Electroreduction cross-coupling of thiosulfonates with (hetero)aryl boronic acids to access thioethers

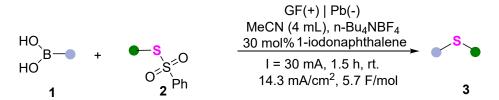
Yaqin Zhou, ^a Jiang Lei, ^b Meimei Chen, ^a Chi Zhang, ^a Zhiheng Zhao, ^a Lijun Gu, *a

^a State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, P. R. China.

^b Zhejiang Apeloa Jiayuan Pharmaceutical Co. Ltd., Zhejiang, Dongyang, 322118, P. R. China. E-mail: gulijun2005@126.com.

Supporting Information

List of Contents


1. Materials and equipment	S1	
2. Experimental procedure	S1	
2.1 General procedure for the synthesis of 3	S1	
2.2 Experimental procedure for the synthesis of 3as	S2	
2.3 Experimental procedure for the synthesis of 3au	S3	
2.4 Scale-up reaction procedure	S3	
2.5 General procedure for the synthesis of intermediate	S4	
3. Optimization of reaction	S5	
4. Cyclic voltammetry experiments	S7	
5. Analysis of by-product	S9	
5.1 High-resolution mass spectra of disulfide	S9	
5.2 GC-mass spectra of naphthalene	S9	
6. Radical trapping experiments	S10	
7. Characterization data of products	S12	
8. References	S28	
9. Copies of ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR spectra	S29	

1. Materials and equipment

Unless otherwise special indicated, all the reagents were purchased from commercial supplies unless otherwise stated. And all the solvents were used as received without further purification. The instrument for electrolysis was dual display potentiostat (HY3005B) (made in China, HYELEC), the GF anode (5.25 × 0.8 × 0.2 cm³) and Pb cathode (5.25 \times 0.8 \times 0.2 cm³) were purchased from Shanghai Fanyue Electronic Technology Co., LTD. Thin layer chromatography (TLC) employed glass 0.20-0.25 mm silica gel plates (GF254). Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90°C). Gradient flash chromatography was conducted eluting with PE (petroleum)/EA (ethyl acetate), they are listed as volume/volume ratios. (Hetero)aryl boronic acids were purchased from JiaHe Co., LTD., (Shanghai). Thiosulfonates were purchased from EYu Co., LTD., (Wuhan). Amino acids used were L-Amino Acids. NMR spectra were recorded on a Bruker Avance III spectrometer (¹H NMR: 400 MHz; ¹³C NMR: 101 MHz; ¹⁹F NMR: 376.8 MHz) or a JEOL-ECX500 instrument (1H NMR: 500 MHz; 13C NMR: 125 MHz). Chemical shifts were reported in ppm downfield. Coupling constants were quoted in Hz (J). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). High resolution mass spectra (HRMS) were measured using Thermo Scientic Q Exactive. Mass spectra (MS) were measured using electron ionization (EI) method by GC-MS.

2. Experimental procedure

2.1 General procedure for the synthesis of 3

A 10-mL undivided three-necked bottle was equipped with a GF anode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$ and Pb cathode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$ which was connected to a DC regulated power supply. Under N₂ atmosphere, **1** (0.2 mmol), **2** (0.26 mmol), 1-

iodonaphthalene (0.06 mmol) and n-Bu₄NBF₄ (0.4 mmol) were dissolved in 4 mL MeCN, and the cell was electrolyzed at a constant current of 30 mA (~14.3 mA/cm²), and the mixture was stirred for 1.5 h at environment temperature. The electrolysis was terminated when the starting materials were consumed as determined by TLC. Then the reaction mixture was diluted with 50 mL ethyl acetate, washed with a saturated solution of brine (2 × 15 mL), dried (Na₂SO₄), and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (eluent: PE/EA) to afford the desired products 3.

2.2 Experimental procedure for the synthesis of 3as

A 10-mL undivided three-necked bottle was equipped with a GF anode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$ and Pb cathode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$ which was connected to a DC regulated power supply. Under N₂ atmosphere, **1s** (0.2 mmol, 45.6 mg), **2a** (0.26 mmol, 65.1 mg), 1-iodonaphthalene (0.06 mmol) and n-Bu₄NBF₄ (0.4 mmol) were dissolved in 4 mL MeCN, and the cell was electrolyzed at a constant current of 30 mA (~14.3 mA/cm²) for 1.5 h at environment temperature. The electrolysis was terminated when the starting materials were consumed as determined by TLC. Then the reaction mixture was diluted with 50 mL ethyl acetate, washed with a saturated solution of brine (2 × 15 mL), dried (Na₂SO₄), and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (eluent: PE/EA) to afford the desired products **3as**.

2.3 Experimental procedure for the synthesis of 3au

$$\begin{array}{c} \text{GF(+) | Pb(-)} \\ \text{MeCN (4 mL), n-Bu}_{4} \text{NBF}_{4} \\ \text{M: 20 mol}\% \\ \text{I = 30 mA, 1.5 h, rt.} \\ 14.3 \text{ mA/cm}^{2}, 5.7 \text{ F/mol} \\ \text{M} = \begin{array}{c} \text{CN} \\ \text{CN} \\ \text{CN} \\ \text{CN} \end{array}$$

mL undivided three-necked bottle was equipped with a GF anode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$ and Pb cathode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$ which was connected to a DC regulated power supply. Under N₂ atmosphere, (*E*)-styrylboronic acid **1u** (0.2 mmol, 29.6 mg), **2k** (0.26 mmol, 74.5 mg), 9,10-anthracenedicarbonitrile (0.04 mmol, 9.1 mg) and n-Bu₄NBF₄ (0.4 mmol) were dissolved in 4 mL MeCN, and the cell was electrolyzed at a constant current of 30 mA (~14.3 mA/cm²) for 1.5 h at environment temperature. The electrolysis was terminated when the starting materials were consumed as determined by TLC. Then the reaction mixture was diluted with 30 mL ethyl acetate, washed with a saturated solution of brine (2 × 15 mL), dried (Na₂SO₄), and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (eluent: PE/EA) to afford the desired products **3au**.

2.4 Scale-up reaction procedure

A 100-mL undivided three-necked bottle was equipped with a GF anode (5.25 × $0.8 \times 0.2 \text{ cm}^3$) and Pb cathode (5.25 × $0.8 \times 0.2 \text{ cm}^3$) which was connected to a DC regulated power supply. Under N₂ atmosphere, **1a** (5 mmol, 610 mg), **2a** (6.5 mmol, 1.63 g), 1-iodonaphthalene (1.5 mmol) and n-Bu₄NBF₄ (10.0 mmol) were dissolved in 20 mL MeCN, and the cell was electrolyzed at a constant current of 30 mA (~14.3 mA/cm²) for 1.5 h at environment temperature. The electrolysis was terminated when the starting materials were consumed as determined by TLC. Then the reaction mixture was diluted with 100 mL ethyl acetate, washed with a saturated solution of brine (2 × 30 mL), dried (Na₂SO₄), and concentrated in vacuum, and the resulting

residue was purified by silica gel column chromatography (eluent: PE/EA = 100:1) to afford the desired products **3aa**.

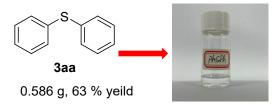
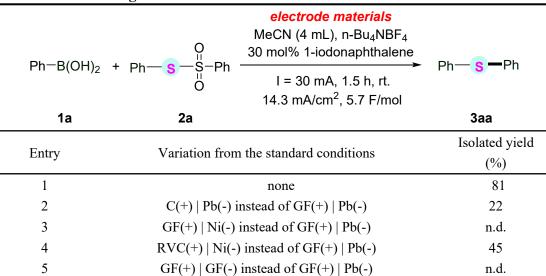


Figure S1. Product 3aa.

2.5 General procedure for the synthesis of intermediate


To a stirred solution of **Dehydrocholic acid** (1.2 mmol), **4-Hydroxyphenylboroni c acid** (1.0 mmol, 266.33 mg) and 4-dimethylaminopyridine (DMAP, 12.22 mg, 0.1m mol) in CH₂Cl₂ (5 mL), a CH₂Cl₂ solution (2 mL) of 1-(3-dimethylaminopropyl)-3-et hylcarbodiimide hydrochloride (EDCI, 1.2 mmol, 230.04 mg) was added dropwise. T he mixture was stirred at room temperature overnight. After completion, the mixture was filtered through a thin pad of celite and rinsed with additional CH₂Cl₂ (20 mL). T he filtrate was concentrated in vacuo, and the residue was purified by flash column ch romatography on silica gel to afford the desired intermediate **1w**.

To a stirred solution of acid **S2** (1.2 mmol), thiosulfonate **S1** (1.0 mmol, 266.33 mg) and 4-dimethylaminopyridine (DMAP, 12.22 mg, 0.1mmol) in CH₂Cl₂ (5 mL), a CH₂Cl₂ solution (2 mL) of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 1.2 mmol, 230.04 mg) was added dropwise. The mixture was stirred at room temperature overnight. After completion, the mixture was filtered through a thin pad of celite and rinsed with additional CH₂Cl₂ (20 mL). The filtrate

was concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel to afford the desired intermediate 20 and 2p.

3. Optimization of reaction

Table S1 Screening for electrode materials

Table S2 Screening for electrolytes

Table S3 Screening for solvents

Entry	Variation from the standard conditions	Isolated yield (%)
1	none	81
2	DMF instead of MeCN	n.d.
3	MeOH instead of MeCN	14
4	DMSO instead of MeCN	23
5	MeOH/H ₂ O (4:1, 5 mL) instead of MeCN	56

Table S4 Screening for of 1-iodonaphthalene dosage

Entry	Variation from the standard conditions	Isolated
	variation from the standard conditions	yield (%)
1	none	81
2	1-iodonaphthalene (10 mol%) instead of 1-iodonaphthalene (30 mol%)	32
3	1-iodonaphthalene (20 mol%) instead of 1-iodonaphthalene (30 mol%)	65
4	1-iodonaphthalene (40 mol%) instead of 1-iodonaphthalene (30 mol%)	81
5	1-iodonaphthalene (50 mol%) instead of 1-iodonaphthalene (30 mol%)	80
6	1-iodonaphthalene (0 mol%) instead of 1-iodonaphthalene (30 mol%)	0

Table S5 Screening for organo-mediators

Entry	Variation from the standard conditions	Isolated yield (%)
1	none	81
2	Naphthalene instead of 1-Iodonaphthalene	29
3	1-Methylnaphthalene instead of 1-Iodonaphthalene	23
4	1-Bromonaphthalene instead of 1-Iodonaphthalene	54
5	1-Naphthylbenzene instead of 1-Iodonaphthalene	n.d.
6	9,10-Dicyanoanthracen instead of 1-Iodonaphthalene	50
7	Triethyl phosphite instead of 1-Iodonaphthalene	36

4. Cyclic voltammetry experiments

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line at room temperature. The working electrode was a steady glassy carbon disk electrode, the counter electrode a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. 4 mL of MeCN containing 0.1 M n-Bu₄NBF₄ were poured into the electrochemical cell in all experiments. The scan rate is 0.01 V/s, ranging from 0.0 V to -3.0 V.

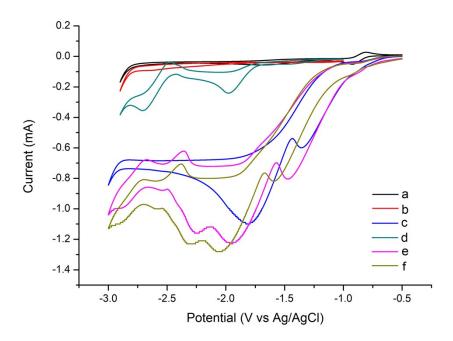


Figure S2. plotting convention (IUPAC)

In **Figure S2**, Cyclic voltammograms of 0.1 mol L^{-1} of n-Bu₄NBF₄ in 4 mL of MeCN solution containing different compounds: (a) blank experiment; (b) **1a** (0.2 mmol); (c) **2a** (0.26 mmol); (d) 1-iodonaphthalene (0.06 mmol); (e) **2a** (0.26 mmol) + 1-iodonaphthalene (0.06 mmol); (f) **1a** (0.2 mmol) + **2a** (0.26 mmol) + 1-iodonaphthalene (0.06 mmol); with a GC disk working electrode, Pt counter electrode, and Ag/AgCl reference electrode at 0.01 V/s scan rate.

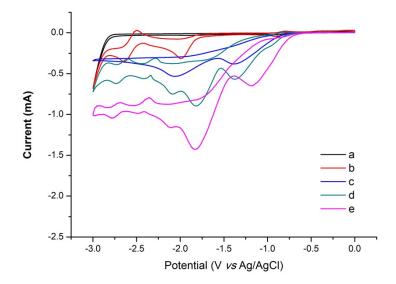


Figure S3. CV analyses of 2a and 1-iodonaphthalene

In **Figure S3**, Cyclic voltammograms of 0.1 mol L⁻¹ of n-Bu₄NBF₄ in 4 mL of MeCN solution containing different compounds: (a) blank experiment; (b) 1-iodonaphthalene (0.06 mmol); (c) **2a** (0.13 mmol); (d) **2a** (0.13 mmol) + 1-iodonaphthalene (0.06 mmol); (e) **2a** (0.26 mmol) + 1-iodonaphthalene (0.06 mmol); with a GC disk working electrode, Pt counter electrode, and Ag/AgCl reference electrode at 0.01 V/s scan rate.

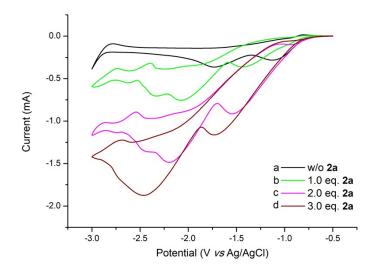


Figure S4. CVs of 1-iodonaphthalene performed in the presence of increasing equivalents of 2a.

