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General information

Unless specified otherwise, all reactions and experimental operations were performed under
ambient air. Electrochemical experiments were conducted in undivided 5 mL electrochemical cells
using pre-dried glassware whenever required. Platinum electrodes (99.9%) were sourced from
ChemPur, Karlsruhe, Germany, and reticulated vitreous carbon (RVC) electrodes were obtained
from SGL Carbon, Wiesbaden, Germany. Electrocatalytic studies were carried out on a GAMRY
Reference 600 potentiostat operated in constant current mode. Reported yields correspond to
isolated and spectroscopically pure products, confirmed by '"H NMR analysis. All solvents were
used without further purification. Silica gel (60 A, Chemtronica) was employed for column
chromatography. Separations were achieved using a petroleum ether/acetone gradient, guided by
TLC analysis on Aldrich silica gel 254 nm fluorescent indicator aluminium sheets. Nuclear
magnetic resonance (NMR) spectra were acquired using a Bruker 400 MHz spectrometer. "H NMR
chemical shifts are reported in parts per million (ppm) and referenced to the residual signal of
chloroform-d (8 = 7.26 ppm), unless specified otherwise. 13C NMR spectra are likewise reported
in ppm and referenced to the central peak of chloroform-d (& = 77.23 ppm) with proton decoupling
applied, unless noted differently.

General procedure for the synthesis of thioamides
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Thioamide synthesis was carried out following the procedure reported by Michal Szostak.! The
structures of the synthesized thioamides were confirmed by comparison with the previously
reported spectral data.

General procedure for the desulfurization of thioamides

A 10 mL undivided electrochemical cell equipped with a reticulated vitreous carbon (RVC) anode
(2 x 2% 0.5 cm) and a platinum plate cathode (2 x 2 cm) was charged with thioamide 1 (0.050 g,
0.26 mmol), isobutyric acid (47 pL, 0.52 mmol, 2.0 equiv), triethylamine (18 pL, 0.13 mmol, 0.5
equiv), and nBusNBF4 (0.17 g, 0.52 mmol, 2.0 equiv) in a mixture of 2,2,2-trifluoroethanol (TFE,
48 L, 0.65 mmol) and 1,2-dichloroethane (1,2-DCE, 3.0 mL). The cell was subjected to constant
current electrolysis (10 mA) under ambient air at room temperature for 20 h. Upon completion,
the electrodes were removed and rinsed with acetone (3 x 10 mL). The combined organic layers
were concentrated under reduced pressure, and the crude residue was purified by column
chromatography on silica gel (eluent: Petroleum ether/Acetone) to afford the corresponding amide
2 as a pure product (0.045 g, 98% yield).



General procedure for the desulfurization of thioamides at gram scale

An undivided electrochemical cell (40 mL) equipped with a reticulated vitreous carbon (RVC)
anode (4 x 4 x 0.5 cm) and a platinum plate cathode (4 x 4 cm) was charged with N N-
diisopropylbenzothioamide (0.600 g, 2.71 mmol), isobutyric acid (469 pL, 5.42 mmol, 2.0 equiv),
triethylamine (721 pL, 5.42 mmol, 2.0 equiv), and nBusNBF4 (1.70 g, 5.42 mmol, 2.0 equiv) in 10
mL of 1,2-dichloroethane (DCE) containing 2,2,2-trifluoroethanol (372 pL, 5.02 mmol). The cell
was subjected to constant current electrolysis (40 mA) under ambient air at room temperature for
20 h. After completion, the electrodes were removed and washed with acetone (3 x 10 mL). The
combined organic layers were concentrated under reduced pressure, and the residue was purified
by column chromatography on silica gel (eluent: Petroleum ether/Acetone gradient) to afford the
corresponding amide as a brown liquid (0.541 g, 97% yield).

Electrochemical cell set up

Figure S1: a) Electrode and glass tube with septa; b) Cell setup before adding reagents; c) Cell
setup after reagents addition.; d) Gram scale reaction set up. Note: The reaction required
continuous exposure to air throughout its course. When we performed the reaction in a vessel
with complete removal of air, no conversion was observed.






