0.9 mmol, 3.0 equiv.), THF (1.5 mL), and H₂O (2.0 mL). The tube was stirred at room temperature for 3 hours. The reaction mixture was diluted with EA and H₂O. Then extracted with EA. The organic layer was combined and dried over Na₂SO₄. Then filtered and concentrated by rotary evaporation. At 0°C, NaBH₄ (34.0 mg, 0.9 mmol, 3.0 equiv.) and MeOH (1.5 mL) were added. The tube was stirred at room temperature for 3 hours. The reaction mixture was diluted with EA and H₂O, then extracted with EA. The organic layer was combined and dried over Na₂SO₄. Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography (PE : EA = 20 : 1) to afford the product $7^{[10]}$ (19.4 mg, 53% yield) as a colorless oil; $\mathbf{R_f} = 0.4$ (PE : EA = 5 : 1); ¹HNMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.22 (td, J = 6.3, 1.6 Hz, 3H), 3.81 (t, J = 6.6 Hz, 2H), 2.84 (t, J = 6.6 Hz, 2H), 1.83 (s, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 129.0, 128.5, 126.4, 63.6 ppm.

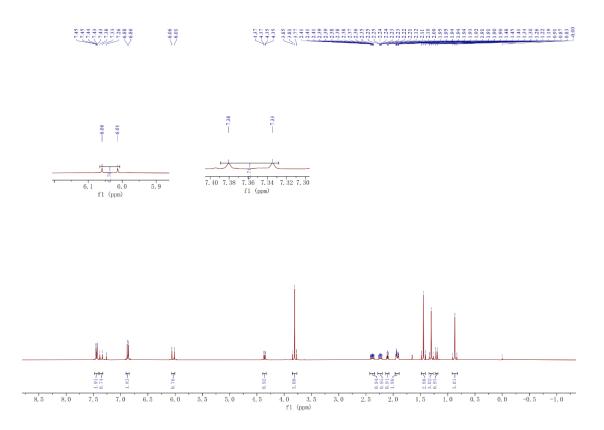
Failed example:

As shown above, using 4-ethynylbenzaldehyde as the starting material afforded the desired product but generated many unknown byproducts; this result suggested that the aldehyde group might not be compatible with the reaction conditions.

7. Mechanism experiment


7.1 The effect of substituent electricity:

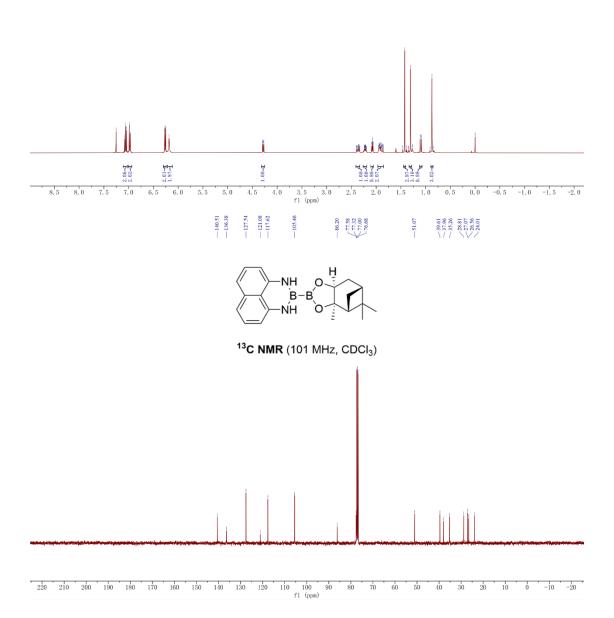
In a 25 mL dry Schlenk tube, which contained a stirring bar, was charged with danB-Bpai (69.2 mg, 0.2 mmol, 1.0 equiv.), 4-Ethynylanisole (79.3 mg, 0.6 mmol, 3.0 equiv.), CuF_2 (2.1 mg, 0.02 mmol, 10 mol%), PPh_3 (5.3 mg, 0.02 mmol, 10 mol%), and MeONa (16.2 mg, 0.3 mmol, 1.5 equiv.). The tube was then evacuated and back-filled under N_2 flow (this sequence was repeated three times). Anhydrous Cyclohexane (1.5 mL), Phenylacetylene (61.3 mg, 0.6 mmol, 3.0 equiv.), and MeOH (12.8 mg, 0.4 mmol, 2.0 equiv.) were added subsequently under N_2 . The tube was stirred at 35 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EA and H_2O , then extracted with EA. The organic layer was combined and dried over Na_2SO_4 . Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography to afford the product 2a (21.3 mg, 40% yield) and 2g (13.2 mg, 22% yield), 2a:2g = 1.8:1.


In a 25 mL dry Schlenk tube, which contained a stirring bar, was charged with danB-Bpai (69.2 mg, 0.2 mmol, 1.0 equiv.), 4-(Methoxycarbonyl)phenylacetylene (96.1 mg, 0.6 mmol, 3.0 equiv.), CuF_2 (2.1 mg, 0.02 mmol, 10 mol%), PPh_3 (5.3 mg, 0.02 mmol, 10 mol%), and MeONa (16.2 mg, 0.3 mmol, 1.5 equiv.). The tube was then evacuated and back-filled under N_2 flow (this sequence was repeated three times). Anhydrous Cyclohexane (1.5 mL), Phenylacetylene (61.3 mg, 0.6 mmol, 3.0 equiv.), and MeOH (12.8 mg, 0.4 mmol, 2.0 equiv.) were added subsequently under N_2 . The tube was stirred at 35 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EA and H_2O , then extracted with EA. The organic layer was combined and dried over Na_2SO_4 . Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography to afford the product 2a (3.5 mg, 6% yield) and 2o (31.7 mg, 48% yield), 2a:2o = 1:8.

7.2 Deuterium experiments:

In a 25 mL dry Schlenk tube, which contained a stirring bar, was charged with danB-Bpai (83.04 mg, 0.2 mmol, 1.2 equiv.), 4-Ethynylanisole (26.4 mg, 0.6 mmol, 3.0 equiv.), CuF_2 (2.1 mg, 0.02 mmol, 10 mol%), PPh_3 (5.3 mg, 0.02 mmol, 10 mol%), and MeONa (16.2 mg, 0.3 mmol, 1.5 equiv.). The tube was then evacuated and back-filled under N_2 flow (this sequence was repeated three times). Anhydrous Cyclohexane (1.5 mL), and MeOH (12.8 mg, 0.4 mmol, 2.0 equiv.) were added subsequently under N_2 . The tube was stirred at 35 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EA and H_2O , then extracted with EA. The organic layer was combined and dried over Na_2SO_4 . Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography to afford the product 2g-D (53.4 mg, 89% yield).

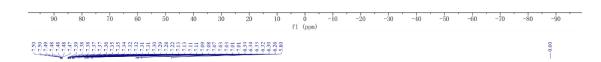
In a 25 mL dry Schlenk tube, which contained a stirring bar, was charged with danB-Bpai (83.04 mg, 0.24 mmol, 1.2 equiv.), 4-Ethynylanisole (26.4 mg, 0.6 mmol, 3.0 equiv.), CuBr₂ (4.5 mg, 0.02 mmol, 10 mol%), PCy₃ (5.6 mg, 0.02 mmol, 10 mol%), and MeOLi (11.4 mg, 0.3 mmol, 1.5 equiv.). The tube was then evacuated and back-filled under N₂ flow (this sequence was repeated three times). Anhydrous iPr₂O (1.5 mL), alkenyl (0.2 mmol, 1.0 equiv.), and MeOH (12.8 mg, 0.4 mmol, 2.0 equiv.) were added subsequently under N₂. The tube was stirred at 65 °C for 12 hours. After cooling to room temperature, the reaction mixture was diluted with EA and H₂O, then extracted with EA. The organic layer was combined and dried over Na₂SO₄. Then filtered and concentrated by rotary evaporation. The residue was purified by silica gel chromatography (PE/EA) to afford the product **3g-D** (28.1mg, 45% yield).