In **Figure S4**, Cyclic voltammograms of 0.1 mol L⁻¹ of n-Bu₄NBF₄ in 4 mL of MeCN solution containing different compounds: (a) blank experiment; (b) **2a** (0.13 mmol) + 1-iodonaphthalene (0.06 mmol); (c) **2a** (0.26 mmol) + 1-iodonaphthalene (0.06 mmol); (d) **2a** (0.39 mmol) + 1-iodonaphthalene (0.06 mmol); with a GC disk working electrode, Pt counter electrode, and Ag/AgCl reference electrode at 0.01 V/s scan rate.

5. Analysis of by-product

5.1 High-resolution mass spectra of disulfide

Reaction conditions: Reaction conditions: GF anode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$, Pb cathode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$, **1a** (0.2 mmol, 1 equiv.), S-(4-methoxyphenyl) benzenesulfonothioate (0.26 mmol, 1.3 equiv.), 1-iodonaphthalene (30 mol%), n-Bu₄NBF₄ (0.4 mmol, 2 equiv), MeCN (4.0 mL), undivided cell, room temperature, 30 mA, 1.5 h. The corresponding reaction mixture was detected by HRMS. We successfully detected the desired disulfide.

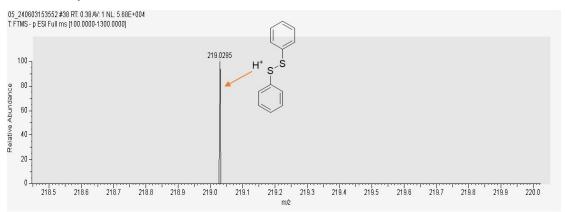


Figure S5. HMRS spectra of disulfide

5.2 GC-mass spectra of naphthalene

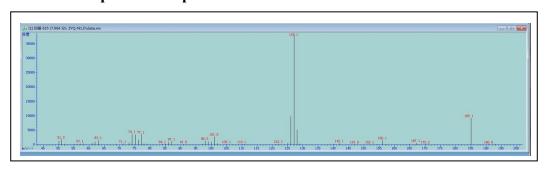


Figure S6. GC-mass spectra of naphthalene

Reaction conditions: Reaction conditions: GF anode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$, Pb cathode $(5.25 \times 0.8 \times 0.2 \text{ cm}^3)$, **1a** (0.2 mmol, 1 equiv.), S-(4-methoxyphenyl) benzenesulfonothioate (0.26 mmol, 1.3 equiv.), 1-iodonaphthalene (30 mol%), n-

Bu₄NBF₄ (0.4 mmol, 2 equiv), MeCN (4.0 mL), undivided cell, room temperature, 30 mA, 1.5 h. The corresponding reaction mixture was detected by GC-mass. We successfully detected the desired naphthalene.

6. Radical trapping experiments

Reaction conditions: GF anode, Pb cathode, **1a** (0.2 mmol, 1 equiv.), S-(4-methoxyphenyl) benzenesulfonothioate (0.26 mmol, 1.3 equiv.), 1-iodonaphthalene (30 mol%), n-Bu₄NBF₄ (0.4 mmol, 2 equiv), TEMPO (0.6 mmol, 3 equiv), MeCN (4.0 mL), undivided cell, room temperature, 30 mA, 1.5 h. The corresponding reaction mixture was detected by HRMS, and intermediate **4** was successfully detected.

T: FTMS + p ESI Full ms [100.0000-1300.0000]

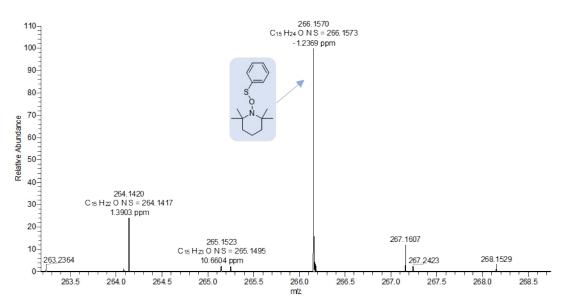


Figure S7. HRMS analysis was performed for 4

Reaction conditions: GF anode, Pb cathode, **1a** (0.2 mmol, 1 equiv.), S-(4-methoxyphenyl) benzenesulfonothioate (0.26 mmol, 1.3 equiv.), 1-iodonaphthalene (30 mol%), n-Bu₄NBF₄ (0.4 mmol, 2 equiv), 1,1-diyldibenzene (0.6 mmol, 3 equiv), MeCN (4.0 mL), undivided cell, room temperature, 30 mA, 1.5 h. The corresponding reaction mixture was detected by HRMS, and intermediate **5** was successfully detected.

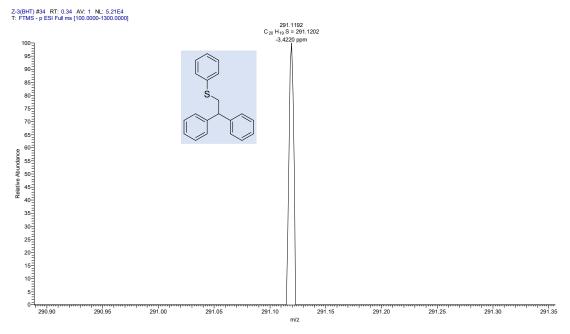


Figure S8. HRMS analysis was performed for 5

7. Characterization data of products

(4-(((4R)-4-((8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3,7,12-trioxohexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)oxy)phenyl)boronic acid (1w)

Overall Yield: 36% (151 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 1:1). 1 H NMR (500 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H), 7.25 (s, 2H), 7.04 – 7.00 (m, 2H), 2.55 – 2.31 (m, 12H), 2.10 – 2.03 (m, 1H), 1.92 – 1.83 (m, 3H), 1.73 (m, 1H), 1.67 – 1.53 (m, 4H), 1.52 – 1.43 (m, 2H), 1.36 – 1.26 (m, 1H), 0.99 (s, 3H), 0.87 (dd, J = 6.7, 1.5 Hz, 3H), 0.84 (d, J = 1.3 Hz, 3H). 13 C NMR (125 MHz, CDCl₃) δ 211.2, 210.4, 209.4, 172.4, 151.7, 135.7, 135.7, 134.1, 121.5, 121.5, 56.4, 51.1, 49.7, 49.6, 46.0, 44.9, 44.4, 43.9, 39.3, 38.0, 35.9, 35.6, 35.0, 32.3, 31.4, 27.4, 25.7, 18.8, 12.9, 12.5. HRMS (ESI): m/z for $C_{30}H_{39}BO_7$ [M+H] $^+$ calcd 522.2789, found 522.2791.

(4-((2-(2-Methyl-1H-indol-3-yl)ethyl)carbamoyl)phenyl)boronic acid (1x)¹

The synthesis of the compound followed the reported method ¹. The NMR data matched those previously reported. Overall Yield: 45% (80.5 mg). Nature: white solid. Purification of the product was performed by silica gel column chromatography (eluent: DCM/MeOH = 7:1). ¹H NMR (600 MHz, DMSO- d_6) δ 10.71 (s, 1H), 8.58 (t, J = 5.8 Hz, 1H), 7.85 (d, J = 8.1 Hz, 2H), 7.79 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 7.7 Hz, 1H), 7.23 (d, J = 7.9 Hz, 1H), 6.97 (t, J = 6.8 Hz, 1H), 6.93 (t, J = 6.8 Hz, 1H), 3.43 - 3.39 (m, 2H), 2.89 (t, J = 7.5 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6) δ 166.2, 136.0, 135.2, 133.9, 132.1, 128.4, 126.0, 125.9, 121.0, 119.8,

117.3, 110.5, 107.7, 40.4, 24.1, 11.2. HRMS (ESI): m/z for $C_{18}H_{19}BN_2O_3$ [M+H]⁺ calcd 323.1562, found 323.1558.

4-((Phenylsulfonyl)thio)phenyl 2-(4-isobutylphenyl) propanoate (2r)

Overall Yield: 94% (429.3 mg). Nature: white solid. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 5:1). 1 H NMR (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 3H), 7.44 - 7.40 (m, 2H), 7.33 - 7.27 (m, 4H), 7.16 (d, J = 8.1 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 3.93 (q, J = 7.1 Hz, 1H), 2.49 (d, J = 7.2 Hz, 2H), 1.92 - 1.82 (m, 1H), 1.61 (d, J = 7.1 Hz, 3H), 0.92 (s, 3H), 0.91 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 172.5, 153.5, 142.8, 141.1, 137.7, 136.8, 133.7, 129.6, 128.9, 127.5, 127.1, 124.9, 122.7, 45.3, 45.0, 30.2, 22.4, 18.4. HRMS (ESI): m/z for $C_{25}H_{26}O_4S_2$ [M+H] $^+$ calcd 455.1345, found 455.1340.

4-((Phenylsulfonyl)thio)phenyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (2s)

Overall Yield: 64% (318.5 mg). Nature: white solid. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 5:1). 1 H NMR (400 MHz, CDCl₃) δ 7.61 - 7.57 (m, 3H), 7.47 - 7.43 (m, 2H), 7.37 - 7.33 (m, 2H), 7.04 - 7.00 (m, 3H), 6.68 (dd, J = 7.5, 1.6 Hz, 1H), 6.63 (d, J = 1.6 Hz, 1H), 3.99 (t, J = 5.4 Hz, 2H), 2.31 (s, 3H), 2.17 (s, 3H), 1.95 - 1.81 (m, 4H), 1.38 (s, 6H); 13 C NMR (101 MHz, CDCl₃) δ 175.7, 156.7, 153.7, 142.8, 137.8, 136.5, 133.7, 130.4, 128.9, 127.6, 124.8, 123.5, 122.8, 120.8, 111.9, 67.6, 42.6, 37.0, 25.2, 25.0, 21.4, 15.8. HRMS (ESI): m/z for $C_{27}H_{30}O_{5}S_{2}$ [M+Na]⁺ calcd 521.1427, found 521.1430.

Diphenyl sulfane (3aa)²

Overall Yield: 81% (30.0 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.37 - 7.32 (m, 4H), 7.31 - 7.28 (m, 4H), 7.25 - 7.22 (m, 2H); 13 C NMR (101 MHz, CDCl₃) δ 135.7, 131.5, 129.2, 127.0; HRMS (ESI): m/z for $C_{12}H_{10}S$ [M+H]⁺ Calcd 187.0576, found 187.0578.

Phenyl 4-methylphenyl sulfide (3ab)²

Overall Yield: 79% (35.2 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.3 - 7.25 (m, 6H), 7.20 - 7.16 (m, 1H), 7.14 (d, J = 8.0 Hz, 2H), 2.34(s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 137.6, 137.1, 132.3, 131.3, 130.0, 129.8,129.0, 126.4, 21.1; HRMS (ESI): m/z for $C_{13}H_{12}S$ [M+H]⁺ calcd 201.0733, found 201.0734.

(4-Methoxyphenyl)(phenyl)sulfane (3ac)²

Overall Yield: 75% (29.0 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 2H), 7.34 - 7.20 (m, 5H), 6.99 (d, J = 8.0 Hz, 2H), 3.90 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 159.8, 138.6, 134.9, 128.9, 128.2, 126.3, 124.7, 115.3, 54.8; HRMS (ESI): m/z for C₁₃H₁₂OS [M+H]⁺ calcd 217.0682, found 217.0681.

Methyl(4-(phenylthio)phenyl)sulfane (3ad)²

Overall Yield: 61% (28.3 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.32 - 7.28 (m, 2H), 7.24 - 7.19 (m, 1H), 2.48 (s, 1H); 13 C NMR (101 MHz, CDCl₃) δ 138.2, 136.5, 132.3, 131.4, 130.2, 129.1, 127.1, 126.7, 15.7; HRMS (ESI): m/z for $C_{13}H_{12}S_{2}$ [M+H] $^{+}$ calcd 233.0453, found 233.0455.

(4-Fluorophenyl)(phenyl)sulfane (3ae)²

Overall Yield: 64 % (26.1 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.40 - 7.35 (m, 2H), 7.30 - 7.27 (m, 4H), 7.23 - 7.20 (m, 1H), 7.02 (t, J = 8.4 Hz, 2H); 13 C NMR (101 MHz, CDCl₃) δ 162.4 (d, J = 247.8 Hz), 136.6, 134.1 (d, J = 8.2 Hz), 130.2 (d, J = 3.4 Hz), 129.9, 129.2, 126.8, 116.4 (d, J = 22.0 Hz); 19 F NMR (376 MHz, CDCl₃) δ -114.0. HRMS (ESI): m/z for $C_{12}H_{9}FS$ [M+H] $^{+}$ calcd 205.0482, found 204.0480.

(4-Chlorophenyl)(phenyl)sulfane (3af)²

Overall Yield: 72% (31.8 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.36 - 7.26 (m, 9H); 13 C NMR (101 MHz, CDCl₃) δ 135.1, 134.6, 133.0, 132.0, 131.3, 129.3, 129.3, 127,4; HRMS (ESI): m/z for C₁₂H₉ClS [M+H]⁺ calcd 221.0186, found 221.0188.

Phenyl(4-(trifluoromethyl)phenyl)sulfane (3ag)²

Overall Yield: 60% (30.5 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 90:2). 1 H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.8 Hz, 4H), 7.38 (d, J = 5.5 Hz, 3H), 7.26 (d, J =

8.1 Hz, 2H); 13 C NMR (101 MHz, CDCl₃) δ 142.8, 133.5, 132.5, 129.7, 128.6, 128.2, 128.0 (q, J = 32.6 Hz), 125.8 (q, J = 3.8 Hz), 124.1 (q, J = 271.8 Hz); 19 F NMR (376 MHz, CDCl₃) δ -62.5. HRMS (ESI): m/z for C₁₃H₉F₃S [M+H]⁺ calcd 255.0450, found 255.0448.

Phenyl(m-tolyl)sulfane (3ah)²

Overall Yield: 70% (28.0 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.33 - 7.27 (m, 4H), 7.24 - 7.14 (m, 4H), 7.06 (d, J = 6.0 Hz, 2H), 2.30(s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 139.0, 136.1, 135.2, 131.8, 130.7, 129.1, 129.0, 128.3, 128.0, 126.8, 21.2; HRMS (ESI): m/z for C₁₃H₁₂S [M+H]⁺ calcd 201.7863, found 201.7861.