General procedure for CV studies

Cyclic voltammetry (CV) experiments were performed in a 10 mL single-compartment cell
equipped with a RVC working electrode, a platinum wire counter electrode, and a silver wire
reference electrode, using 0.10 M nBusNBF. in DCE/TFE as the supporting electrolyte (Fig S2).
Solutions were prepared by pipetting the appropriate volumes of reagents into the cell and
adjusting to a final volume of 10 mL with electrolyte. For blank experiments, the cell contained
only supporting electrolyte, which was sparged with N> for 20 minutes before recording the
voltammogram. Carboxylate solutions were prepared by mixing iBuCO-H and Et:N in a 1:1 ratio
(10 mM final concentration) prior to dilution with electrolyte to give a clear Kolbe wave under No.
Thioamide solutions (5 mM final) were prepared analogously, and mixed solutions were
formulated to mimic the reaction stoichiometry (5 mM thioamide, 10 mM iBuCO:H, 0.5 equiv
Et:N) or, in control experiments, to fully deprotonate the acid (1:1 acid/base ratio). After sparging
with N2, CV traces were recorded at constant scan rate.

Figure S2: Cyclic voltammetry (CV)
experiment
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Fig. S3: Cyclic voltammograms recorded under identical conditions (10 mL electrolyte, RVC
working electrode, Pt counter, Ag/AgO reference) comparing: (Run 1) blank electrolyte; (Run 2)
10 mM iPrCO:7; (Run 3) 5 mM thioamide; (Run 4 & 5) thioamide/carboxylate mixtures with
partial (0.5 equiv.) or complete (1 equiv.) neutralization of iPrCO:H.

The CV experiments (Fig. S3) support a Kolbe radical mediated mechanism, as the blank
electrolyte showed no faradaic response (Run 1). iPrCO:™ alone displayed a weak anodic wave
consistent with Kolbe oxidation (Run 2). Thioamide alone exhibited a modest anodic peak and a
strong cathodic feature beyond —0.5 V (Run 3). W5hen thioamide and iPrCO.~ were combined
(Run 4), the current response increased substantially, showing additional reductive features that
point to coupling between the Kolbe radical and thioamide. Under fully basic conditions (Run 5),
the disappearance of the intense downstream cathodic wave suggests that the extent of carboxylate
formation and radical generation controls the overall electrochemical response, consistent with the
pathway outlined in scheme 4.



List of unsuccessful substrates

NMR data

o Phenyl(pyrrolidin-1-yl)methanone (2a): Colorless liquid, 45 mg. '"H NMR
=" "N~ (400 MHz, CDCl3) 6 7.45 —7.41 (m, 2H), 7.35 - 7.29 (m, 3H), 3.57 (t,J=6.9
J hee Hz, 2H), 3.35 (t, J = 6.6 Hz, 2H), 1.88 (p, /= 6.7 Hz, 2H), 1.79 (p, J = 6.7 Hz,
2H). BC NMR (101 MHz, CDCl;) 6 168.7, 136.1, 128.7, 127.2, 126.0, 48.6,

45.1,25.3,23.4. The spectral data were identical to those reported in the literature.?
o Pyrrolidin-1-yl(p-tolyl)methanone (2b): Brown liquid, 47 mg. 'TH NMR
ﬂ*"%ﬁf’"’“N«'S (400 MHz, CDCly) 6 7.35 (d, J= 8.1 Hz, 2H), 7.11 (d, J= 7.9 Hz, 2H), 3.46
Me™ = ~—  (d,J=73.5Hz, 4H), 2.29 (s, 3H), 1.83 (d, /= 18.9 Hz, 4H). 3C NMR (101
MHz, CDCl;) 6 169.9, 139.9, 134.1, 128.8, 127.2,49.7,46.2,26.4,24.4,21.3.

The spectral data were identical to those reported in the literature.?

f‘L (4-(tert-butyl)phenyl)(pyrrolidin-1-yl)methanone (2¢): Brown liquid, 45
-f’?““]” h:"\} mg. 'TH NMR (400 MHz, CDCl3) 3 7.39 (d, /= 8.5 Hz, 3H), 7.32 (d, /= 8.4
“1”“‘“5{ " Hz, 3H), 3.64 — 3.34 (m, 4H), 1.85 (s, 4H), 1.24 (s, 9H). 3C NMR (101