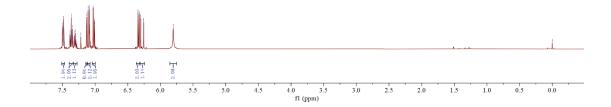


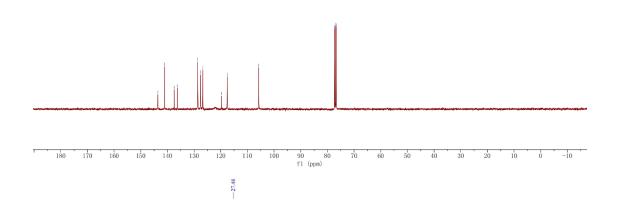
8. References

- [1] Zhong, M.; Gagne, Y.; Hope, T. O.; Pannecoucke, X.; Frenette, M.; Jubault, P.; Poisson, T. *Angew. Chem. Int. Ed.* **2021**, *60*, 14498–14503.
- [2] Iwadate, N.; Suginome, M. Org. Lett. 2009, 11, 1899–1902.
- [3]Reid, W. B.; Spillane, J. J.; Krause, S. B.; Watson, D. A. J. Am. Chem. Soc. **2016**, 138, 5539–5542.
- [4] Jang, W. J.; Lee, W. L.; Moon, J. H.; Lee, J. Y.; Yun, J. *Org. Lett.* **2016**, *18*, 1390–1393.
- [5] Yoshida, H.; Takemoto, Y.; Takaki, K. Asian J. Org. Chem. 2014, 3, 1204–1209.
- [6] Birepinte, M.; Liautard, V.; Chabaud, L.; Pucheault, M. *Org. Lett.* **2020**, 22, 2838–2843.
- [7] Dominguez-Molano, P.; Bru, G.; Salvado, O.; Maza, R. J.; Carbó, J. J.; Fern ández, E. *Chem. Commun.* **2021**, *57*, 13361–13364.
- [8] Gong, D.; Hu, B.; Yang, W.; Kong, D.; Xia, H.; Chen, D. *Organometallics* **2020**, *39*, 862–869.
- [9] Shi, X.; Li, S.; Wu, L. Angew. Chem. Int. Ed. 2019, 58, 16167–16171.
- [10] Liu, X.; Sau, A.; Green, A. R.; Popescu, M. V.; Pompetti, N. F.; Li, Y.; Zhao, Y.; Paton, R. S.; Damrauer, N. H.; Miyake, G. M. *Nature* 2025, 637, 601–607.

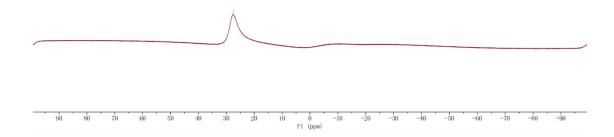
9. NMR Spectra


¹H NMR (400 MHz, CDCl₃)

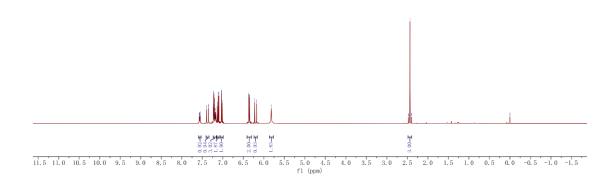

¹¹B NMR (128 MHz, CDCl₃)


2a

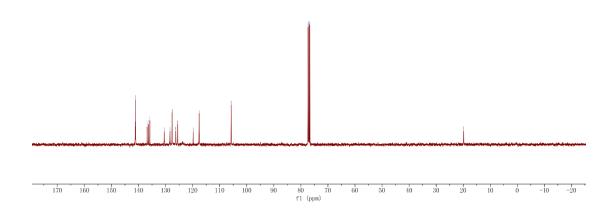
¹H NMR (400 MHz, CDCl₃)


2a

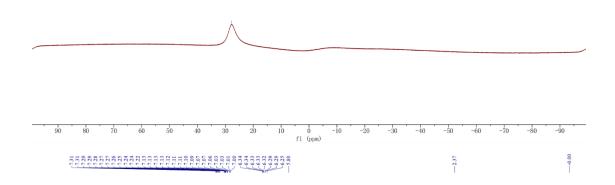
¹³C NMR (101 MHz, CDCl₃)


2a

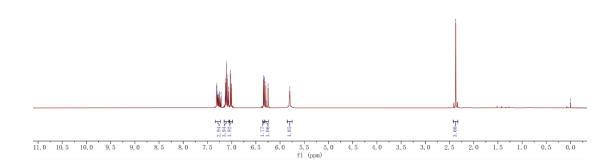
¹¹B NMR (128 MHz, CDCl₃)


2b

1H NMR (400 MHz, CDCl₃)

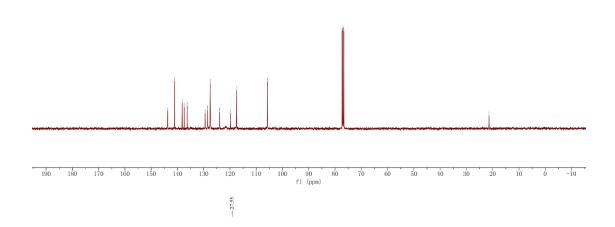


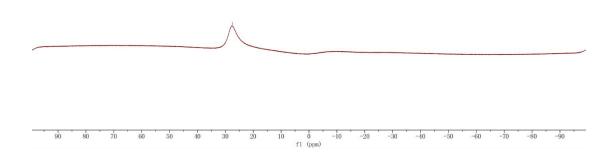
 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)



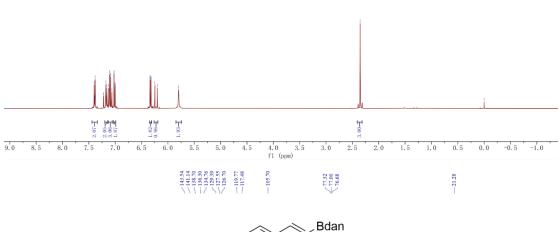
 11 B NMR (128 MHz, CDCl₃)

2c


¹H NMR (400 MHz, CDCl₃)

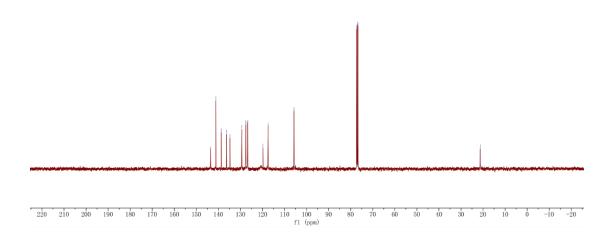

2c

 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)


2c

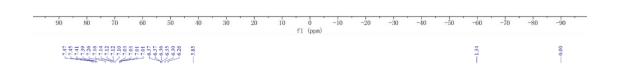
¹¹B NMR (128 MHz, CDCl₃)

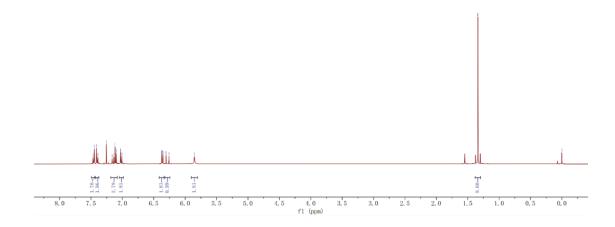
2d


¹H NMR (400 MHz, CDCl₃)

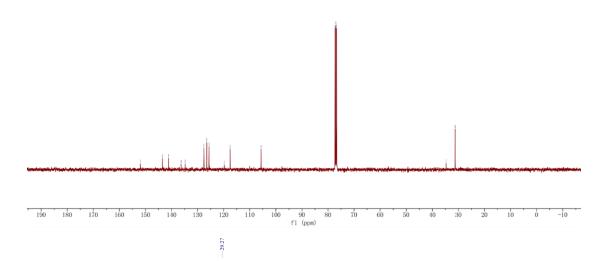
Me

2d

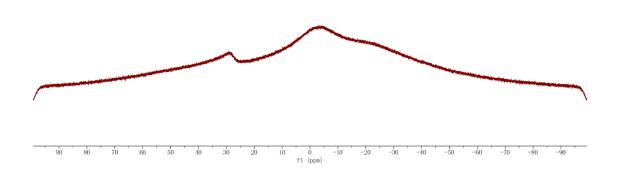

¹³C NMR (101 MHz, CDCl₃)



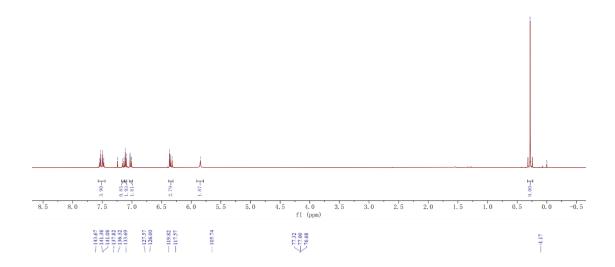
 11 B NMR (128 MHz, CDCl₃)



¹H NMR (400 MHz, CDCl₃)



¹³C NMR (101 MHz, CDCl₃)

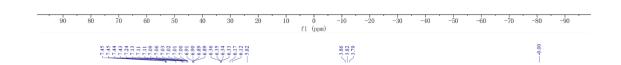


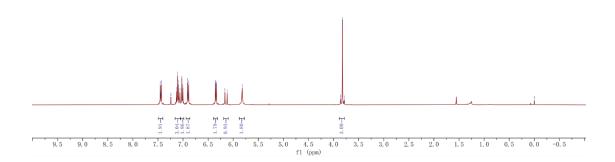
2e

¹¹B NMR (128 MHz, CDCl₃)