Phenyl(o-tolyl)sulfane (3ai)²

Overall Yield: 68% (27.2 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.30 - 7.23 (m, 5H), 7.21 -7.17 (m, 3H), 7.16-7.10 (m, 1H), 2.38 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 139.9, 136.1, 133.7, 132.9, 130.6, 129.6, 129.1, 127.9, 126.7, 126.3, 20.6; HRMS (ESI): m/z for $C_{13}H_{12}S$ [M+H]⁺ calcd 201.0799, found 201.0985.

(5-Chloro-2-methoxyphenyl)(phenyl)sulfane (3aj)³

Overall Yield: 73% (36.6 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). ¹H NMR

(400 MHz, CDCl₃) δ 7.44 (d, J = 1.5 Hz, 2H), 7.42-34 (m, 3H), 7.14 (dd, J = 7.2, 2.4 Hz, 1H), 6.87 (s, 1H), 6.87 – 6.79 (m, 1H), 3.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 133.0, 132.3, 129.5, 129.1, 128.1, 127.4, 127.1, 126.0, 111.5, 56.2. HRMS (ESI): m/z for C₁₃H₁₁ClOS [M+H]⁺ calcd 251.0292, found 251.0289.

Methyl 3-nitro-5-(phenylthio)benzoate (3ak)

Overall Yield: 27% (15.6 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 9.02 (t, J = 1.8 Hz, 1H), 8.78 (t, J = 2.0 Hz, 1H), 8.73 (t, J = 1.7 Hz, 1H), 7.40 - 7.35 (m, 5H), 3.92 (s, 3H). 13 C NMR (101 MHz, CDCl₃) δ 164.4, 147.1, 134.7, 133.6, 131.9, 131.6, 129.3, 127.4, 125.8, 124.6, 53.1. HRMS (ESI): m/z for $C_{14}H_{11}NO_{4}S$ [M+H] $^{+}$ calcd 290.0482, found 290.0480.

1-(4-(Phenylthio)phenyl)ethan-1-one (3al)³

Overall Yield: 67% (31.7 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 50:1). 1 H NMR (400 MHz, CDCl₃) δ 8.40–8.36 (m, 1H), 7.90–7.86 (m, 2H), 7.68–7.67 (m, 1H), 7.54–7.51 (m, 2H), 7.46–7.44 (m, 1H), 7.24–7.14 (m, 5H);; 13 C NMR (101 MHz, CDCl₃) δ 136.9, 134.2, 133.5, 132.6, 131.1, 129.2, 129.1, 128.9, 128.5, 126.9, 126.4, 126.1, 125.8, 125.6; HRMS (ESI): m/z for $C_{16}H_{12}S$ [M+H]⁺ calcd 237.0733, found 237.0735.

Phenanthren-9-yl(phenyl)sulfane (3am)⁴

Overall Yield: 78% (44.7 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 50:1). 1 H NMR (400 MHz, CDCl₃) δ 8.76 (dd, J = 8.0, 1.2 Hz, 2H), 8.50 (d, J = 8.0 Hz, 1H), 8.04 (s, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.72 - 7.68 (m, 2H), 7.64 - 7.60 (m, 2H), 7.28 - 7.22 (m, 4H), 7.22 - 7.16 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 136.6, 134.0, 131.6, 131.5, 131.0, 130.6, 129.5, 129.1, 128.8, 128.5, 127.4, 127.2, 127.1, 127.0, 126.5, 126.1, 123.0, 122.6; HRMS (ESI): m/z for $C_{20}H_{14}$ S [M+H]⁺ calcd 287.0889, found 286.0891.

5-(Phenylthio)benzo[d][1,3]dioxole (3an)

Overall Yield: 51% (23.4 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.28 - 7.21 (m, 4H), 7.19 – 7.15 (m, 1H), 7.01 (dd, J = 8.0, 1.8 Hz, 1H), 6.91 (d, J = 1.8 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 5.99 (s, 2H), 13 C NMR (101 MHz, CDCl₃) δ 148.3, 147.9, 137.9, 129.0, 128.9, 127.4, 126.2, 126.2, 113.6, 109.0, 101.4. HRMS (ESI): m/z for $C_{13}H_{10}O_{2}S$ [M+H]⁺ calcd 231.0474, found 231.0476.

6-(Phenylthio)-1*H*-indole (3ao)⁵

Overall Yield: 51% (23.0 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). H NMR (500 MHz, CDCl₃) δ 7.26 - 7.25 (m, 2H), 7.22 - 7.15 (m, 5H), 7.12 - 7.10 (m, 1H), 6.57 - 6.55 (m, 1H); 13 C NMR (125 MHz, CDCl₃) δ 139.7, 135.6, 128.9, 128.8, 128.2,

127.6, 127.4, 125.3, 125.1, 123.0, 112.1, 102.8. HRMS (ESI): m/z for C₁₄H₁₁NS [M+H]⁺ calcd 266.1685, found 266.1681.

6-(Phenylthio)benzofuran (3ap) ⁵

Overall Yield: 60% (27.1 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 1.9 Hz, 1H), 7.67 (d, J = 2.2 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.43 (dd, J = 8.6, 1.9 Hz, 1H), 7.31 - 7.23 (m, 4H), 7.19 – 7.17 (m, 1H), 6.77 – 7.76 (m, 1H). 13 C NMR (101 MHz, CDCl₃) δ 154.7, 145.9, 138.1, 129.6, 129.0, 128.9, 128.6, 127.8, 126.4, 126.1, 112.3, 106.4. HRMS (ESI): m/z for $C_{14}H_{10}OS$ [M+H] $^{+}$ calcd 227.2525, found 227.2527.

6-(Phenylthio)benzo[b]thiophene (3aq)⁵

Overall Yield: 53% (25.7mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 1.8 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 5.5 Hz, 1H), 7.36 (dd, J = 8.4, 1.7 Hz, 1H), 7.28 - 7.22 (m, 5H), 7.20 - 7.15 (m, 1H). NMR (101 MHz, CDCl₃) δ 140.5, 139.1, 137.1, 130.6, 129.9, 129.1, 128.3, 127.5, 127.4, 126.5, 123.5, 123.2. HRMS (ESI): m/z for $C_{14}H_{10}S_2$ [M+H]⁺ calcd 243.0297, found 243.0230.

2-(Phenylthio)pyridine (3ar)⁵

Overall Yield: 44% (16.4 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 8.46 (dd, J = 3.7, 1.7 Hz, 1H), 7.60 (td, J = 6.7, 1.6 Hz, 1H), 7.51 - 7.42 (m, 2H), 7.37 - 7.27 (m, 3H), 7.23 (dd, J = 6.6, 1.4 Hz, 1H), 7.19 - 7.17

(m, 1H). 13 C NMR (101 MHz, CDCl₃) δ 157.4, 149.7, 137.0, 136.8, 131.5, 129.1, 127.8, 124.4, 121.2; HRMS (ESI): m/z for $C_{11}H_9NS$ [M+H]⁺ calcd 188.3529, found 188.3531.

Phenyl(phenylethynyl)sulfane (3as)⁵

Overall Yield: 32% (13.4 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). H NMR (400 MHz, CDCl₃) δ 7.43 - 7.38 (m, 4H), 7.25 - 7.24 (m, 5H), 7.17 - 7.15 (m, 1H). L3C NMR (101 MHz, CDCl₃) δ 133.1, 131.9, 129.4, 128.8, 128.4, 126.8, 126.3, 123.1, 98.0, 75.3. HRMS (ESI): m/z for C₁₄H₁₀S [M+H]⁺ calcd 211.1576, found 211.1578.

(Z/E)-Phenyl(styryl)sulfane (3at)⁵

Overall Yield: 50% (21.2 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.35 - 7.33 (m, 4H), 7.29 - 7.28 (m, 5H), 7.27 - 7.26 (m, 1H), 6.91(d, J = 12.4 Hz, 1H), 6.76 (d, J = 12.4Hz, 1H). 13 C NMR (101 MHz, CDCl₃) δ 137.3, 135.2, 132.8, 131.8, 129.8, 129.2, 138.7, 128.7, 127.6, 126.0. HRMS (ESI): m/z for $C_{14}H_{12}S$ [M+H]⁺ calcd 213.4733, found 213.4734.

(E)-Cyclohexyl(styryl)sulfane (3au)⁶

Overall Yield: 45% (19.7 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (500 MHz, CDCl₃) δ 7.46 - 7.45 (m, 2H), 7.38 - 7.31 (m, 3H), 6.80 (d, J = 15.6 Hz,

1H), 6.62 (dd, J = 14.1, 1.6 Hz, 1H), 3.16 – 3.14 (m, 1H), 1.75 – 1.64 (m, 2H), 1.63 – 1.53 (m, 5H), 1.43 – 1.38 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 135.1, 129.2, 129.0, 127. 7, 127.6, 126.0, 44.8, 35.5, 25.5, 24.7. HRMS (ESI): m/z for C₁₄H₁₈S [M+H]⁺ calcd 219.1202, found 219.1201.

4-(Phenylthio)phenyl (4R)-4-((8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3,7,12- tri oxohexadeca hydro- 1H-cyclopenta[a]phenanthren-17-yl)pentanoate (3aw)

Overall Yield: 52% (60.9 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 3:1). 1 H NMR (600 MHz, CDCl₃) δ 7.57 (m, 3H), 7.43 (t, J = 7.7 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 8.8 Hz, 2H), 2.94 - 2.82 (m, 3H), 2.64 (m, 1H), 2.52 (m, 1H), 2.38 - 2.00 (m, 12H), 1.95 (m, 2H), 1.86 (td, J = 11.3, 7.0 Hz, 1H), 1.61 (td, J = 14.4, 4.6 Hz, 1H), 1.52 (ddt, J = 14.0, 9.0, 4.5 Hz, 1H), 1.40 (s, 3H), 1.36 - 1.33 (m, 1H), 1.31 - 1.25 (m, 1H), 1.08 (s, 3H), 0.90 (d, J = 6.5 Hz, 3H). 13 C NMR (151 MHz, CDCl₃) δ 211.9, 209.0, 208.7, 171.8, 153.3, 142.7, 137.8, 133.7, 128.9, 127.5, 124.8, 122.7, 56.8, 51.7, 48.9, 46.8, 45.5, 44.9, 42.7, 38.6, 36.4, 35.9, 35.4, 35.2, 31.5, 30.2, 27.6, 25.1, 21.9, 18.6, 11.8. HRMS (ESI): m/z for $C_{36}H_{42}O_{5}$ S [M+Na]+ calcd 609.2645, found 609.2647.

N-(2-(2-methyl-1H-indol-3-yl)ethyl)-4-(phenylthio)benzamide (3ax)

Overall Yield: 50% (38.7 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 3:1). 1 H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 13.0 Hz, 1H), 7.69 - 7.60 (m, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.43 - 7.41 (m, 2H), 7.38 - 7.31 (m, 4H), 7.28 (d, J = 8.0 Hz, 1H), 7.18 (d, J =

8.4 Hz, 2H), 7.14 - 7.05 (m, 2H), 3.68 (q, J = 6.4 Hz, 2H), 3.02 (q, J = 6.6 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 141.6, 135.3, 133.2, 132.9, 132.2, 132.1, 129.5, 128.6, 128.5, 128.2, 127.4, 121.2, 119.4, 117.7, 110.4, 108.4, 40.4, 24.0, 11.6. HRMS (ESI): m/z for C₂₄H₂₂N₂OS [M+H]⁺ calcd 387.1526, found 387.1529. 52.9, 45.8, 25.2, 17.8. HRMS (ESI): m/z for C₃₅H₃₄N₇O₃S₂ [M+Na]⁺ calcd 722.1745, found 722.1742.

[1,1'-Biphenyl]-4-yl(phenyl)sulfane (3ba)⁵

Overall Yield: 51% (26.8 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.58 - 7.51 (m, 4H), 7.45 - 7.24 (m, 10H). 13 C NMR (101 MHz, CDCl₃) δ 140.3, 140.0, 135.7, 134.9, 131.3, 131.2, 129.2, 128.8, 127.8, 127.5, 127.2, 127.0. HRMS (ESI): m/z for $C_{18}H_{14}S$ [M+H]+ calcd 263.0889, found 263.0891.

4-(Phenylthio)aniline (3ca)⁵

Overall Yield: 49% (19.7 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 10:1). 1 H NMR (400 MHz, CDCl₃) δ 7.61 - 7.55 (m, 3H), 7.45 - 7.41 (m, 2H), 7.12 - 7.09 (m, 2H), 6.63 - 6.59 (m, 2H), 4.33 (s, 2H), 13 C NMR (101 MHz, CDCl₃) δ 148.9, 143.1, 138.3, 133.4, 128.7, 127.6, 115.7, 115.6. HRMS (ESI): m/z for C₁₂H₁₁NS [M+H]⁺ calcd 202.2685, found 202.2681.

tert-Butyl (4-(phenylthio)phenyl)carbamate (3da)⁷

Overall Yield: 50% (30.1 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 10:1). H NMR (400 MHz, CDCl₃) δ 7.37 - 7.32 (m, 4H), 7.32 - 7.26 (m, 4H), 7.25 -7.21 (m, 1H), 6.51 (s, 1H), 1.49 (s, 9H). The NMR (101 MHz, CDCl₃) δ 152.5, 139.1, 136.7, 131.3, 129.6, 129.1, 128.9, 127.1, 120.4, 28.2. HRMS (ESI): m/z for C₁₇H₁₉NO₂S [M+H]⁺ calcd 302.1209, found 302.1231.

(4-Bromophenyl)(phenyl)sulfane (3ea)²

Overall Yield: 54% (28.6 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.5 Hz, 2H), 7.37 - 7.36 (m, 4H), 7.31 - 7.26 (m, 1H), 7.19 (d, J = 8.5 Hz, 2H). 13 C NMR (101 MHz, CDCl₃) δ 135.5, 134.8, 133.2, 132.1, 131.5, 129.4, 127.5, 120.5. HRMS (ESI): m/z for C₁₂H₉BrS [M+H]+ calcd 264.9681, found 264.9683.