MHz, CDCl;) 6 170.0, 153.1, 133.9, 129.9, 127.0, 125.1, 49.7, 46.2, 34.8,
31.2,26.3, 24.4. The spectral data were identical to those reported in the

literature.?
[}

MRe: 'll”?‘**rll“'b{“'} (3-Methoxyphenyl)(pyrrolidin-1-yl)methanone (2d): Brown liquid, 36 mg.
~" 7 THNMR (400 MHz, CDCl;) § 7.27 — 7.18 (m, 1H), 7.03 — 6.95 (m, 4H), 6.87
(ddd, J=18.3,2.6, 1.0 Hz, 1H), 3.75 (s, 3H), 3.57 (t, /= 7.0 Hz, 2H), 3.35 (t, /= 6.6 Hz, 2H),
1.84 (dgq, J=29.4, 6.3 Hz, 3H). 3C NMR (101 MHz, CDCl;) 6 169.48, 159.46, 138.57, 129.33,
119.24, 115.75, 112.38, 55.35, 49.59, 46.15, 26.37, 24.46. The spectral data were identical to

those reported in the literature.’

r D (2-fluorophenyl)(pyrrolidin-1-yl)methanone (2¢): Brown liquid, 48 mg. 'H
" N7 NMR (400 MHz, CDCly) 5 7.37 - 7.27 (m, 2H), 7.12 (td, /= 7.5, 1.0 Hz, 1H),
~ ' 7.05-6.98 (m, 1H), 3.58 (t, J= 7.0 Hz, 2H), 3.24 (t, J = 6.7 Hz, 2H), 1.94 —

1.86 (m, 2H), 1.86 — 1.77 (m, 2H). 3C NMR (101 MHz, CDCl;) § 165.1, 159.5, 157.0, 131.2
(d,J=8 Hz), 131.1, 128.9 ((d, /= 4 Hz), 128.8, 125.8 (d, /= 8 Hz), 125.6, 124.5 (d, J = 3 Hz),



124.4,115.9 (d,J=21 Hz), 115.7,47.8, 47.8, 45.8, 25.8, 24.5. ’F NMR (376 MHz, CDCl;) § -
115.0, -115.1. The spectral data were identical to those reported in the
literature.*

% (3-fluorophenyl)(pyrrolidin-1-yl)methanone (2f): Light brown liquid, 53
~F ~ mg. 'THNMR (400 MHz, CDCl3) § 7.30 (td, ] = 7.9, 5.6 Hz, 1H), 7.22 (d, ] =
6.9 Hz, 1H), 7.15 (dt, J=9.1, 1.8 Hz, 1H), 7.07 — 7.00 (m, 1H), 3.56 (t, J = 6.9 Hz, 2H), 3.34 (t,J

= 6.6 Hz, 2H), 1.90 (dq, J = 13.2, 6.2 Hz, 2H), 1.81 (p, J = 6.2 Hz, 2H). 3C NMR (101 MHz,
CDCl) 6 168.2, 168.2, 163.6, 161.1, 139.2 (d, /=7 Hz), 139.1, 130.0 (d, /=8 Hz), 122.8 (d, J
=3 Hz), 122.7, 116.8 (d, /=21 Hz), 116.6, 114.4 (d, /=23 Hz), 114.2, 49.5, 46.2, 26.3, 24.4.
19F NMR (376 MHz, CDCl3) 6 -112.26, -112.27. The spectral data were identical to those
reported in the literature.3

"f (4-fluorophenyl)(pyrrolidin-1-yl)methanone (2g): Brown liquid, 53 mg.
Y i " 'HNMR (400 MHz, CDCl;) § 7.47 (dd, J = 8.7, 5.4 Hz, 2H), 7.01 (t, ] = 8.7
F~" T Hg, 2H),3.57 (t, = 6.9 Hz, 2H), 3.36 (t, ] = 6.6 Hz, 2H), 1.85 (dp, J = 32.5,

6.8 Hz, 4H). ). 3C NMR (101 MHz, CDCl3) 5 168.7, 164.7, 162.2, 133.3 ((d, /= 4 Hz), 133.2,

129.4 (d, /=8 Hz), 115.3, 115.1 (d, J= 21 Hz), 49.7, 46.3, 26.4, 24.4. ’F NMR (376 MHz,
CDCl;) 6 -110.3. The spectral data were identical to those reported in the
literature. 3

[ T ‘N:'\; (4-chlorophenyl)(pyrrolidin-1-yl)methanone (2h): Pale yellow liquid, 33
CI7 ™ ) mg. 'H NMR (400 MHz, CDCl) 6 7.39 (dd, J = 13.6, 8.5 Hz, 3H), 7.30 (d, J
Fe o~ . =85Hz2H),3.57 (t, /= 6.9 Hz, 2H), 3.35 (t, /= 6.6 Hz, 2H), 1.86 (dp, J =
! Y ) 31.8,6.7 Hz, 4H). 3C NMR (101 MHz, CDCLy) § 168.6, 135.8, 135.4,
131.5, 128.8, 128.6, 128.5, 77.3, 77.0, 76.7, 49.6, 46.3, 26.4, 24.4. The
spectral data were identical to those reported in the literature.?