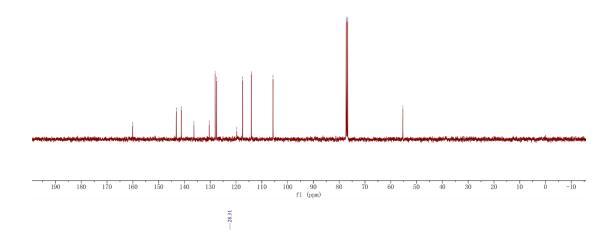
\$2f\$ $^{1}\mbox{H}$ NMR (400 MHz, CDCl_3)

2f


¹³CNMR (101 MHz, CDCl₃)

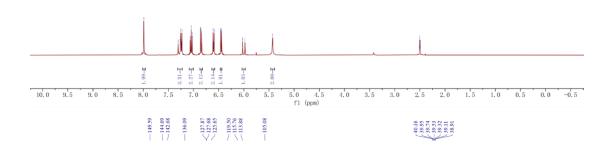


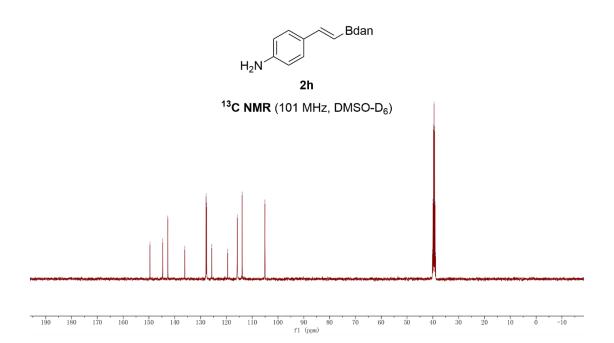
 ^{11}B NMR (128 MHz, CDCl₃)



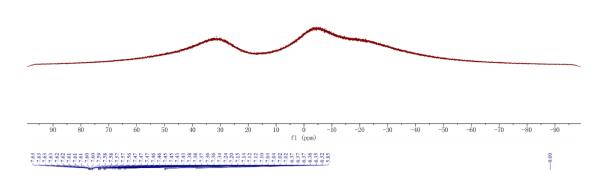
 ^{1}H NMR (400 MHz, CDCl $_{3}$)

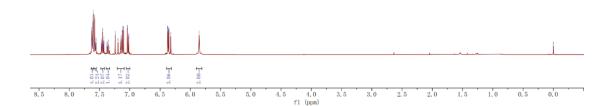
 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)


MeO Bdan


¹¹B NMR (128 MHz, CDCl₃)

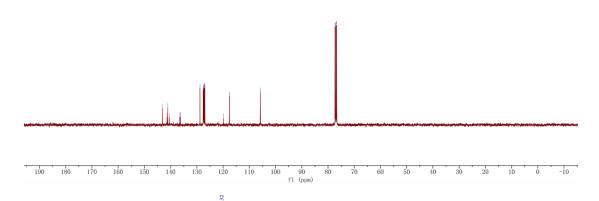
¹H NMR (400 MHz, DMSO-D₆)





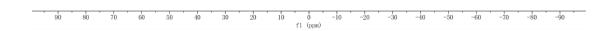
$$\mathsf{H_2N} \qquad \qquad \mathsf{Bdan}$$

$$\mathbf{2h}$$

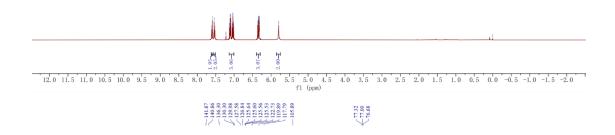

¹¹**B NMR** (128 MHz, DMSO-D₆)

¹H NMR (400 MHz, CDCl₃)

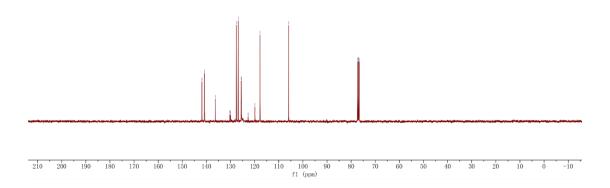
 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)


^ ^

Bdan


2i

 $^{11}\text{B NMR}$ (128 MHz, CDCl₃)



¹H NMR (400 MHz, CDCl₃)

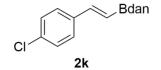
 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)

-07.43

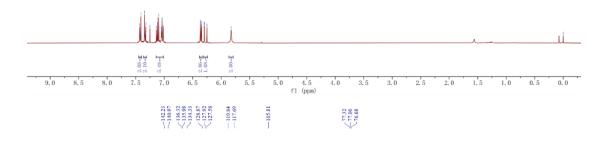
$$F_3$$
C $2j$ Bdan

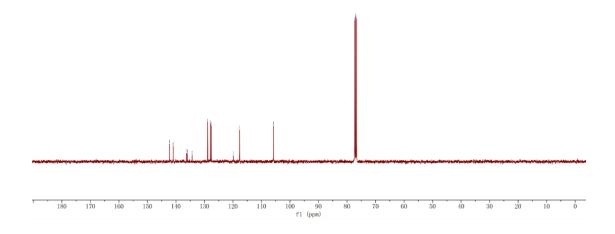
¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -110 (ppm)

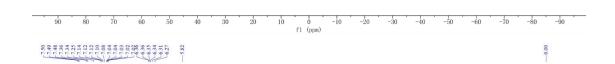

-27.73

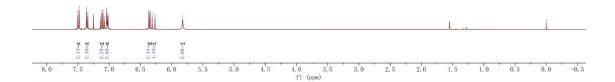
2j

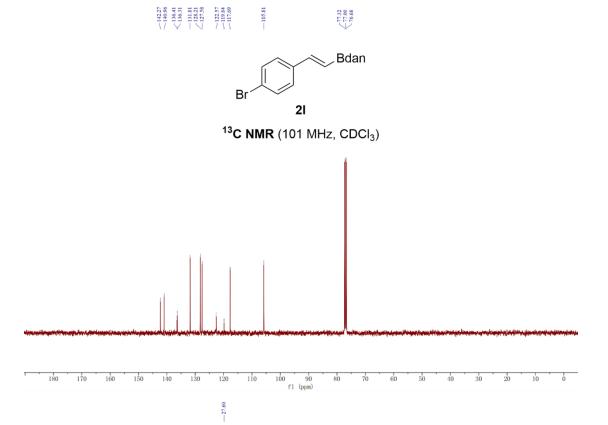

¹¹B NMR (128 MHz, CDCl₃)

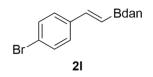

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90

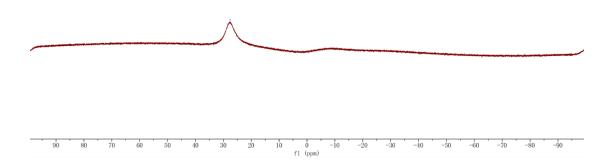
¹H NMR (400 MHz, CDCl₃)

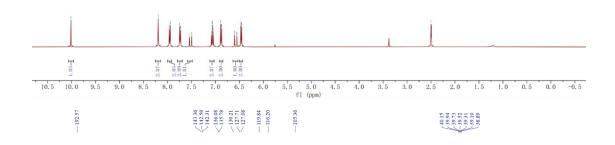

2k ¹³C NMR (101 MHz, CDCl₃)

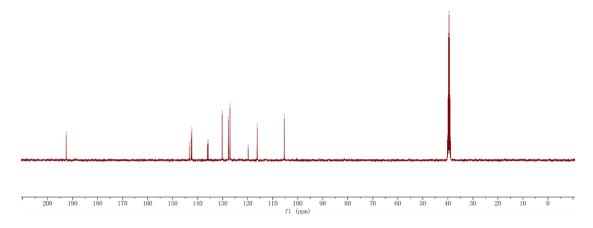


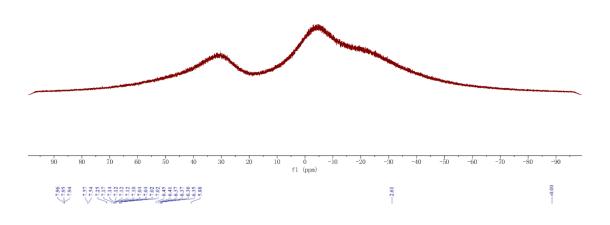

 11 B NMR (128 MHz, CDCl₃)

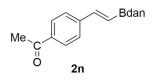


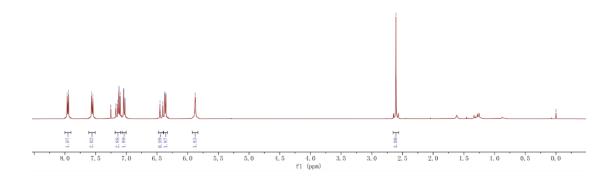

¹H NMR (400 MHz, CDCl₃)