1-(4-(Phenylthio)phenyl)ethan-1-one (3fa)⁵

Overall Yield: 47% (21.5 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 50:1). 1 H NMR (400 MHz, CDCl₃) δ 7.83 - 7.80 (m, 2H), 7.51 - 7.48 (m, 2H), 7.43 - 7.38 (m, 3H), 7.23 - 7.20 (m, 2H), 2.55 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 197.1, 144.9, 134.5, 133.8, 132.1, 129.7, 128.9, 128.8, 127.4, 26.4; HRMS (ESI): m/z for C₁₄H₁₂OS [M+H]⁺ calcd 229.0682, found 229.0680.

2-(Phenylthio)benzo[d]oxazole (3ga)⁸

Overall Yield: 50% (24.6 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 10:1). 1 H NMR (400 MHz, CDCl₃) δ 7.72 - 7.68 (m, 2H), 7.60 - 7.58 (m, 1H), 7.46 - 7.38 (m, 3H), 7.28 - 7.20 (m, 1H), 7.28 - 7.20 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ 163.2, 151.8, 141.9, 134.4, 129.8, 129.6, 127.1, 124.3, 124.2, 119.0, 110.0; HRMS (ESI): m/z for $C_{13}H_{9}NOS$ [M+H]⁺ calcd 288.0478, found 288.0480.

2-(Phenylthio)-1*H*-benzo[*d*|imidazole (3ha)⁹

Overall Yield: 48% (22.3 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 10:1). 1 H NMR (500 MHz, CDCl₃) δ 7.79 - 7.75 (m, 1H), 7.49 - 7.40 (m, 3H), 7.36 - 7.28 (m, 3H), 7.21 - 7.16 (m, 2H); 13 C NMR (125 MHz, CDCl₃) δ 151.1, 142.3, 138.7, 136.6, 130.6, 129.1, 127.8, 124.6, 122.3, 117.7, 111.9. HRMS (ESI): m/z for C₁₃H₁₀NOS [M+H]⁺ calcd 227.0638, found 227.0635.

2-(Phenylthio)benzo[d]thiazole (3ia)¹⁰

Overall Yield: 55% (26.8 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 10:1). 1 H NMR (400 MHz, CDCl₃) δ 7.75 - 7.73 (m, 1H), 7.66 - 7.64 (m, 2H), 7.52 - 7.46 (m, 1H), 7.43 - 7.39 (m, 3H), 7.29 – 7.27 (m, 1H), 7.27 - 7.25 (m, 1H). 13 C NMR (101 MHz, CDCl₃) δ 169.8, 153.7, 135.4, 135.4, 130.5, 129.9, 129.9, 126.2, 124.4, 121.9, 120.8. HRMS (ESI): m/z for $C_{13}H_{9}NS_{2}$ [M+H]⁺ calcd 244.0250, found 244.0249.

Cyclohexyl(phenyl)sulfane (3ja)⁵

Overall Yield: 72% (27.7 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 100:1). 1 H NMR (500 MHz, CDCl₃) δ 7.30 - 7.29 (m, 5H), 3.40 – 3.39 (m, 1H), 1.86 – 1.81 (m, 2H), 1.66 - 1.53 (m, 5H), 1.49 - 1.40 (m, 3H). 13 C NMR (125 MHz, CDCl₃) δ 134.7, 131.5, 129.0, 127.9, 46.7, 33.7, 25.5, 24.8. HRMS (ESI): m/z for $C_{12}H_{16}S$ [M+H]⁺ calcd 193.1046, found 193.1049.

Methyl N-(tert-butoxycarbonyl)-S-phenyl-L-cysteinate (3ka)¹¹

Overall Yield: 61% (37.7 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.42 - 7.40 (m, 2H), 7.40 - 7.42 (m, 2H), 7.30 - 7.26 (m, 1H), 7.23 - 7.21(m, 1H), 5.35 (d, J = 8.0 Hz, 1H), 4.58 - 4.56 (m, 1H), 3.53 (s, 3H), 3.38 - 3.37 (m, 2H), 1.42 (s, 9H); 13 C NMR (101 MHz, CDCl₃) δ 171.0, 155.0, 134.7, 131.0, 129.0, 127.0, 80.1, 53.2, 52.3, 37.2, 28.2. HRMS (ESI): m/z for C₁₅H₂₁NO₄S [M+H]⁺ calcd 312.1264, found 312.1262.

Methyl phenyl-N-prolylcysteinate (3la)

Overall Yield: 56% (14.5 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 10:1). 1 H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.8 Hz, 1H), 7.36 - 7.24 (m, 5H), 4.74 (dt, J = 5.1, 2.6 Hz, 1H), 4.40 (dt, J = 8.8, 5.0 Hz, 1H), 3.70 - 3.64 (m, 4H), 3.39 (dd, J = 14.4, 5.0

Hz, 1H), 3.29 (dd, J = 14.4, 5.0 Hz, 1H), 3.02 - 2.87 (m, 2H), 1.92 - 1.84 (m, 1H), 1.81 - 1.74 (m, 2H), 1.73 - 1.68 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 171.8, 137.9, 131.8, 130.5, 128.1, 61.1, 52.3, 52.3, 47.6, 35.4, 31.6, 26.4. HRMS (ESI): m/z for C₁₅H₂₀N₂O₃S⁺ [M+H]⁺ calcd 309.1267, found 309.1269.

(2R,3S,4S,5R,6R)-2-(Acetoxymethyl)-6-(p-tolylthio)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ma)¹²

Overall Yield: 56% (39.1 mg). Nature: White solid. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 5.40 (d, J = 3.2 Hz, 1H), 5.23 (t, J = 10.0 Hz, 1H), 5.04 (dd, J = 10.0, 3.2 Hz, 1H), 4.65 (d, J = 10.0 Hz, 1H), 4.52 (m, 2H), 3.92 (t, J = 6.4 Hz, 1H), 2.33 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H), 2.03 (s, 3H), 1.96 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 170.3, 170.2, 170.0, 169.4, 138.4, 133.1, 129.6, 128.6, 86.9, 74.3, 72.0, 67.2, 67.2, 61.5, 21.1, 20.8, 20.6, 20.6, 20.5; HRMS (ESI): m/z for C₂₁H₂₆O₉S [M+Na]⁺ calcd 477.1190, found 477.1192.

(2R,3R,4S,5R,6S)-2-(Acetoxymethyl)-6-(((2R,3R,4S,5R,6R)-4,5-diacetoxy-2-(acetoxymethyl)-6-(*p*-tolylthio)tetrahydro-2*H*-pyran-3-yl)oxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (3na) ¹²

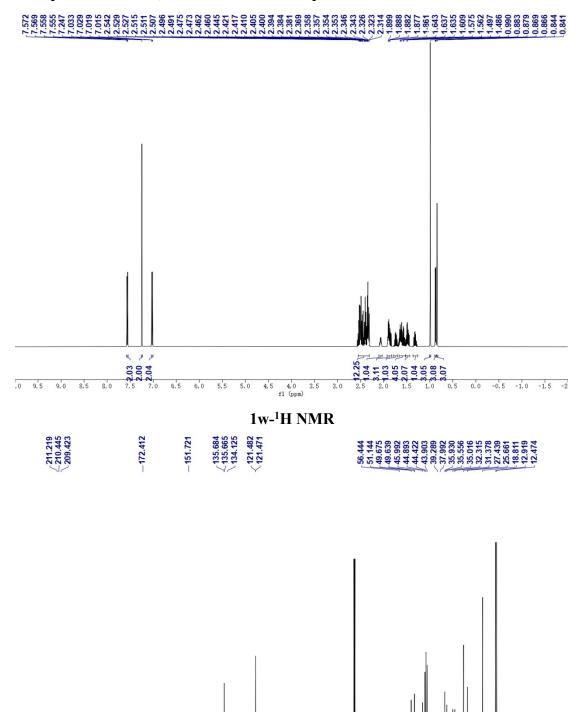
Overall Yield: 47% (13.5 mg). Nature: White solid. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 1:1). ¹H NMR (400

MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 5.34 (d, J = 2.8 Hz, 1H), 5.07 (t, J = 9.2 Hz, 1H), 5.07 - 5.02 (m, 1H), 4.94 - 4.90 (m, 1H), 4.86 (t, J = 9.8 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 4.51 - 4.47 (m, 2H), 4.12 - 4.00 (m, 3H), 3.72 (t, J = 9.6 Hz, 1H), 3.65 - 3.61 (m, 1H), 3.60 - 3.58 (m, 1H), 2.33 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 2.01 (s, 9H), 1.97 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 170.5, 170.2, 170.0, 169.7, 169.5, 169.3, 169.0, 138.6, 133.7, 129.6, 127.7, 100.7, 85.7, 76.3,75.2, 73.6, 71.6, 70.7, 70.1, 69.4, 67.7, 61.9, 61.5, 60.9, 21.2, 20.8, 20.8, 20.7, 20.6, 20.6, 20.5. HRMS (ESI): m/z for $C_{33}H_{42}O_{17}S$ [M+Na]⁺ calcd 765.2035, found 765.2032.

4-(Phenylthio)phenyl 2-(4-isobutylphenyl)propanoate (30a)

Overall Yield: 61% (47.6 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.36 - 7.30 (m, 4H), 7.30 - 7.16 (m, 5H), 7.15 (dd, J = 8.3, 2.5 Hz, 2H), 7.01 - 6.94 (m, 2H), 3.96 - 3.91 (m, 1H), 2.48 (dd, J = 7.3, 2.7 Hz, 2H), 1.92 (dt, J = 13.4, 6.7 Hz, 1H), 1.61 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 2.7 Hz, 3H), 0.91 (d, J = 2.6 Hz, 3H). 13 C NMR (101 MHz, CDCl₃) δ 173.0, 150.2, 141.5, 137.1, 132.6, 132.5, 130.6, 129.5, 129.3, 129.2, 127.2, 127.0, 122.3, 45.3, 45.0, 30.1, 22.4, 18.4. HRMS (ESI): m/z for $C_{25}H_{26}O_{2}S$ [M+H] $^{+}$ caled 391.1726, found 391.1730.

4-(Phenylthio)phenyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (3pa)

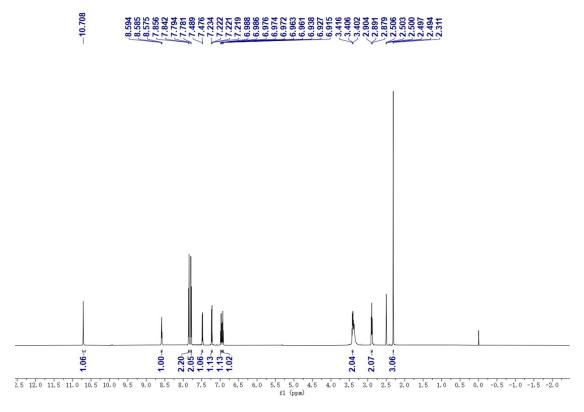

Overall Yield: 54% (46.9 mg). Nature: Colorless oil. Purification of the product was performed by silica gel column chromatography (eluent: PE/EA = 1:1). 1 H NMR (400 MHz, CDCl₃) δ 7.44 - 7.41 (m, 2H), 7.39 - 7.28 (m, 5H), 7.08 - 7.03 (m, 3H), 6.72 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 1.6 Hz, 1H), 4.08 - 4.01 (m, 2H), 2.36 (s, 3H), 2.23 (s, 3H), 1.97 - 1.90 (m, 4H), 1.43 (s, 6H). 13 C NMR (101 MHz, CDCl₃) δ 176.2, 156.8,

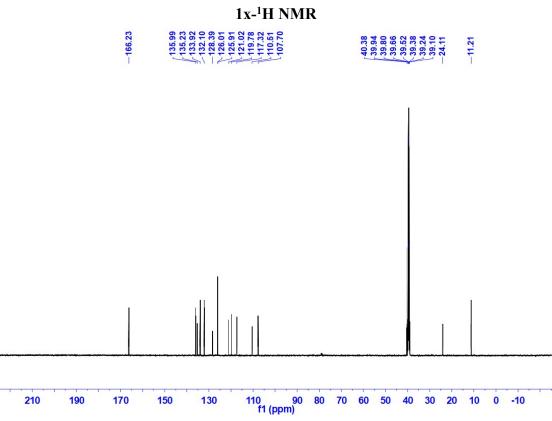
150.3, 136.5, 136.1, 132.7, 132.4, 130.5, 130.3, 129.2, 126.9, 123.6, 122.4, 120.8, 111.9, 67.7, 42.5, 37.1, 29.7, 25.2, 25.1, 21.4, 15.8. HRMS (ESI): m/z for C₂₇H₃₀O₃S [M+H]⁺ calcd 453.1988, found 453.1990.

8. References

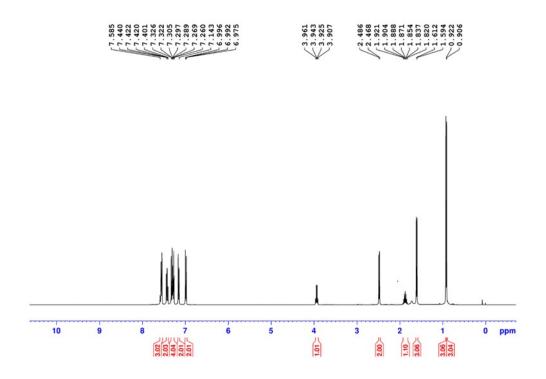
- 1. R. Amaradhi, S. Mohammed, A. Banik, R. Franklin, R. Dingledine and T. Ganesh, *ACS Pharmacol. Trans. Sci.*, 2022, **5**, 118-133.
- 2 L. Y. Lam and C. Ma, Org. Lett., 2021 23, 6164-6168.
- 3 S. K. Sinha, S. Panja, J. Grover, P. S. Hazra, S. Pandit, Y. Bairagi, X. Zhang and D. Maiti, *J. Am. Chem. Soc.*, 2022, **144**, 12032-12042.
- 4 Y.-C. Wong, T. T. Jayanth and C.-H. Cheng, Org. Lett., 2006, 8, 5613-5616.
- 5 Y. Liu, S. Xing, J. Zhang, W. Liu, Y. Xu, Y. Zhang, F. Yang, L. Yang, K. Jiang and X. Shao, *Org. Chem. Front.*, 2022, **9**,1375-1382.
- 6 H. Wang, J. E. Erchinger, M. Lenz, S. Dutta, C. G. Daniliuc and F. Glorius, *J. Am. Chem. Soc.*, 2023, **145**, 23771-23780.
- 7 P. Mampuys, Y. Zhu, S. Sergeyev, E. Ruijter, R. V. Orru, S. Van Doorslae and B. U. Maes, *Org. Lett.*, 2016, **18**, 2808-2811.
- 8 Y. B. Bhujabal, K. S. Vadagaonkar, A. Gholap, Y. S. Sanghv, R. Dandela and A. R. Kapdi, *J. Org. Chem.*, 2019, **84**, 15343-15354.
- 9 X. Liu and Z.-B. Dong, J. Org. Chem., 2019, 84, 11524-11532.
- 10 A. Jati, S. Dam, S. Kumar, K. Kumar and B. Maji, Chem. Sci., 2023, 14, 8624-8634.
- 11 J. Ying, J. Huang, C. Liu, F. Chen, C. Xu and F. Chen, Org. Chem. Front., 2024, 11, 53-59.
- 12 Z.-Y. Sun, W.-T. Yan and L.-H. Xie, Org. Lett., 2023, 25, 5714–5718.