Pyrrolidin-1-yl(3-(trifluoromethyl)phenyl)methanone (2i): Brown liquid, 41 mg. '"H NMR
(400 MHz, CDCl3) 6 7.72 (s, 1H), 7.62 (dd, J=13.7, 8.0 Hz, 2H), 7.46 (t, ] = 7.7 Hz, 1H), 3.59
(t,J=6.9 Hz, 2H), 3.34 (t, J = 6.6 Hz, 2H), 1.96 — 1.79 (m, 4H). 13C NMR (101 MHz, CDCl;)
0168.1,137.9,130.4, 130.4, 128.9, 126.5, 126.5, 124.1, 124.1, 49.5, 46.3, 26.4, 24.4. The
spectral data were identical to those reported in the literature.?

o f (3,5-bis(trifluoromethyl)phenyl)(pyrrolidin-1-yl)methanone (2j): "H NMR
"1 7 V) (400 MHz, CDCLy) §7.92 (d,J= 1.8 Hz, 2H), 7.86 (s, 1H), 3.60 (t, J= 6.9
&k Hz, 2H), 3.35 (t, J= 6.5 Hz, 2H), 1.99 — 1.83 (m, 4H). '3C NMR (101 MHz,

CDCl;) 6166.4,139.0, 132.3, 132.0, 131.7, 131.3, 127.5, 127.5, 124.3, 123.5, 123.5, 123.5,
121.6,49.5, 46.5, 26.4, 24.3. ’F NMR (376 MHz, CDCl;) & -63.0. The spectral data were
identical to those reported in the literature.’



N )it _ 4~(pyrrolidine-1-carbonyl)benzonitrile (2k): Brown liquid, 39 mg. TH NMR
[ 7 Y ) (400 MHz, CDCl;) § 7.64 (d, ] = 8.4 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 3.58 (,
J=6.9 Hz, 2H), 3.30 (t, ] = 6.6 Hz, 2H), 1.96 — 1.80 (m, 4H). 13C NMR (101

MHz, CDCL) § 167.6, 141.3, 132.2, 127.8, 118.2, 113.5, 49.4, 46.3, 26.3, 24.3. The spectral

data were identical to those reported in the literature.®

T

[ *'»L o Naphthalen-1-yl(pyrrolidin-1-yl)methanone (2m): Brown liquid, 45 mg. 'H
|-"*-~:~]/'JL'-N-’\P NMR (400 MHz, CDCl3) 6 7.81—7.79 (m, 1H), 7.78 (s, 1H), 7.45 — 7.41 (m,

~# " 1H),7.41-7.36 (m, 1H), 3.72 (t,J = 7.1 Hz, 2H), 3.05 (t, J = 6.7 Hz, 2H), 1.92
(p, J = 6.9 Hz, 2H), 1.75 (p, J = 6.7 Hz, 2H). 13C NMR (101 MHz, CDCl3) 3 169.3, 135.7,
133.5,129.2,129.1, 128.4, 126.9, 126.3, 125.2, 124.9, 123.7, 48.5, 45.6, 26.0, 24.6. The spectral
data were identical to those reported in the literature.?

»:‘I‘ Naphthalen-2-yl(pyrrolidin-1-yl)methanone (2n): Brown liquid, 51 mg.
LT: rf\ 'H NMR (400 MHz, CDCl3) 6 7.92 (d, J=1.6 Hz, 1H), 7.80 — 7.74 (m,
7 3H),7.53(dd, J=8.5, 1.7 Hz, 1H), 7.47 — 7.40 (m, 2H), 3.62 (t, J = 7.0 Hz,
2H), 3.40 (t, ] = 6.6 Hz, 3H), 1.90 (p, J = 6.6 Hz, 3H), 1.80 (q, J = 6.4 Hz, 3H). 13C NMR (101
MHz, CDCl;) 6 168.7, 133.4,132.7, 131.5, 127.4, 127.0, 126.7, 126.0, 125.9, 125.5, 123.3, 48.7,
45.3,25.3, 23.4. The spectral data were identical to those reported in the literature.?

