Supporting Information

Regulating the substituent of electron-acceptor in D-A system for boosting H_2O_2 photosynthesis from air and water

Yao Zhang, † Yu Kai, † Xuefeng Feng, * and Feng Luo*

National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China.

E-mail: xffeng@ecut.edu.cn and ecitluofeng@163.com

[†]These authors are co-first author.

EXPERIMENTAL SECTION

1. Materials and general methods

The raw materials for synthesizing DCTP-Cl, DPTP-H, and DHTP-OH, along with organic solvents of 99% purity, were procured from Aladdin Biochemical Technology Co., Ltd. All reagents were used as received without further purification. Fourier transform infrared (FT-IR) spectra were acquired using a Bruker VERTEX 70 spectrometer within the wavenumber range of 700-3600cm⁻¹. Nitrogen adsorptiondesorption isotherms were measured on a Belsorp-max instrument using ultrahighpurity (purity:>99.999%) nitrogen. X-ray photoelectron spectroscopy (XPS) data were collected using a Thermo Scientific ESCALAB 250 Xi spectrometer, while scanning electron microscopy (SEM) images were captured using a Hitachi SU 8100 Scanning Electron Microscope. Photoelectrochemical experiments were conducted on a CHI760 workstation. Ultraviolet-visible (UV-vis) spectroscopy results were recorded in diffuse reflectance (DR) mode at room temperature using a SHIMADZU UV-2700 spectrophotometer equipped with an integrating sphere attachment. Solidstate nuclear magnetic resonance (NMR) experiments were performed on a Varian Infinityplus 300 solid-state NMR spectrometer (300 MHz). Photoluminescence decay profiles were measured using the time-correlated single photon counting (TCSPC) mode on a Picosecond Lifetime Fluorescence Spectrometer (QUANTAURUS-TAU C11367-11). Temperature-dependent photoluminescence spectra were recorded using a HORIBA Fluorolog-3 modular fluorescence spectrometer.

2. Synthesis of DCTP-Cl

2,4-Diamino-6-chloropyrimidine (DC, 24.5 mg, 0.15 mmol) and 1,3,5-triformylphloroglucinol (TP, 21.0 mg, 0.1 mmol) were charged into a glass ampoule containing 1-butanol (1 mL) and 1,2-dichlorobenzene (1 mL). The mixture was sonicated for 10 min, followed by the addition of aqueous acetic acid (6 mol L⁻¹, 0.2 mL) as a catalyst, and sonicated for another 5 min. After degassing via three freeze-pump-thaw cycles, the glass ampoule was sealed under vacuum, and the condensation reaction was conducted at 120 °C for 72h. Upon cooling to room temperature, the

resulting solid was washed with N,N-dimethylformamide (DMF), yielding yellow powdery DCTP-Cl with a yield of approximately 87%.

3. Synthesis of DPTP-H

2,4-Diaminopyrimidine (DP, 16.52 mg, 0.15 mmol) and 1,3,5-triformylphloroglucinol (TP, 21.014 mg, 0.1 mmol) were charged into a glass ampoule containing 1-butanol (1 mL) and 1,2-dichlorobenzene (1 mL). The solution was sonicated for 10 min, followed by the addition of aqueous acetic acid (6 mol L⁻¹, 0.2 mL) as a catalyst, and sonicated for an additional 5 min. After degassing via three freeze-pump-thaw cycles, the glass ampoule was sealed under vacuum, and the condensation reaction was conducted at 120 °C for 72h. Upon cooling to room temperature, the resulting solid was washed with N,N-dimethylformamide (DMF), yielding orange powdery DPTP-H with a yield of approximately 83%.

4. Synthesis of DHTP-OH

2,4-Diamino-6-hydroxypyrimidine (DH, 19.065 mg, 0.15 mmol) and 1,3,5-triformylphloroglucinol (TP, 21.014 mg, 0.1 mmol) were charged into a glass ampoule containing 1-butanol (1 mL) and 1,2-dichlorobenzene (1 mL). The solution was sonicated for 10 min, followed by the addition of aqueous acetic acid (6 mol L⁻¹, 0.2 mL) as a catalyst, and further sonicated for 5 min. After degassing via three freeze-pump-thaw cycles, the glass ampoule was sealed under vacuum, and the condensation reaction was performed at 120 °C for 72h. Upon cooling to room temperature, the resulting solid was washed with N,N-dimethylformamide (DMF), yielding red powdery DHTP-OH with a yield of approximately 72%.