9. Copies of $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR, $^{19}\mathrm{F}$ NMR spectra



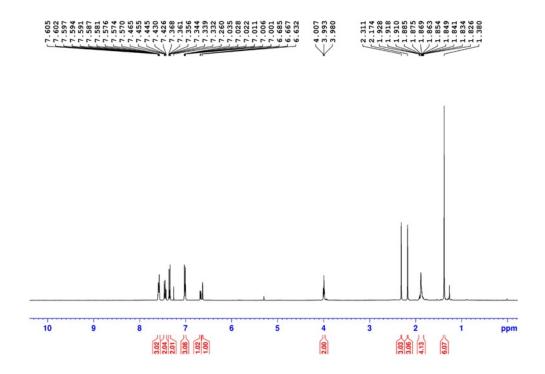

1w-¹³C NMR

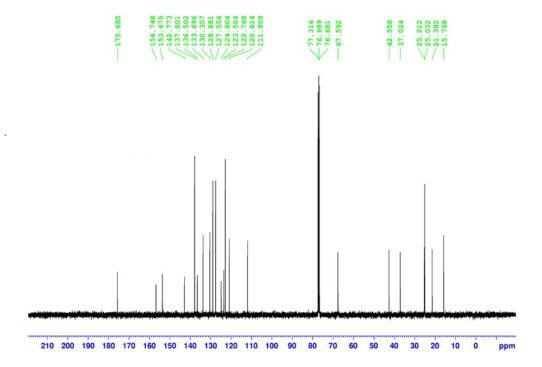
160 150 140

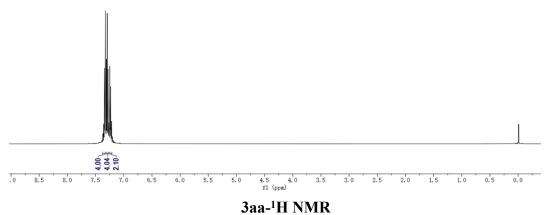

180 170

30 20

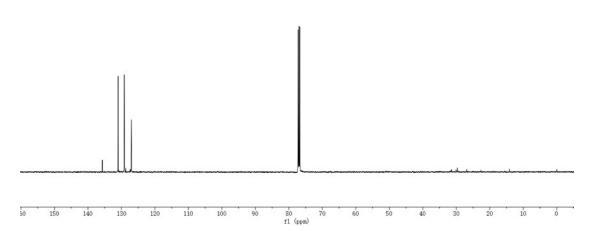



1x-13C NMR

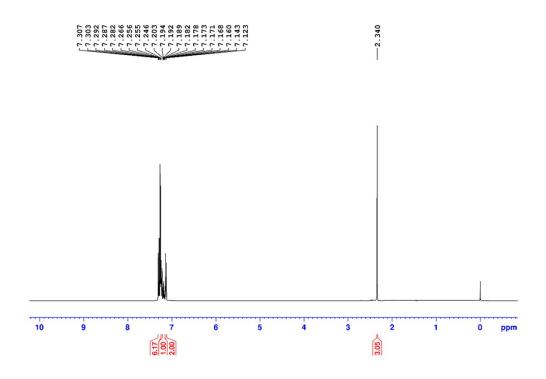

2r-¹H NMR

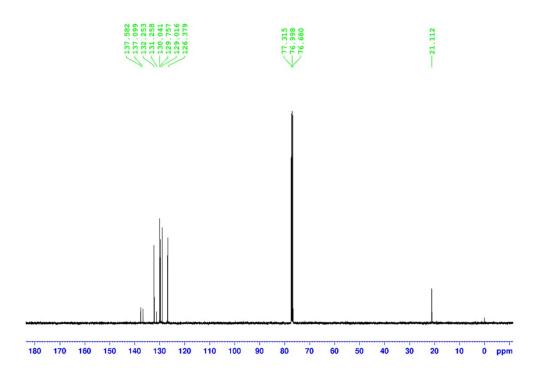

2r-¹³C NMR

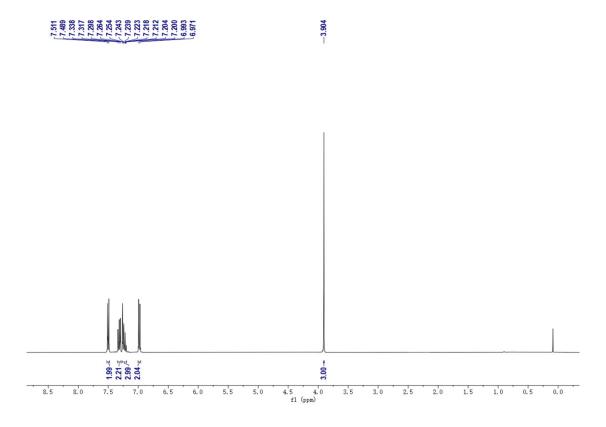
2s-1H NMR

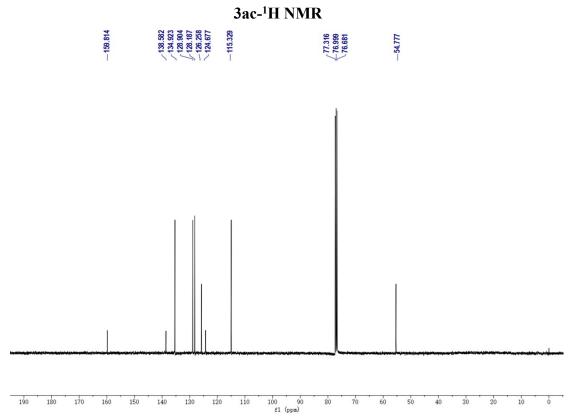


2s-13C NMR

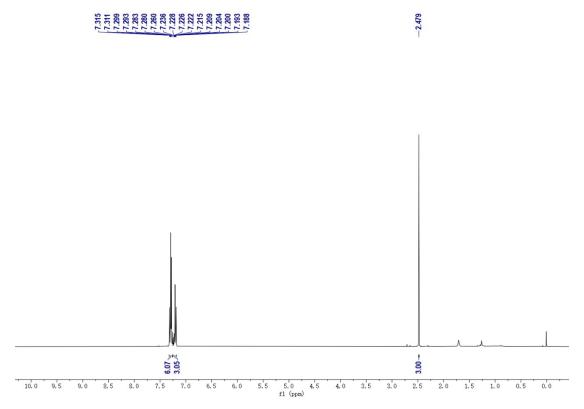




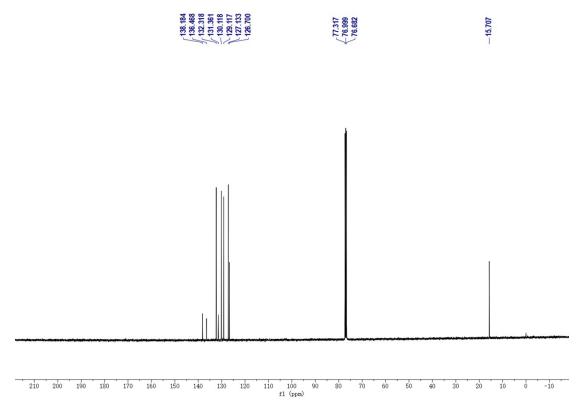

3aa-¹³C NMR



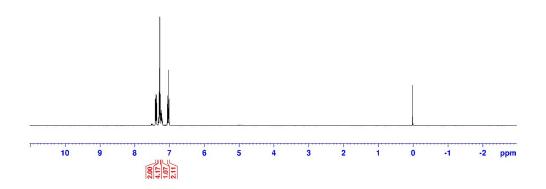
3ab-¹H NMR



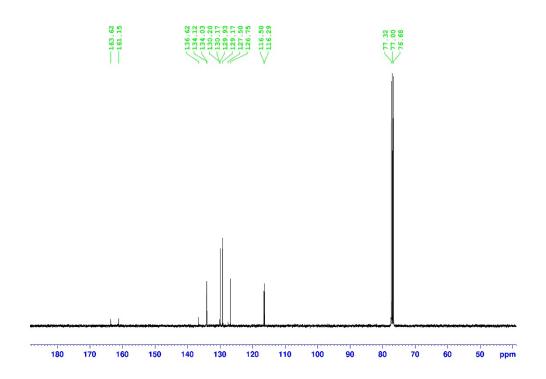
3ab-¹³C NMR



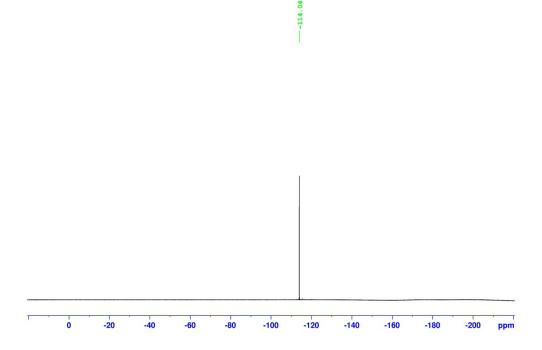
3ac-¹³C NMR



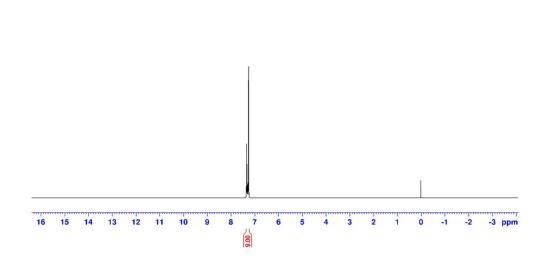
3ad-¹H NMR



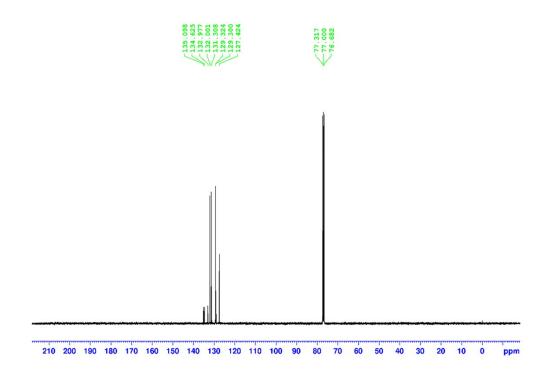
3ad-¹³C NMR



3ae-¹H NMR

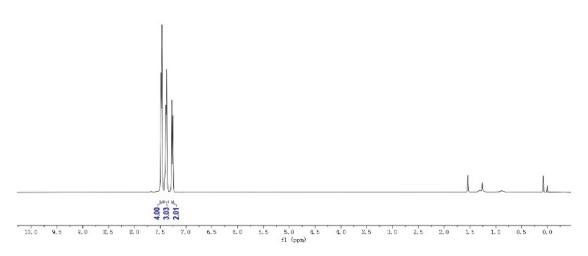


3ae-¹³C NMR

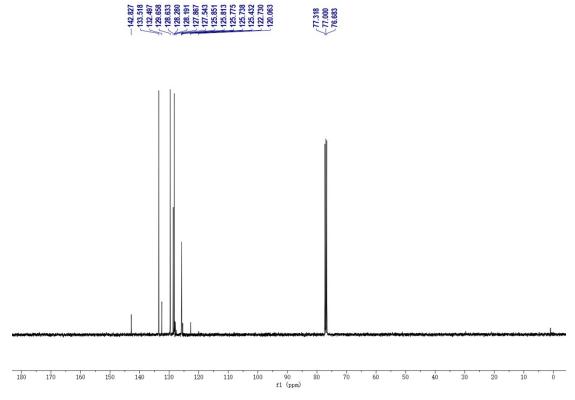


3ae-¹⁹F NMR

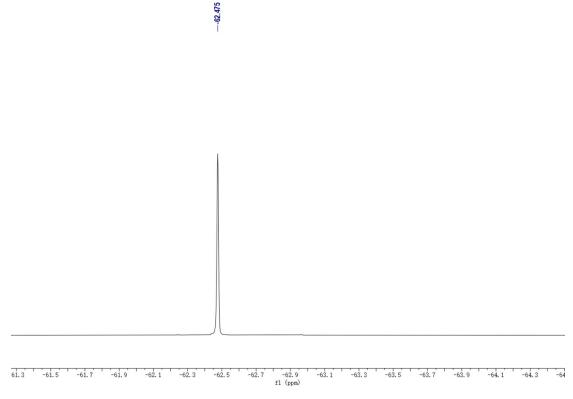
7.364 7.353 7.353 7.353 7.316 7.316 7.306 7.202 7.287 7.269