e

e
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©  N,N-diisopropylbenzamide (2p): Pale yellow solid, 52 mg. "H NMR (400
'T'#'%T’iux” - MHz, CDCly) 5 7.32—7.26 (m, 3H), 7.23 (dd, J = 7.1, 2.6 Hz, 2H), 3.60 (d, J
s =72.5 Hz, 2H), 1.71 — 0.73 (m, 12H). 3C NMR (101 MHz, CDCl;) 5 171.0,

138.9, 128.6, 128.4, 125.5, 50.7, 45.8, 29.7, 20.7. The spectral data were
identical to those reported in the literature.®

N,N-dibutylbenzamide (2q): Brown liquid, 45 mg. "TH NMR (400 MHz,

H” ‘“J ’\L‘ "~  CDCl) 6 7.33—-7.24 (m, 5H), 3.41 (d, J =5.4 Hz, 2H), 3.10 (d, J = 9.0 Hz,
L 2H), 1.56 (s, 2H), 1.47 — 1.25 (m, 4H), 1.11 — 0.99 (m, 2H), 0.90 (s, 3H), 0.77
) —0.62 (m, 3H). 3C NMR (101 MHz, CDCl3) 6 171.6, 137.3, 128.9, 128.3,

126.4, 48.7, 44.4, 30.8, 29.7, 29.6, 20.3, 19.7, 13.9, 13.6. The spectral data were identical to
those reported in the literature.’
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'H (400 MHz, CDCl3) NMR spectrum of 2a
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BC{'H} NMR (101 MHz, CDCl;) spectrum of 2a
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'H (400 MHz, CDCl;) NMR spectrum of 2b
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13C{'H} NMR (101 MHz, CDCls) spectrum of 2b
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TH (400 MHz, CDCI;) NMR spectrum of 2¢
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3¢ 1) NMR (101 MHz, CDCL) spectrum of 2¢
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TH (400 MHz, CDCI;) NMR spectrum of 2d
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B3¢ i1y NMR (101 MHz, CDCLs) spectrum of 2d
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TH (400 MHz, CDCL;) NMR spectrum of 2e
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3¢y NMR (101 MHz, CDCL) spectrum of 2e
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TH (400 MHz, CDCI;) NMR spectrum of 2f
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BcHy NMR (101 MHz, CDCL) spectrum of 2f
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'H (400 MHz, CDCl;) NMR spectrum of 2g
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BC{'H} NMR (101 MHz, CDCl;) spectrum of 2g
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19F (375 MHz, CDCl;) NMR spectrum of 2g
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TH (400 MHz, CDCl;) NMR spectrum of 2h
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B3¢ eHy NMR (101 MHz, CDCLs) spectrum of 2h
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TH (400 MHz, CDCl;) NMR spectrum of 2i
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B3¢y NMR (101 MHz, CDCls) spectrum of 2i
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TH (400 MHz, CDCI;) NMR spectrum of 2j
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B3¢ eH) NMR (101 MHz, CDCl3) NMR spectrum of 2
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TH (400 MHz, CDCI;) NMR spectrum of 2k
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B3¢ eHy NMR (101 MHz, CDCLs) spectrum of 2k
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TH (400 MHz, CDCI;) NMR spectrum of 2m
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BceHy NMR (101 MHz, CDCls) spectrum of 2m
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TH (400 MHz, CDCI;) NMR spectrum of 2n

ke LS - LS ke [ ke LS ke [ @ =
o =] =] =] o =] o =] o =3 o -
— - - - - - - = - = - W
4 ”x L] = L] = o = L] ”x = @
wr = “ = .J = & = “a = = = i
wni s - Ed L ] ra — — w 4

i Il i .w. [ i i i i i Il ﬂ. I =

=

i

i

N L=

o

|

o

8EE
LLEs
IF
Liad
IHE
TEE

L5

T
|

2.4

2.5

30

|.Il|||u1 Feer L

B e

3.5

.0

5.4 4.5

1 tppm}

5.5

BTy
=@

L

e
=R

u

|

=
T 5 (R AN IR IWAN O] EIMI0 NOLDYd — Jnsagd - 0TN-Z — PYODT 9T605T ¥%

37



B3¢ i1y NMR (101 MHz, CDCls) spectrum of 2n
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TH (400 MHz, CDCL;) NMR spectrum of 2p
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B3¢ i1y NMR (101 MHz, CDCLs) spectrum of 2p
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TH (400 MHz, CDCI;) NMR spectrum of 2q
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B3¢ eH) NMR (101 MHz, CDCL) spectrum of 2q
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