5. Photosynthesis of H₂O₂

5 mg of catalyst and 50 mL of deionized water (or 48 mL of water and 2 mL of active species trapping agent) were used. The mixture was continuously stirred under a xenon lamp for different time periods. After filtration through an organic membrane, the content of H₂O₂ was determined by UV-visable (UV-vis) spectrophotometry. Typically, 1 mL of the test solution, 1 mL of potassium hydrogen phthalate (0.1 mol/L), and 1 mL of potassium iodide (0.4 mol/L) were mixed and added to a 10 mL

volumetric flask, followed by standing for 1h. The concentration of hydrogen peroxide was determined at the maximum absorption wavelength of 350 nm.

6. Apparent quantum yield (AQE)

The apparent quantum efficiency (AQE) is similarly conducted according to references ^[28]. The apparent quantum efficiency (AQE) is calculated by measuring the photocatalytic synthesis of hydrogen peroxide (H₂O₂) over these materials under irradiation of 400 nm monochromatic light. The light intensity is measured using a PROVA-1010 digital optical power and energy meter. The photocatalytic reaction is performed in a system containing 50 mL of deionized water and 5 mg of photocatalyst.

The AQE is then calculated by the following formula:

$$AQE(\%) = \frac{[GH_2O_2 [produced(mol)] \times 2}{photons \ entered \ the \ reactor(mol)} \times 100\%$$
$$= \frac{[N_a \times h \times c][GH_2O_2 \ produced(mol)] \times 2}{t \times S \times I \times \lambda}$$

Where N_a is the Avogadro's constant (6.022×10^{23}) , h is the Planck constant (6.626×10^{-34}) , c is the speed of light (3×10^8) , S is the irradiation area (cm²), I is the intensity of light irradiation (W/m^2) , t is the irradiation time (3600 s) and λ is the irradiation wavelength $(4\times10^{-7} \text{ m})$.

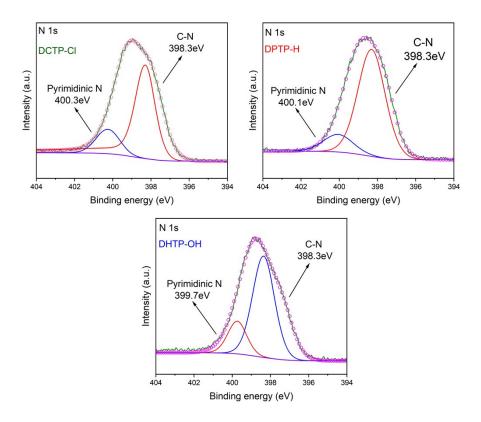


Fig. S1 XPS N element of DCTP-Cl, DPTP-H and DHTP-OH.

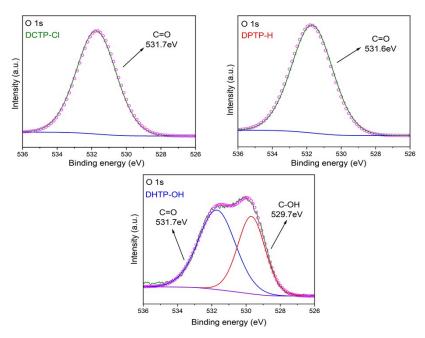


Fig. S2 XPS O element of DCTP-Cl, DPTP-H and DHTP-OH.

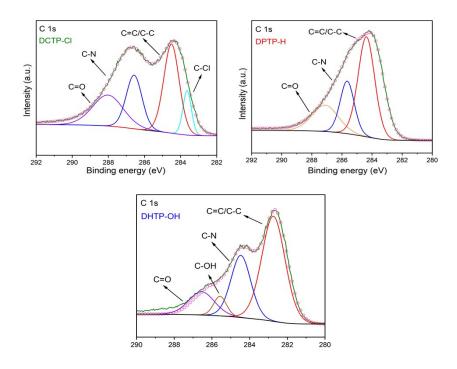


Fig. S3 XPS C element of DCTP-Cl, DPTP-H and DHTP-OH.