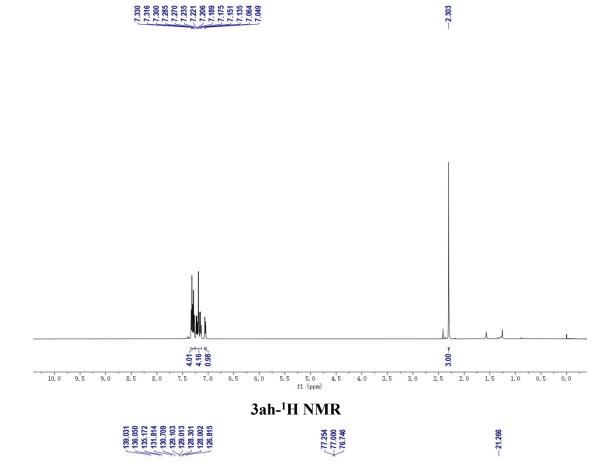


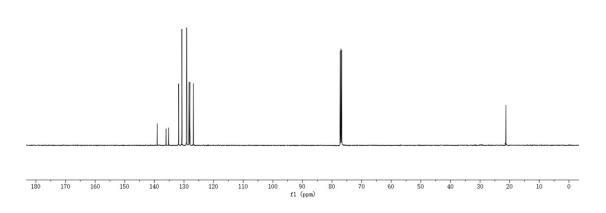
3af-¹H NMR

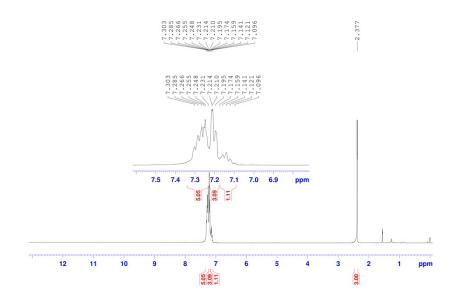


3af-¹³C NMR

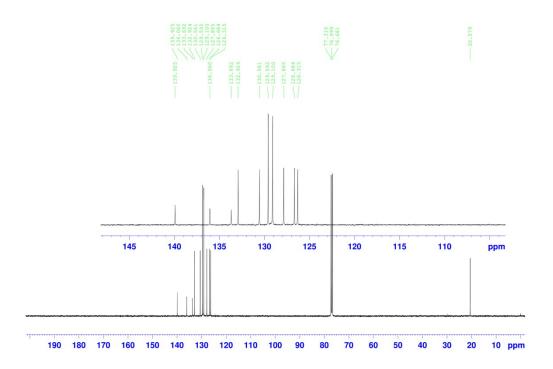


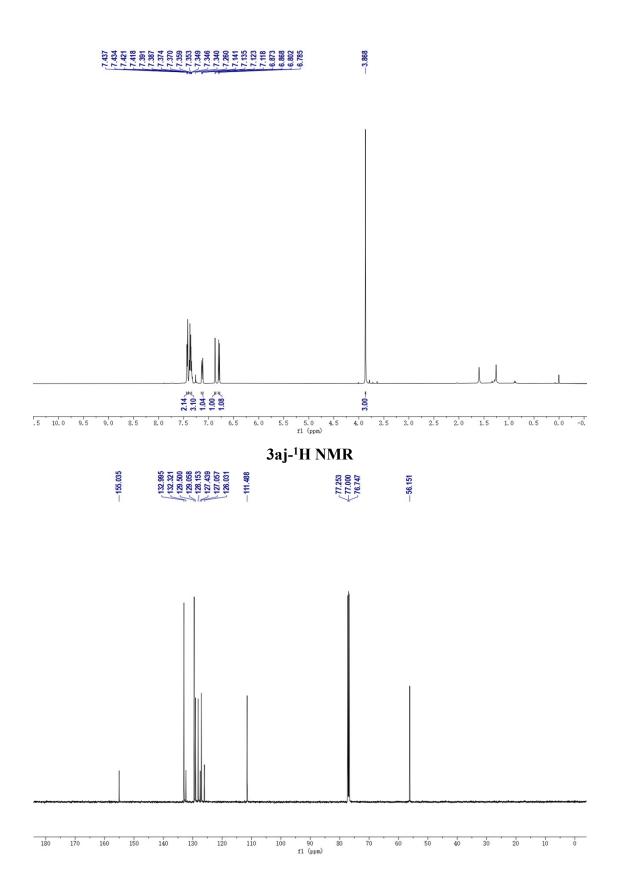

3ag-¹H NMR



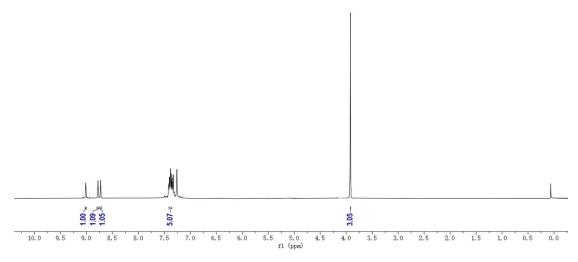


3ag-¹⁹F NMR

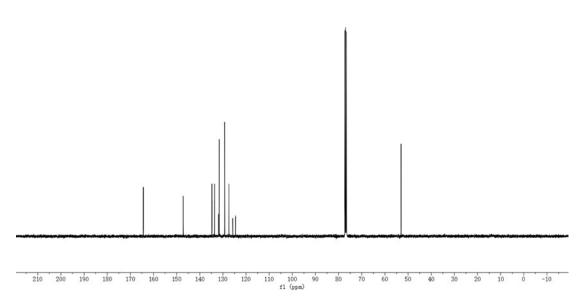


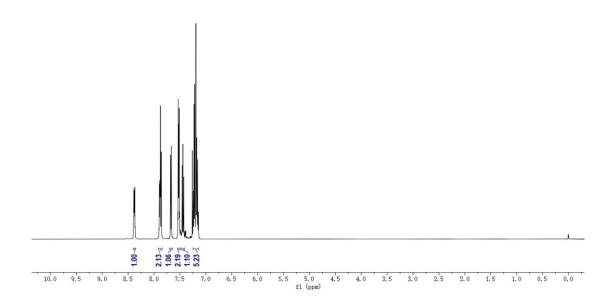

3ah-¹³C NMR

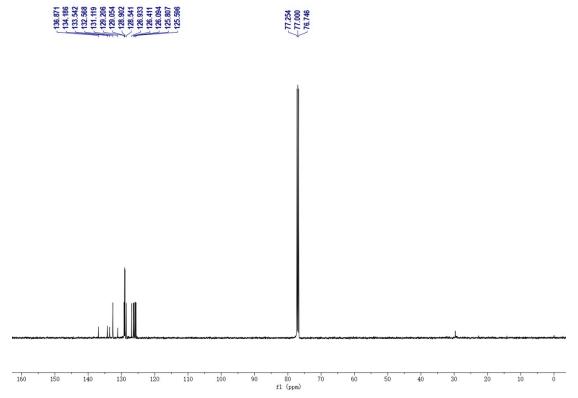
3ai-1H NMR


3ai-¹³C NMR

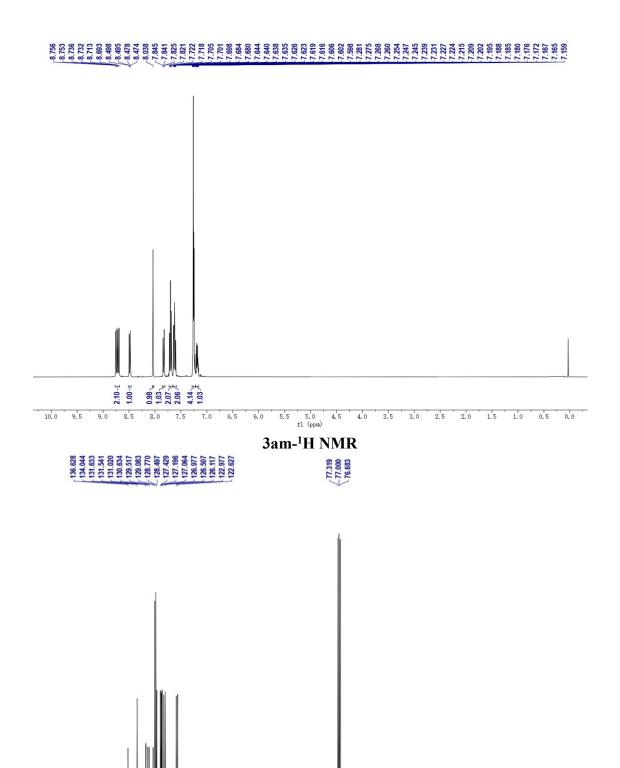
3aj-¹³C NMR

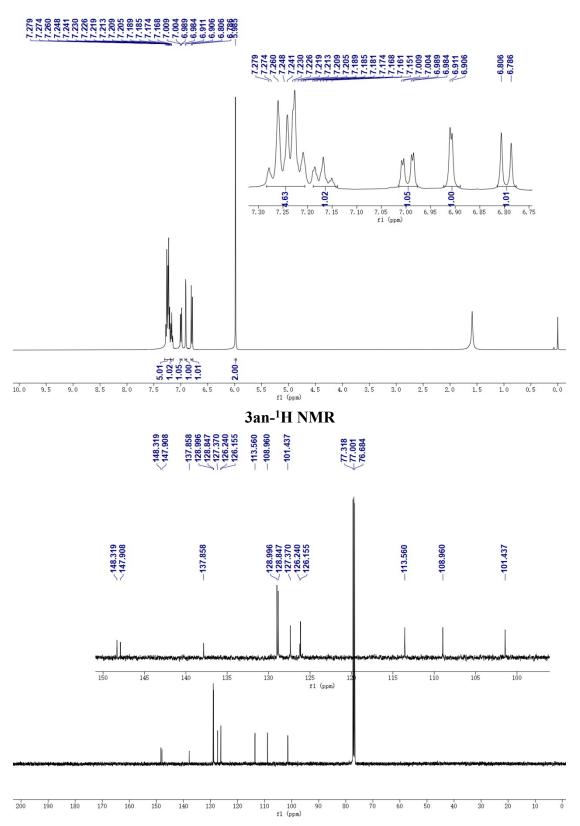




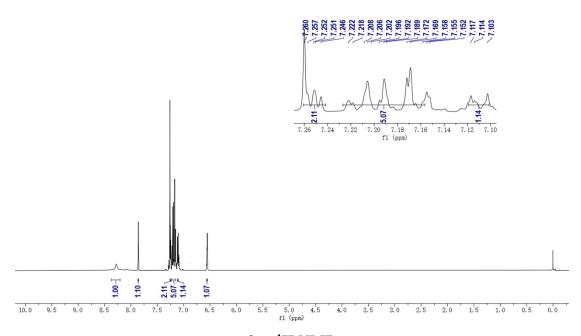


3ak-¹³C NMR

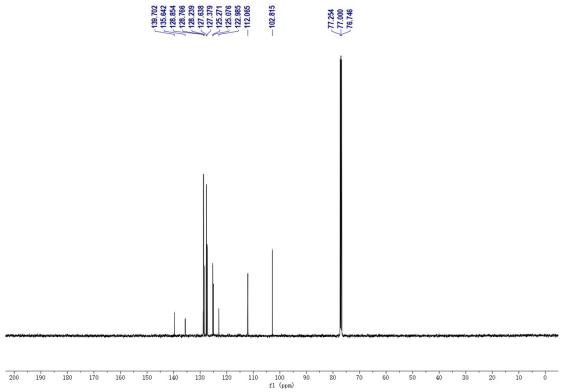




3al-¹³C NMR

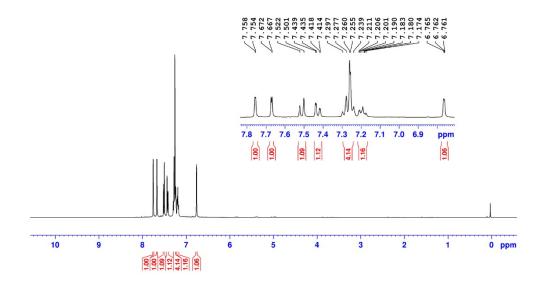


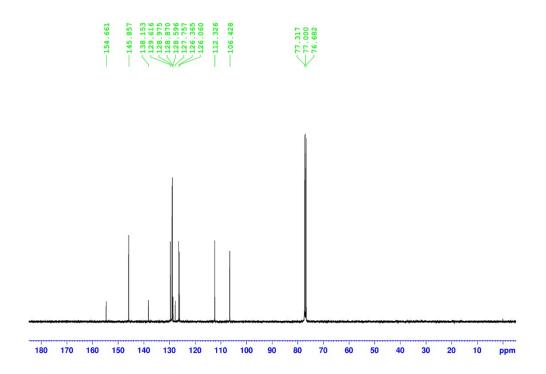
3am-¹³C NMR



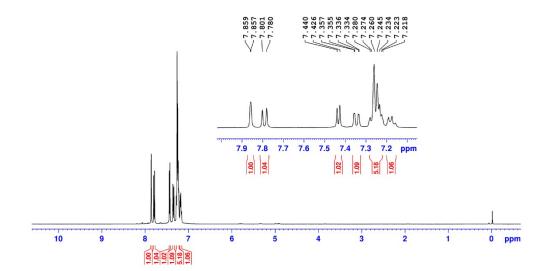
3an-¹³C NMR

2.7 (2.85)