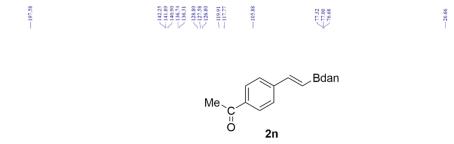


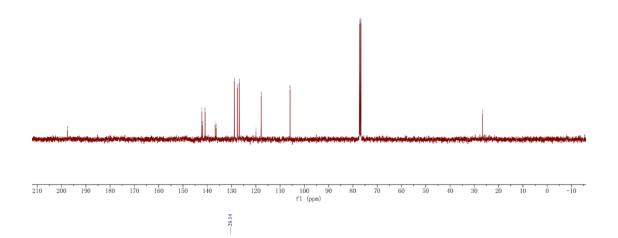

¹¹B NMR (128 MHz, CDCl₃)

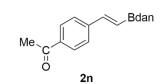


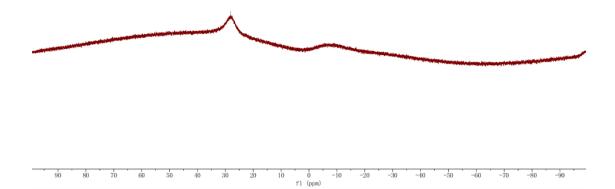

¹H NMR (400 MHz, DMSO-D₆)


 $^{13}\text{C NMR}$ (101 MHz, DMSO-D₆)

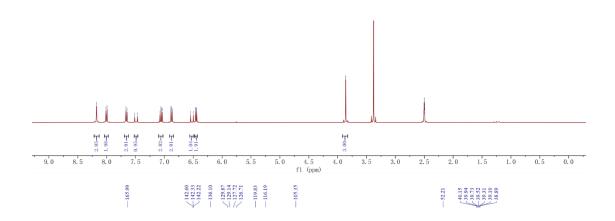


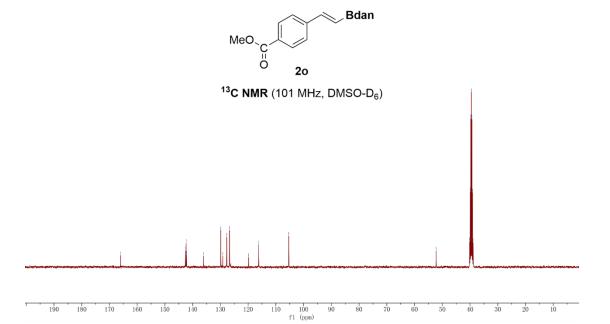


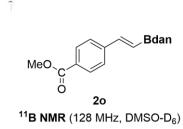

¹H NMR (400 MHz, CDCl₃)

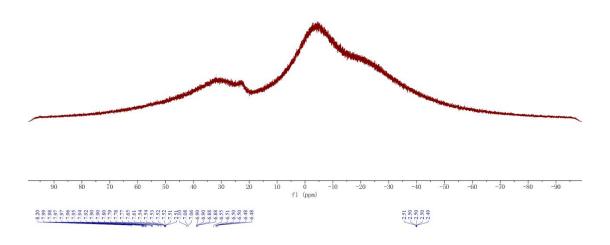


 13 C NMR (101 MHz, CDCl₃)

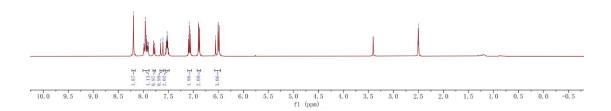


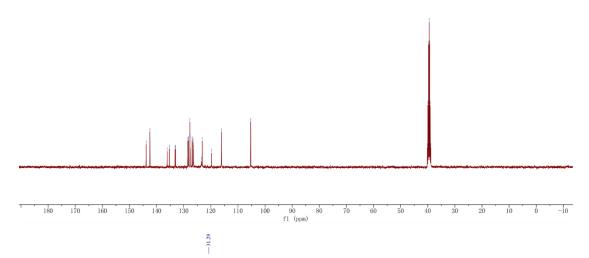

¹¹**B NMR** (128 MHz, CDCl₃)



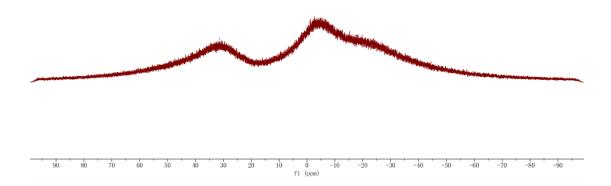


¹H NMR (400 MHz, DMSO-D₆)

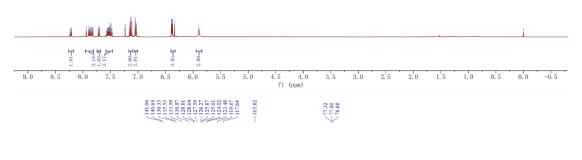




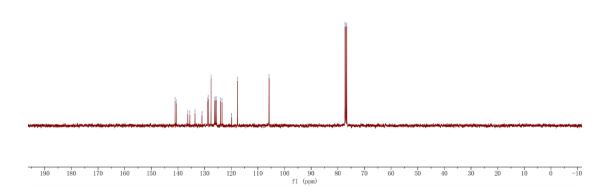
¹H NMR (400 MHz, DMSO-D₆)



 13 C NMR (101 MHz, DMSO-D₆)

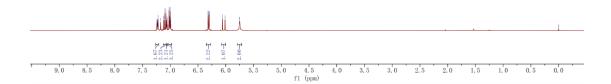


Bdan 2p

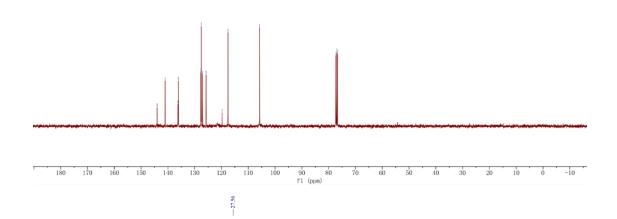

¹¹**B NMR** (128 MHz, DMSO-D₆)

¹H NMR (400 MHz, CDCl₃)

 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)

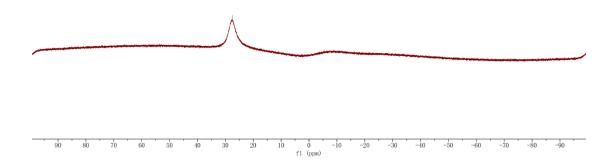


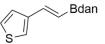
¹¹B NMR (128 MHz, CDCl₃)


2r

 $^{1}\text{H NMR}$ (400 MHz, CDCl₃)

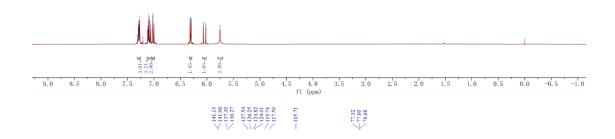
2r

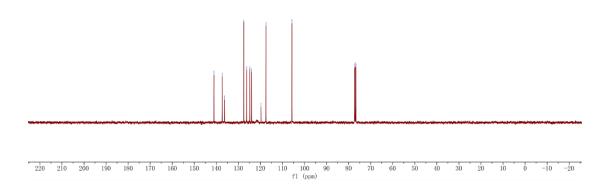

 13 C NMR (101 MHz, CDCl₃)



Bdan

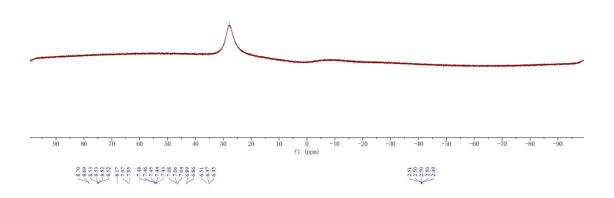
2r


¹¹B NMR (128 MHz, CDCl₃)

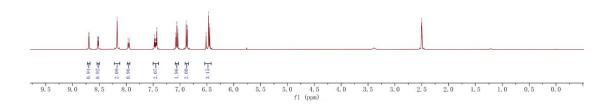


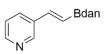
2s

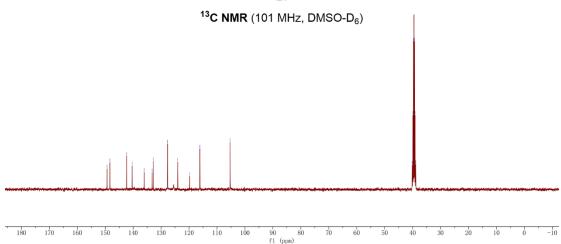
1H NMR (400 MHz, CDCl₃)