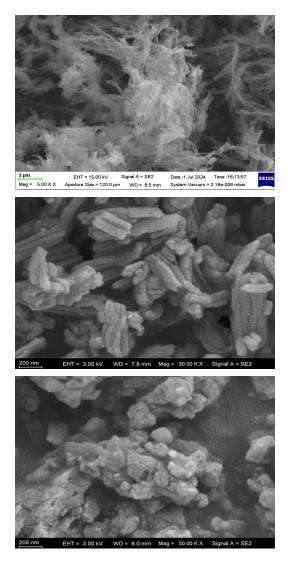


Fig. \$4 SEM image of DCTP-Cl(above), DPTP-H (middle) and DHTP-OH (below).

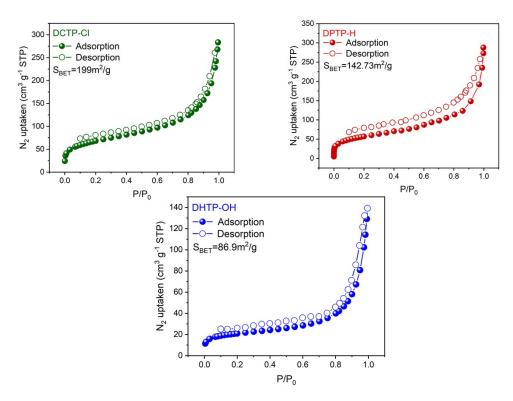


Fig. S5 N_2 adsorption-desorption isotherms of DCTP-Cl $\,^{\backprime}$ DPTP-H and DHTP-OH.

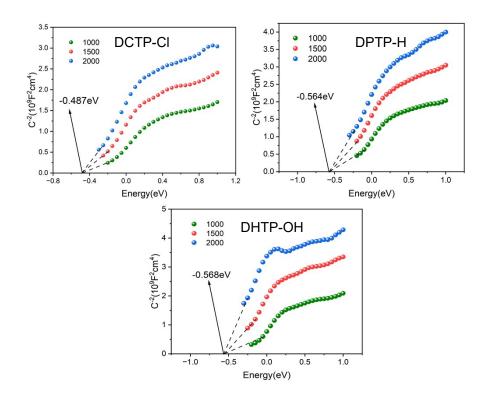


Fig. S6 Mott-Schottky (MS) analysis of DCTP-Cl, DPTP-H and DHTP-OH.

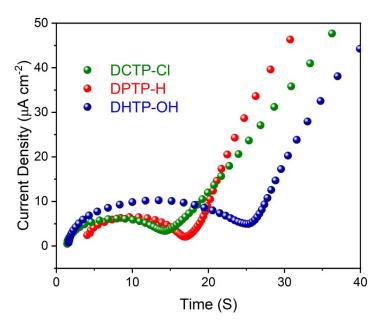


Fig. S7 EIS of DCTP-Cl, DPTP-H and DHTP-OH.

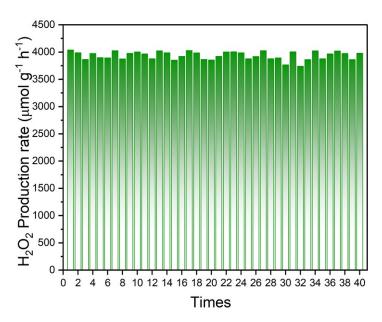


Fig. S8 The stability of H_2O_2 photosynthesis upon DCTP-Cl in open air and pure water.

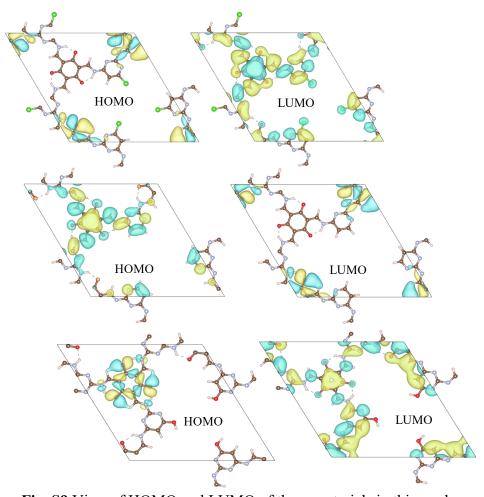


Fig. S9 View of HOMO and LUMO of these materials in this work.