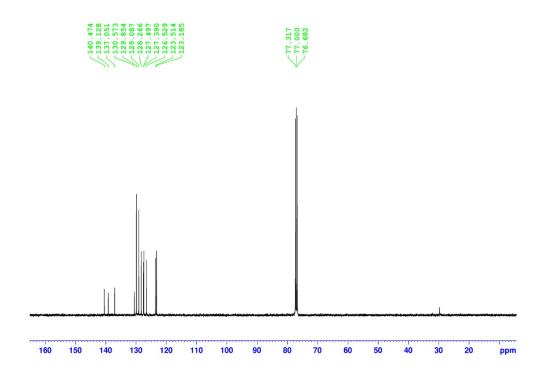




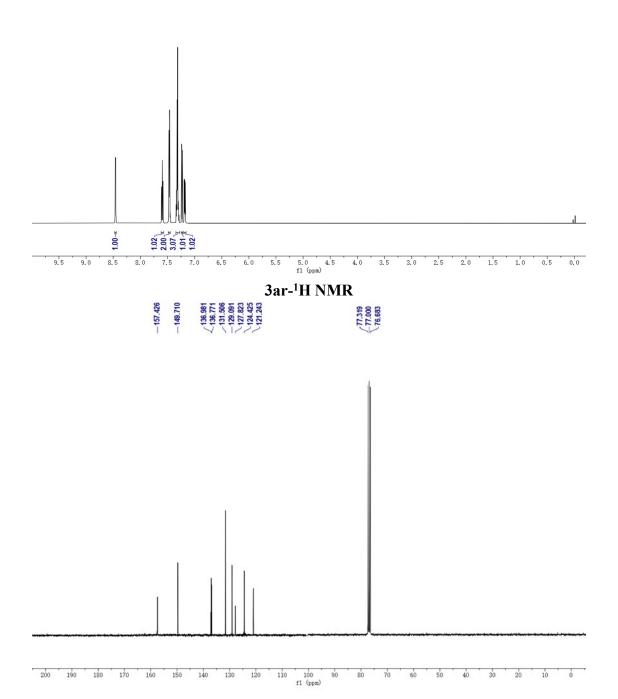
3ao-¹³C NMR



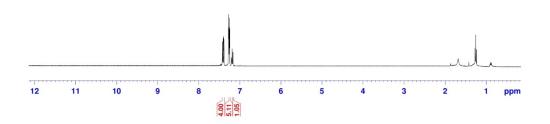
3ap-1H NMR



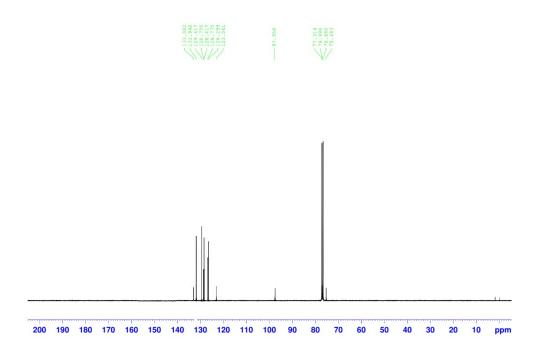
3ap-¹³C NMR



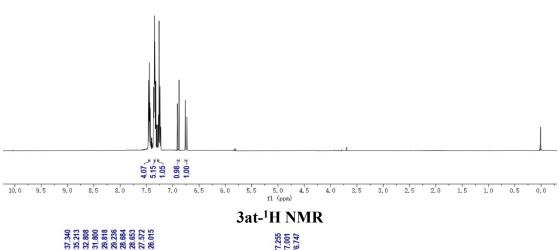
3aq-¹H NMR

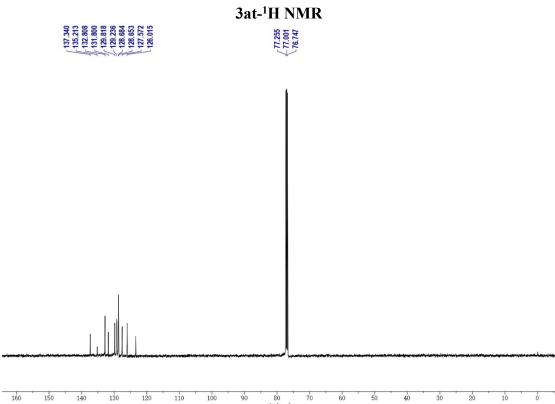


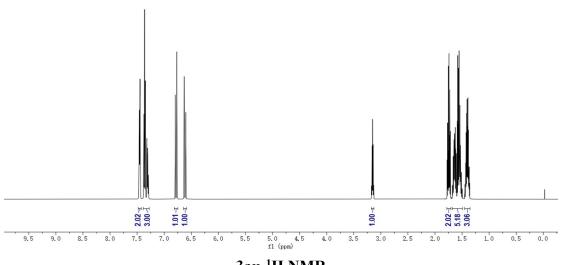
3aq-¹³C NMR

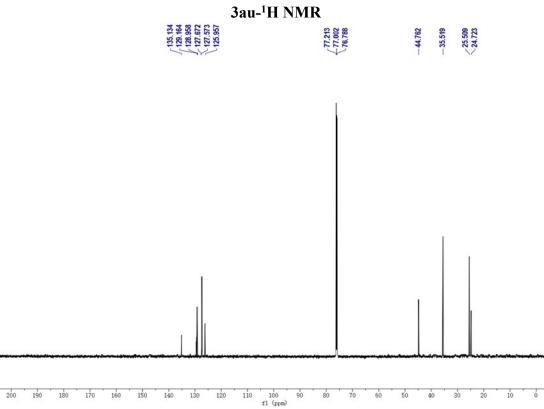


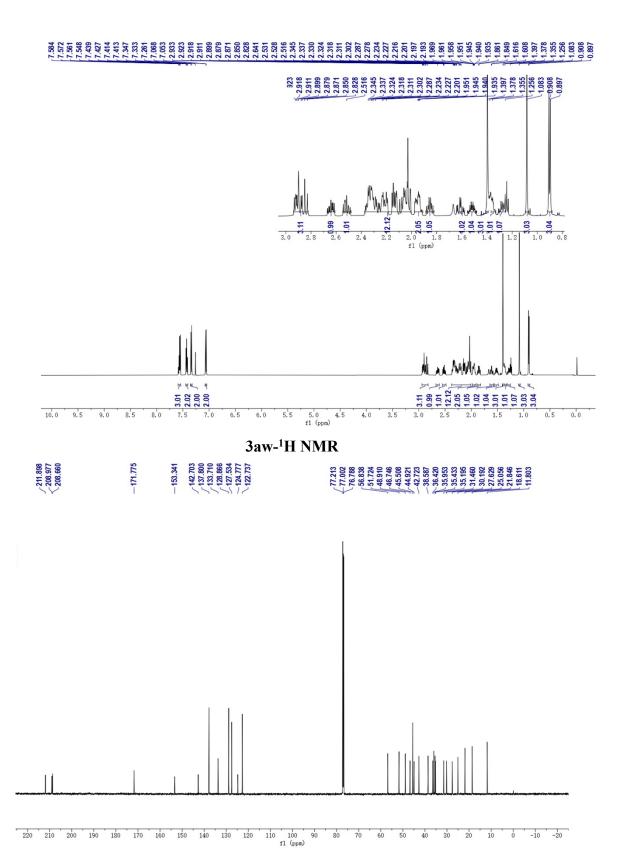
3ar-¹³C NMR



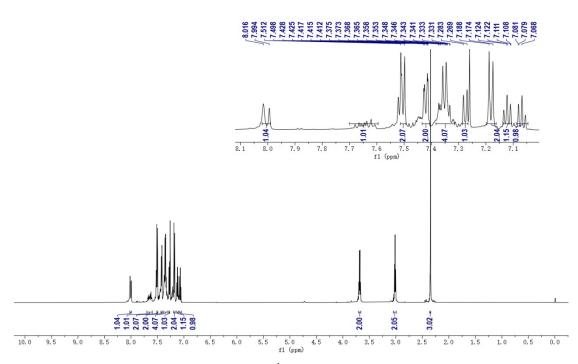

3as-¹H NMR


3as-¹³C NMR

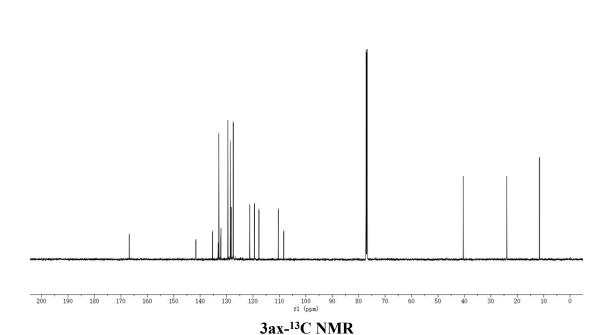

7.353 7.349 7.346 7.346 7.336 7.287 7.284 7.287 7.287 7.286 6.912 6.8912 6.8912



3at-¹³C NMR

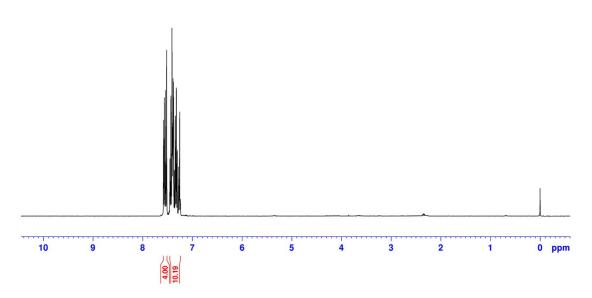


3au-¹³C NMR

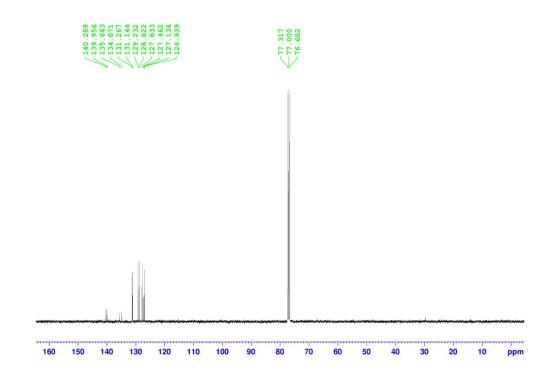


3aw-¹³C NMR

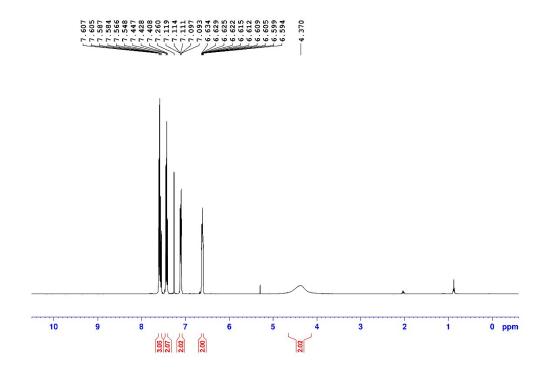


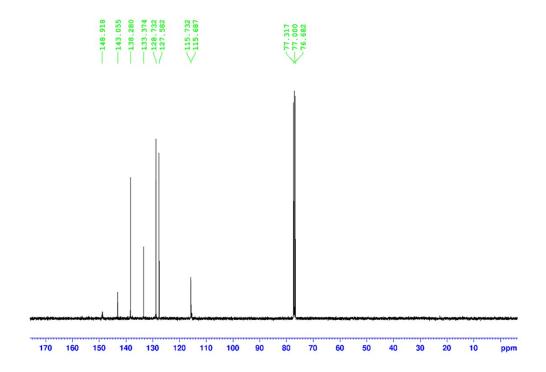


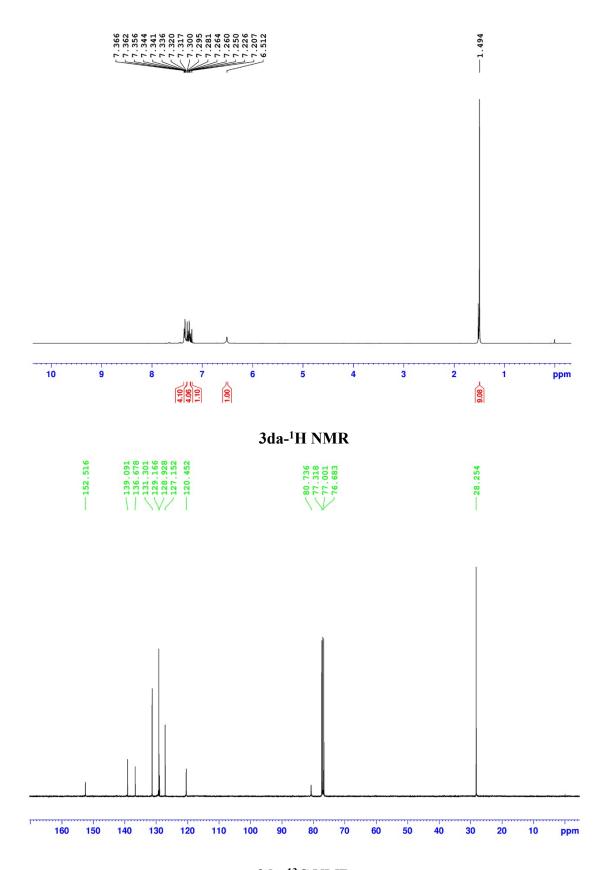
3ax-1H NMR

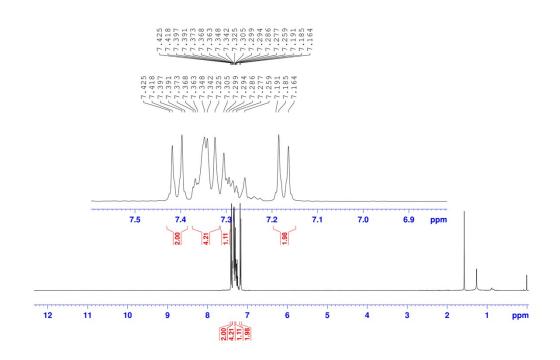


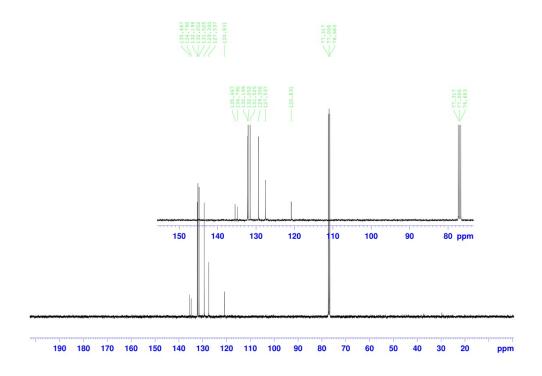
S56

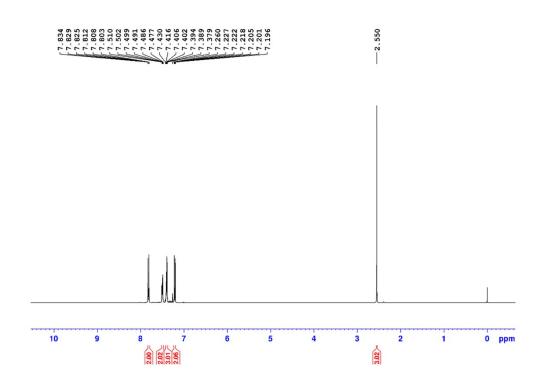


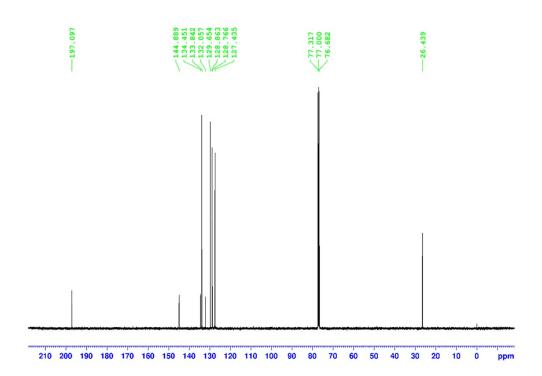

3ba-1H NMR