727.87

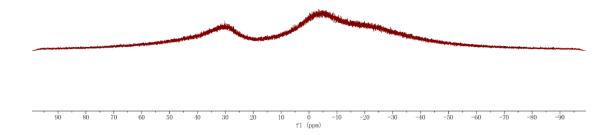

2s


 $^{11}\mathrm{B}~\mathrm{NMR}~\mathrm{(128~MHz,~CDCl_3)}$


2t

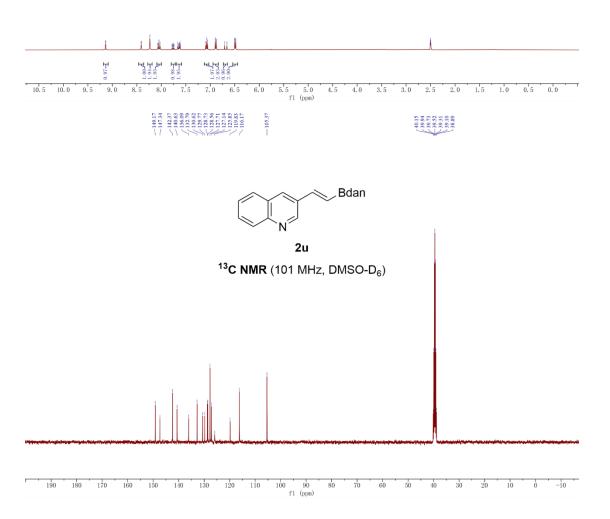
¹H NMR (400 MHz, DMSO-D₆)

2t



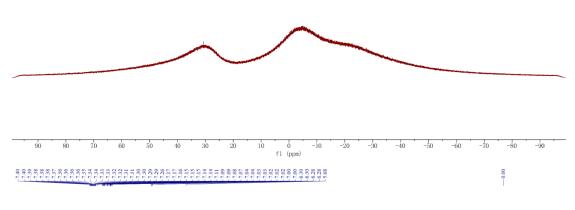
Bdan

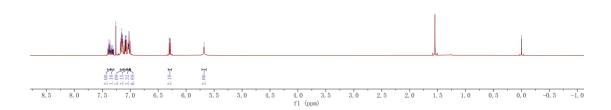
-30.45


2t

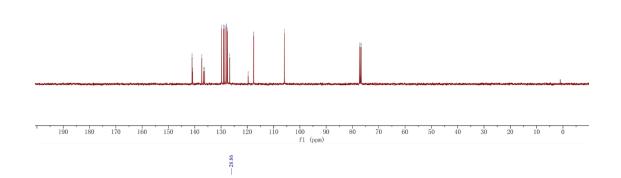
 $^{11}\mathrm{B}\ \mathrm{NMR}\ (128\ \mathrm{MHz},\ \mathrm{DMSO-D_6})$

2u


¹H NMR (400 MHz, DMSO-D₆)

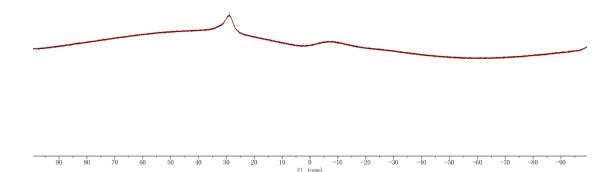

2u

¹¹**B NMR** (128 MHz, DMSO-D₆)

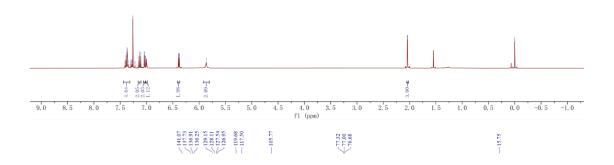


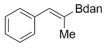
2v

¹H NMR (400 MHz, CDCl₃)

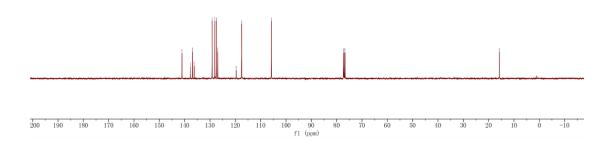

¹³C NMR (101 MHz, CDCl₃)

Bdan

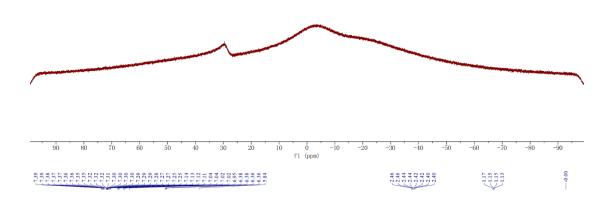

2v

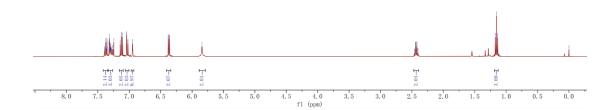

¹¹**B NMR** (128 MHz, CDCl₃)

2w

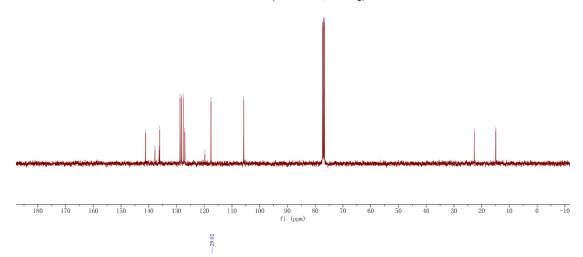

¹H NMR (400 MHz, CDCl₃)

2w


¹³C NMR (101 MHz, CDCl₃)

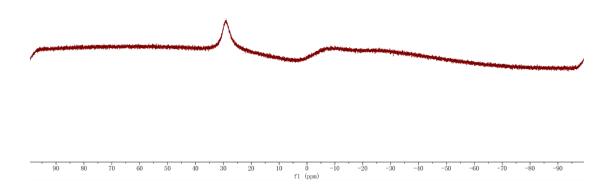

2w

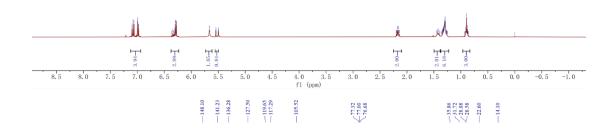
¹¹B **NMR** (128 MHz, CDCl₃)


2x

 ^{1}H NMR (400 MHz, CDCl₃)

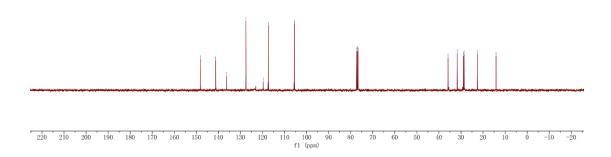
2x

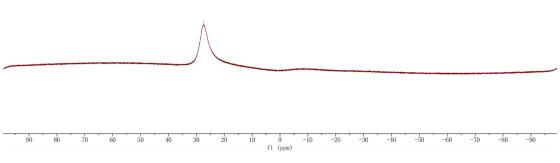

¹³C NMR (101 MHz, CDCl₃)


Bdan

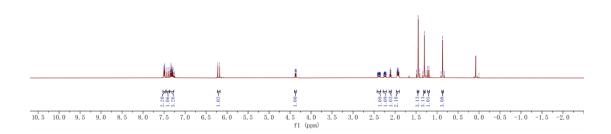
2x

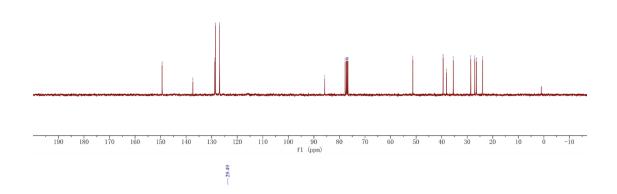
 $^{11}\mathrm{B}\ \mathrm{NMR}\ (128\ \mathrm{MHz},\ \mathrm{CDCI_3})$

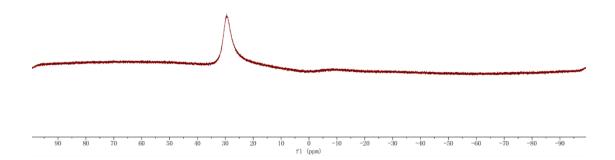

¹H NMR (400 MHz, CDCl₃)

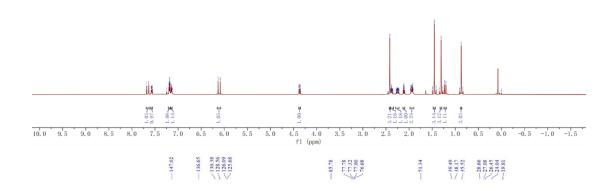

C₆H₁₃ Bdan

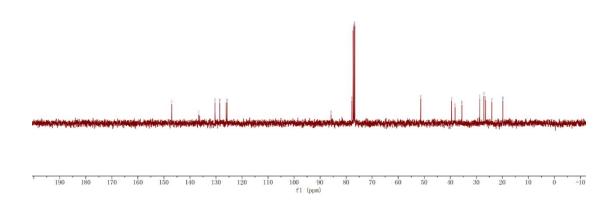
2у


¹³C NMR (101 MHz, CDCl₃)