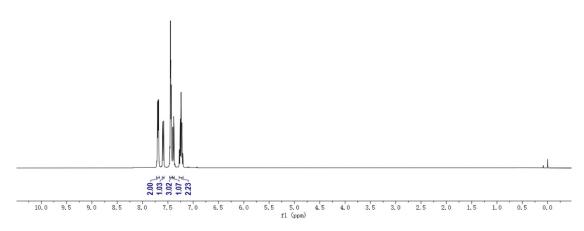

3ba-¹³C NMR


3ca-¹H NMR

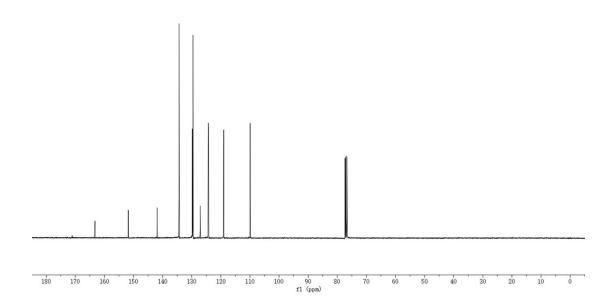

3ca-¹³C NMR

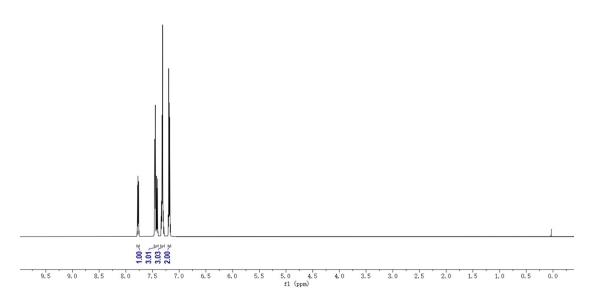

3da-¹³C NMR

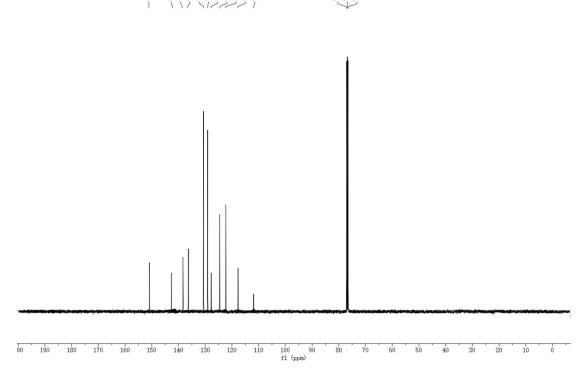

3ea-¹H NMR



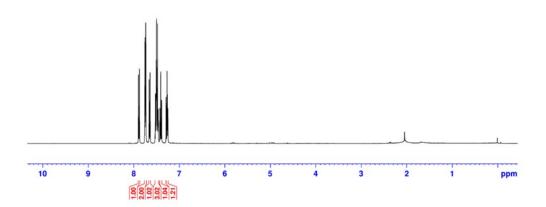
3ea-¹³C NMR

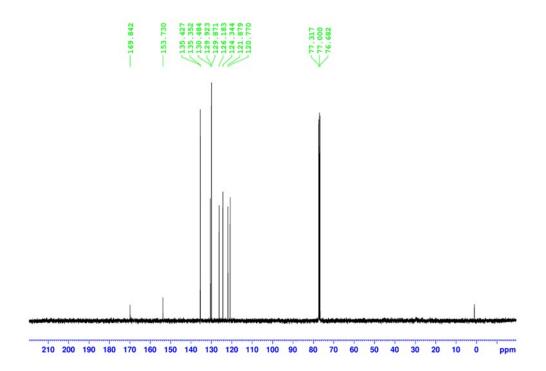




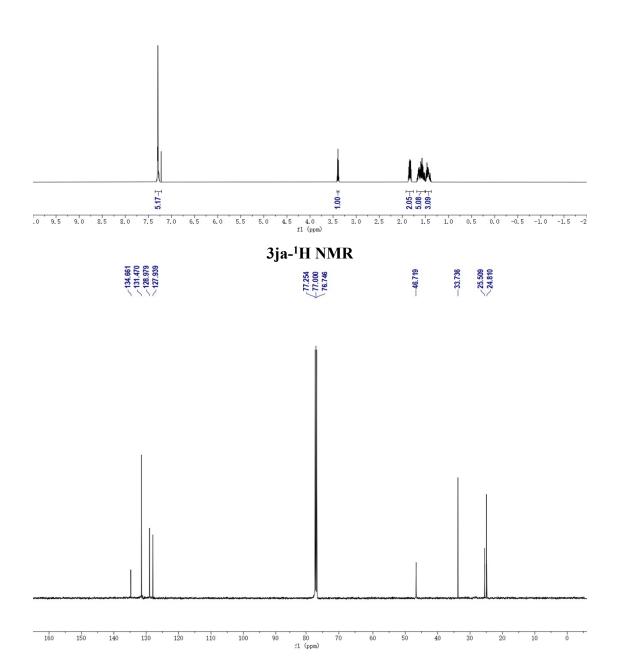


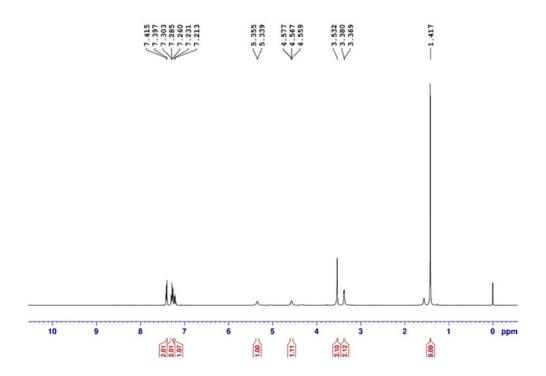
3ga-¹³C NMR

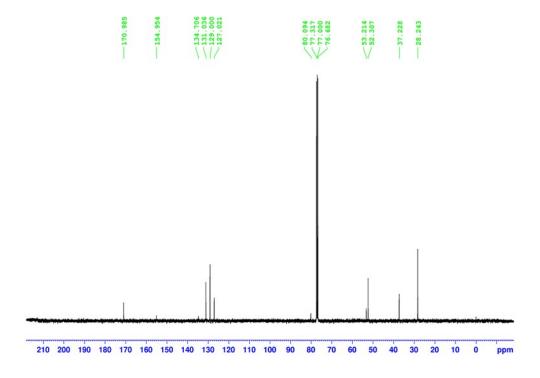


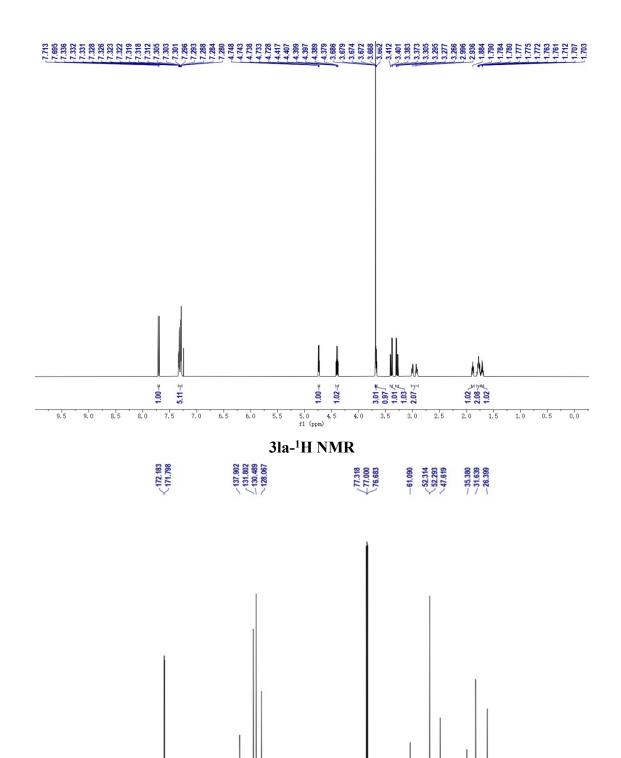


3ha-¹³C NMR

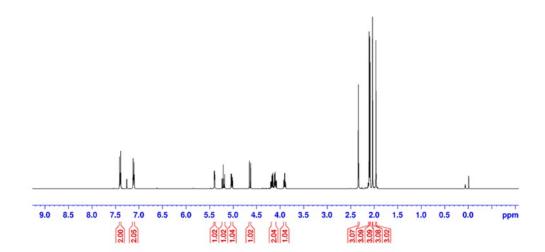


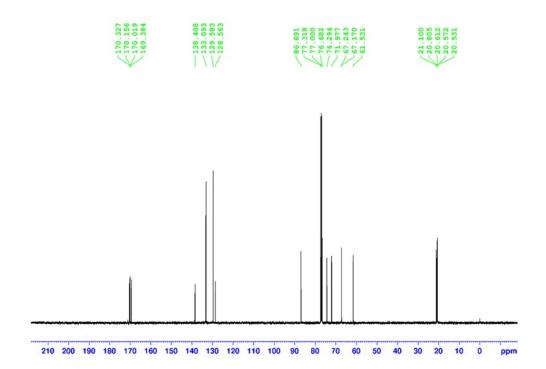

3ia-¹H NMR


3ia-¹³C NMR

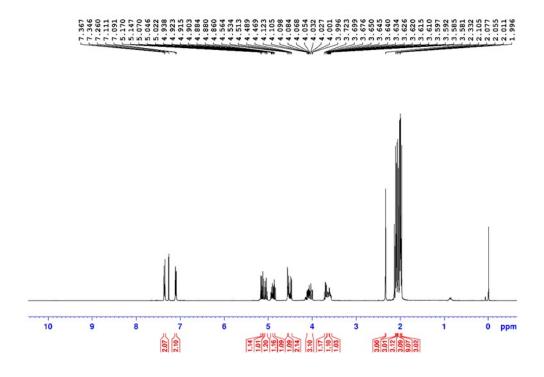

3ja-¹³C NMR

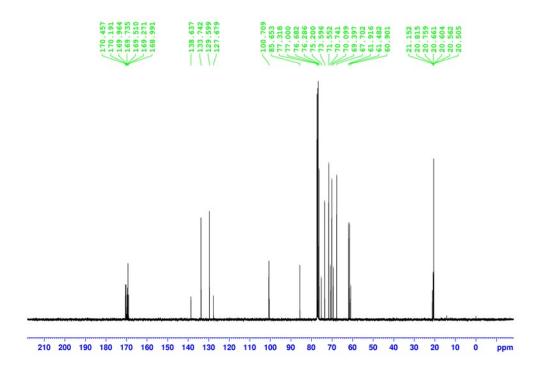
3ka-¹H NMR


3ka-¹³C NMR

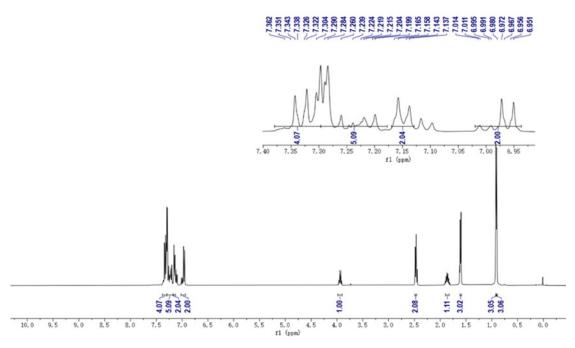

3la-¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 f1 (ppm)

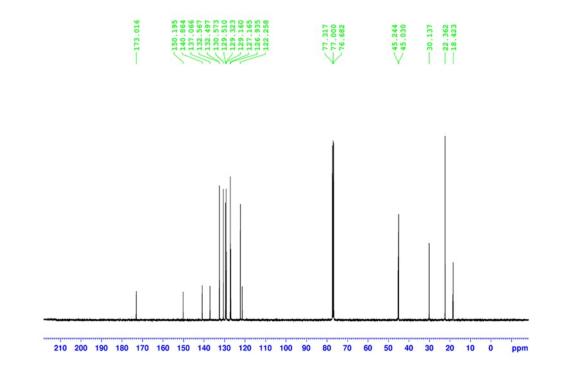



3ma-1H NMR

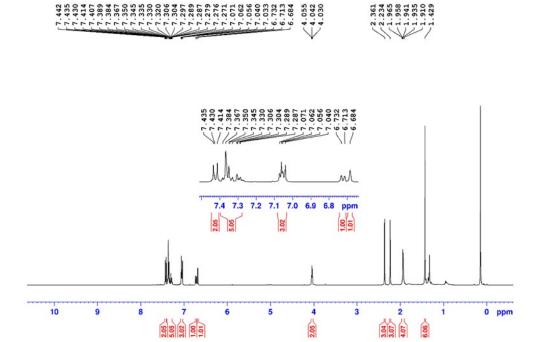
3ma-¹³C NMR

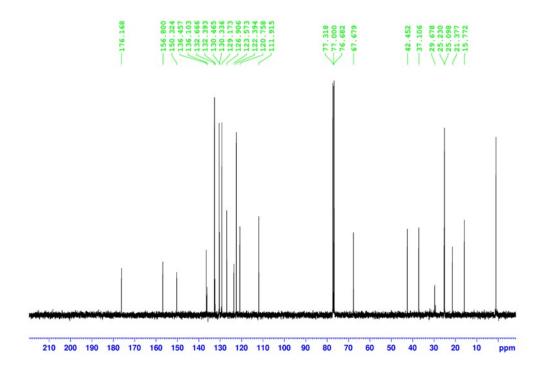


3na-¹H NMR



3na-¹³C NMR




3oa-1H NMR

30a-13C NMR

3pa-¹H NMR

3pa-¹³C NMR