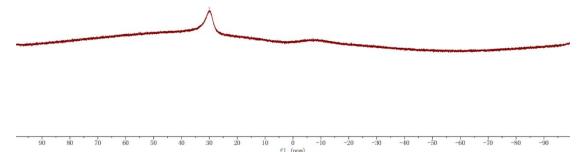

¹¹**B NMR** (128 MHz, CDCl₃)


¹H NMR (400 MHz, CDCl₃)

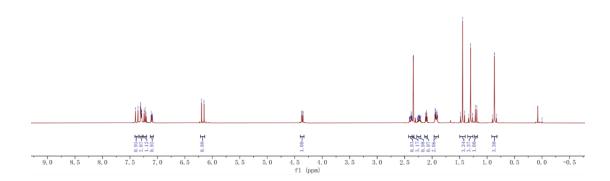

 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)

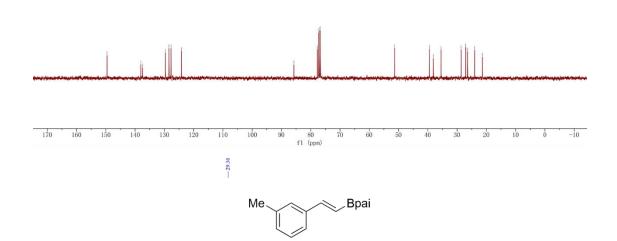

\$3a\$ $$^{11}\mbox{B}$ NMR (128 MHz, CDCl $_{3}$)

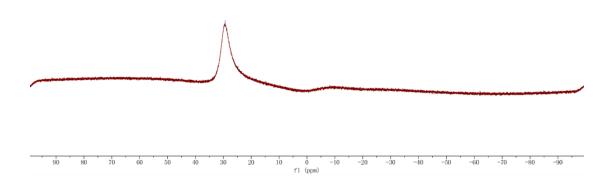
¹H NMR (400 MHz, CDCl₃)

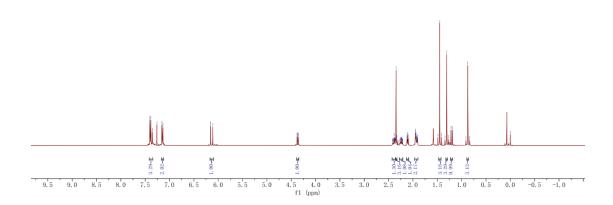


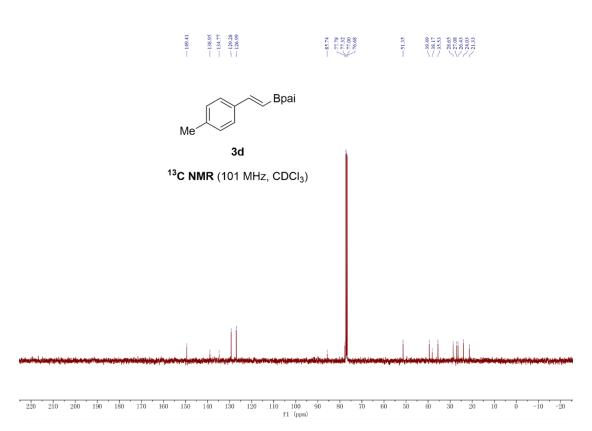
13C NMR (101 MHz, CDCl₃)




 $^{11}\mathrm{B}\ \mathrm{NMR}\ (128\ \mathrm{MHz},\ \mathrm{CDCI_3})$

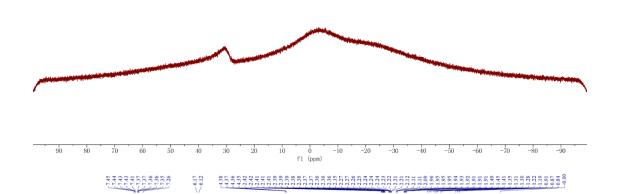

¹H NMR (400 MHz, CDCl₃)

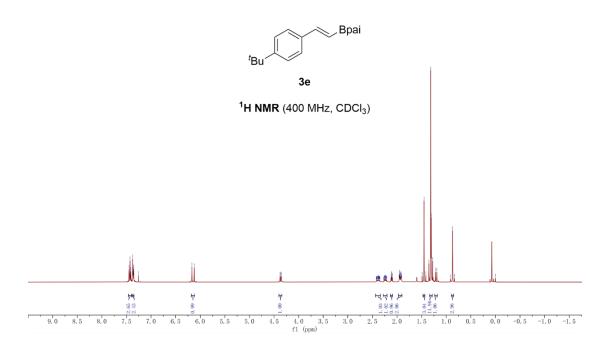

¹³C NMR (101 MHz, CDCl₃)

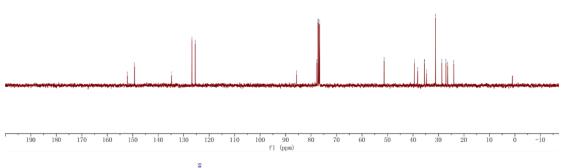


3c ^{11}B NMR (128 MHz, CDCl₃)

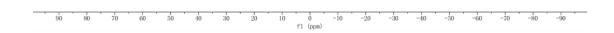
¹H NMR (400 MHz, CDCl₃)

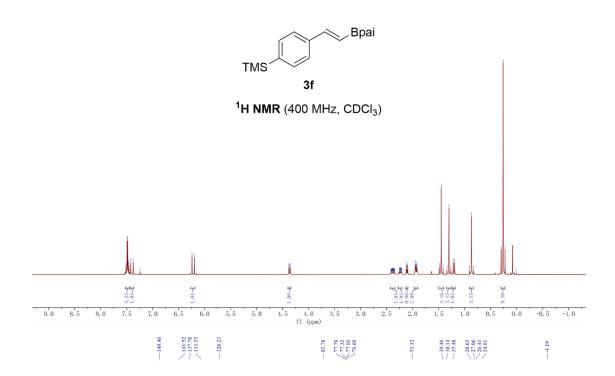




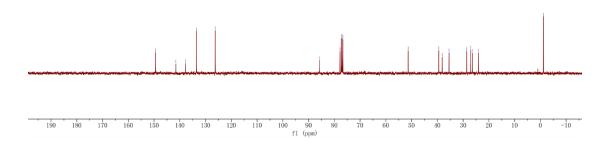

3d

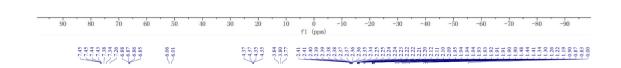
¹¹B NMR (128 MHz, CDCl₃)

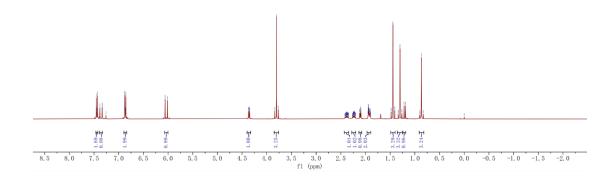

¹³C NMR (101 MHz, CDCl₃)



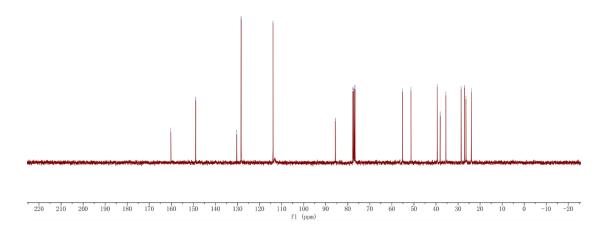
-29.46

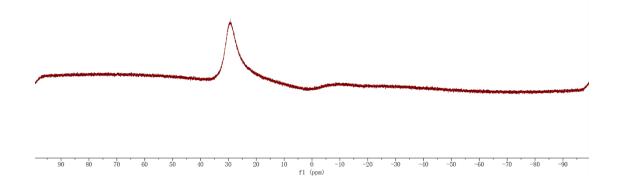

¹¹**B NMR** (128 MHz, CDCl₃)

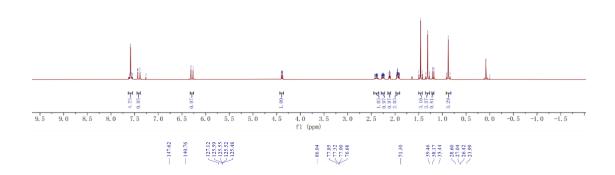

¹³C NMR (101 MHz, CDCl₃)

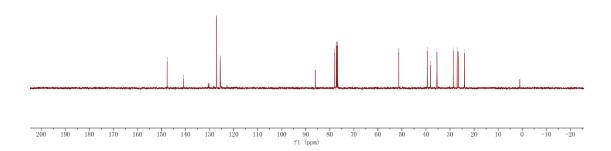


¹¹B **NMR** (128 MHz, CDCl₃)



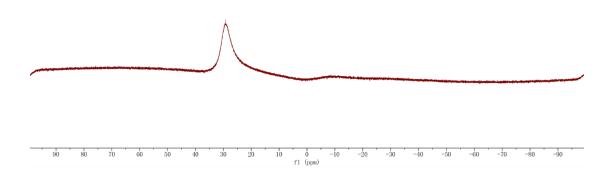

¹H NMR (400 MHz, CDCl₃)

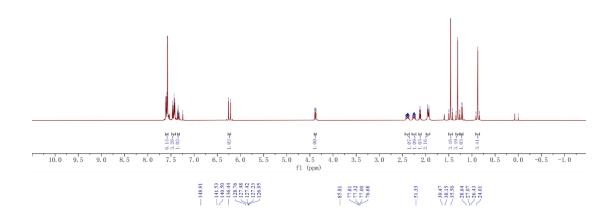




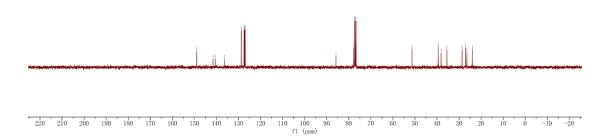
¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

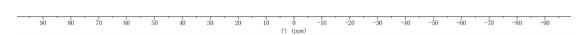


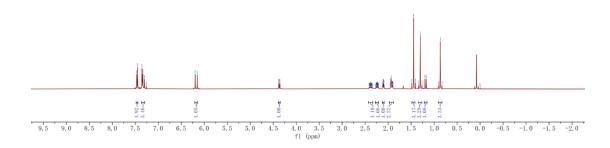

 19 F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 1 (ppm)

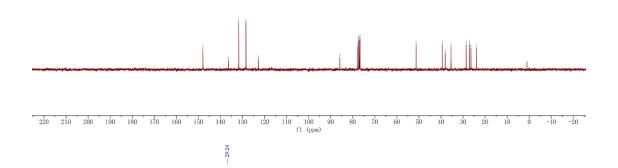

 $^{11}\mathrm{B}\ \mathrm{NMR}\ (128\ \mathrm{MHz},\ \mathrm{CDCI_3})$

¹H NMR (400 MHz, CDCl₃)

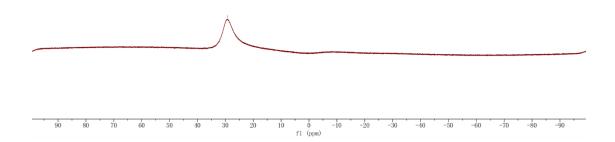

¹³C NMR (101 MHz, CDCl₃)



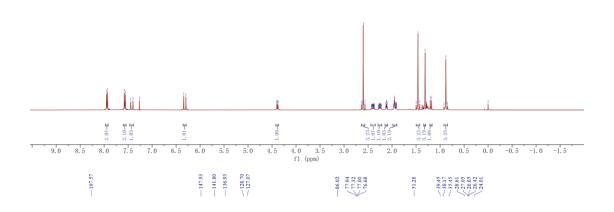
¹¹**B NMR** (128 MHz, CDCl₃)



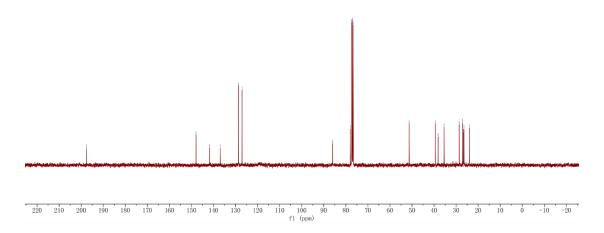
¹H NMR (400 MHz, CDCl₃)



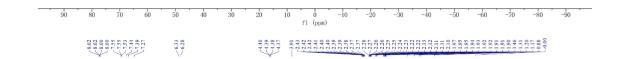
 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)

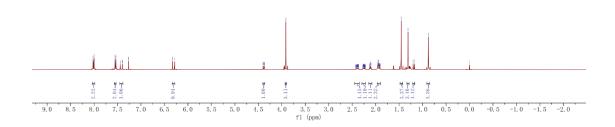


Br Bpai

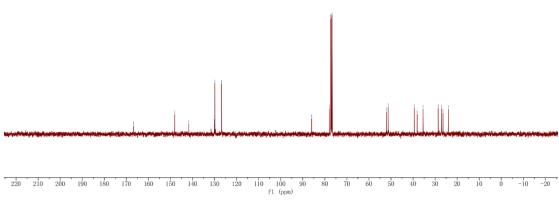

 11 B NMR (128 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

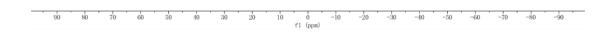

¹³C NMR (101 MHz, CDCl₃)

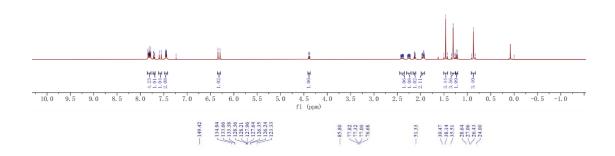


 11 B NMR (128 MHz, CDCl₃)

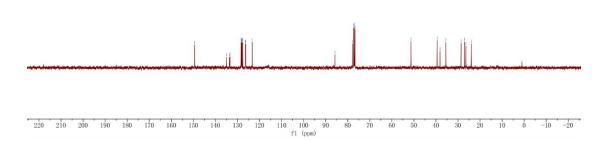


¹H NMR (400 MHz, CDCl₃)

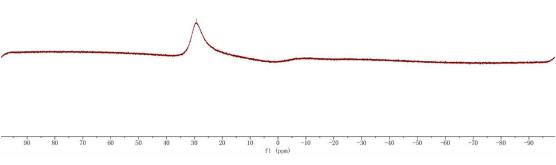

 13 C NMR (101 MHz, CDCl₃)

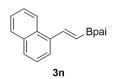

-29.76

 ^{11}B NMR (128 MHz, CDCl₃)

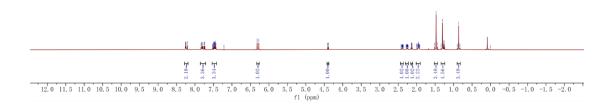


 ^{1}H NMR (400 MHz, CDCl $_{3}$)



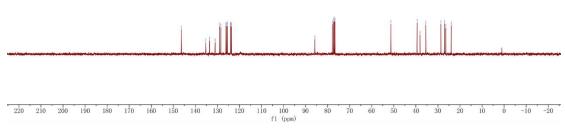

3m

¹³C NMR (101 MHz, CDCl₃)



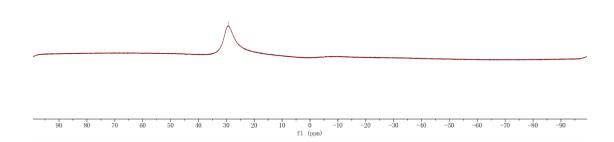
¹¹**B NMR** (128 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

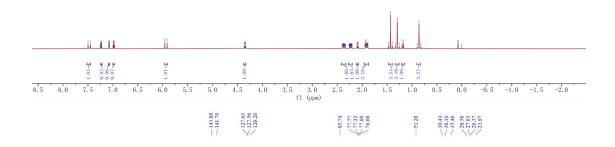


Bpai

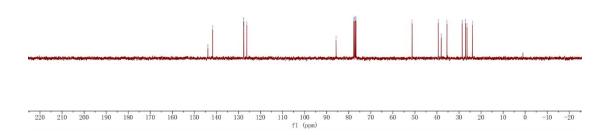
3n


 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)

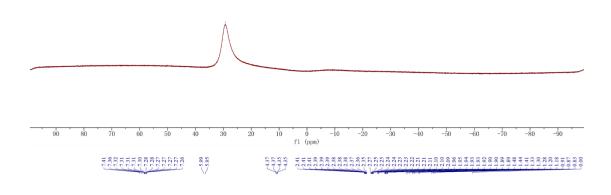
-29.25


3n

 11 B NMR (128 MHz, CDCl₃)

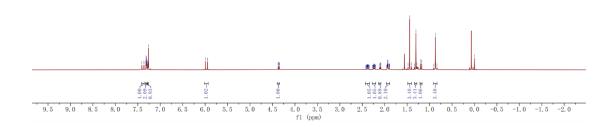

3о

 ^{1}H NMR (400 MHz, CDCl₃)

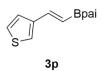


30

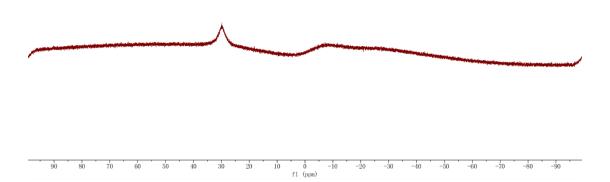
 13 C NMR (101 MHz, CDCl₃)

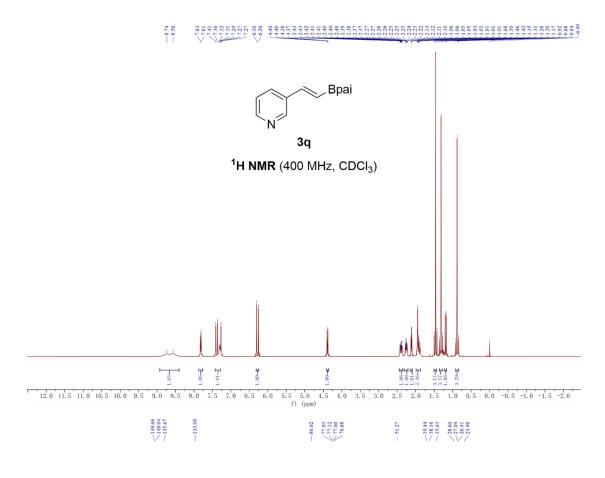


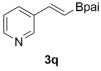
 ${f 3o}$ ${f ^{11}B}$ NMR (128 MHz, CDCl3)

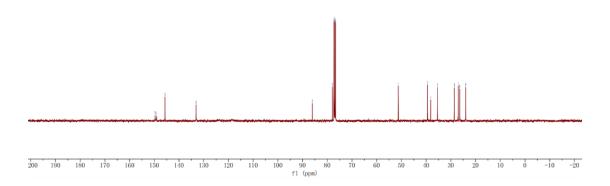


3р

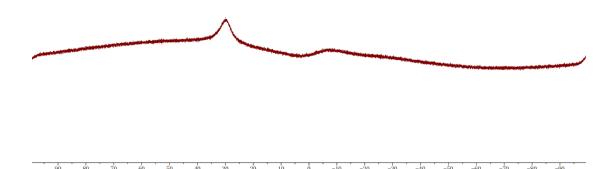

¹H NMR (400 MHz, CDCl₃)



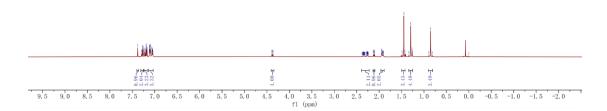



¹¹B NMR (128 MHz, CDCl₃)

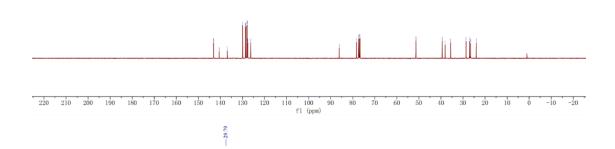
 13 C NMR (101 MHz, CDCl₃)



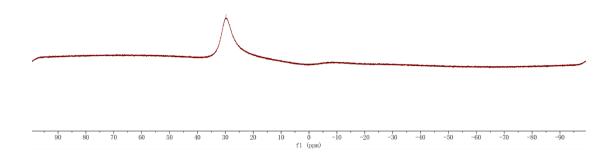
3q

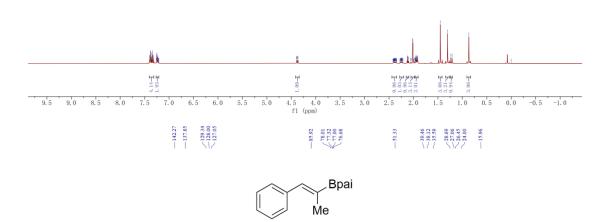

Bpai

¹¹B NMR (128 MHz, CDCl₃)

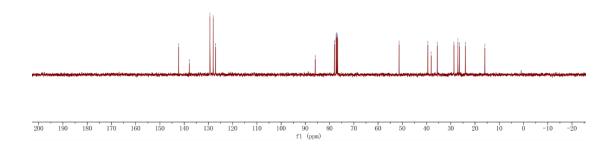


2477888889999

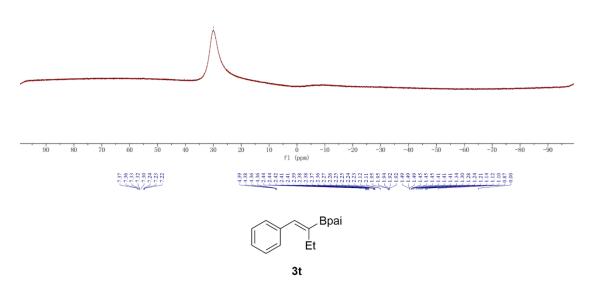

 ^{1}H NMR (400 MHz, CDCl₃)


¹³C NMR (101 MHz, CDCl₃)

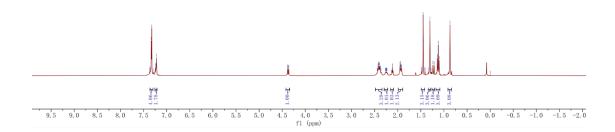
¹¹B **NMR** (128 MHz, CDCl₃)



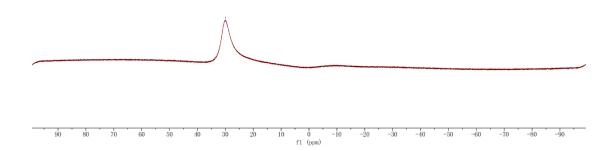
¹H NMR (400 MHz, CDCl₃)

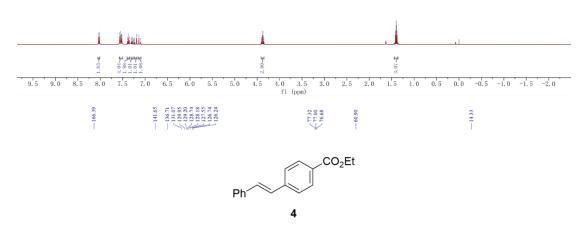

 13 C NMR (101 MHz, CDCl₃)

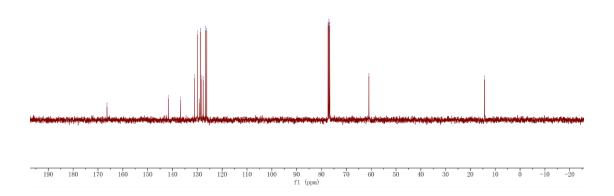
3s

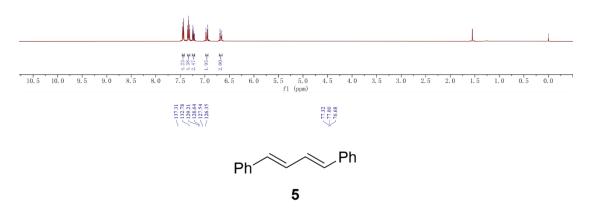


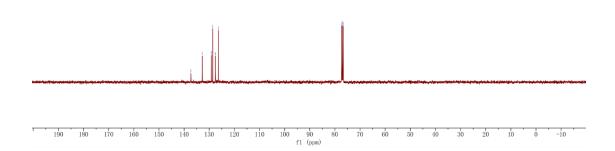

¹¹B NMR (128 MHz, CDCl₃)


¹H NMR (400 MHz, CDCl₃)

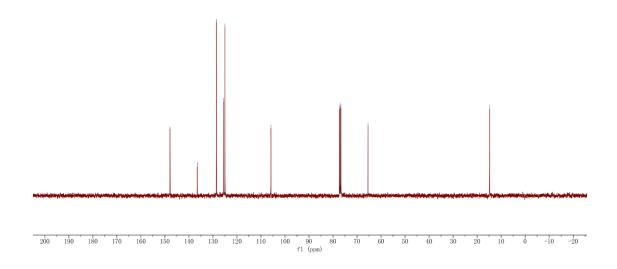

¹³C NMR (101 MHz, CDCl₃)


 $^{11}\text{B NMR}$ (128 MHz, CDCl₃)

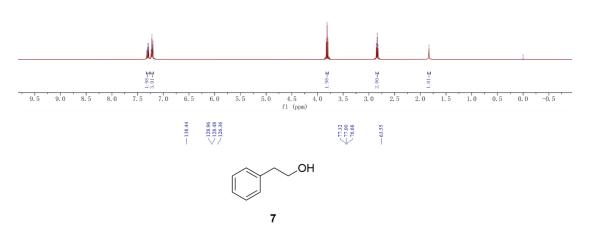

¹H NMR (400 MHz, CDCl₃)

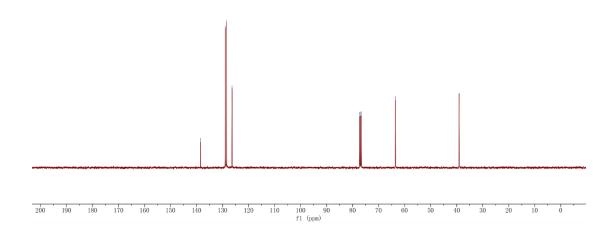

 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)



 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)




 $^{13}\text{C NMR}$ (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

