# **Supporting Information**

A stable amino-functionalized fluorinated metalorganic framework for efficient separation of propyne/propylene

Yun-Tao Huang<sup>a</sup>, Zi-Meng Song<sup>a</sup>, Xin-Ye Zhao<sup>a</sup>, Beibei Li<sup>b</sup>, Zhengyi Di\*<sup>a</sup>, Cheng-Peng Li\*<sup>a</sup>

<sup>a</sup>Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387 (China)

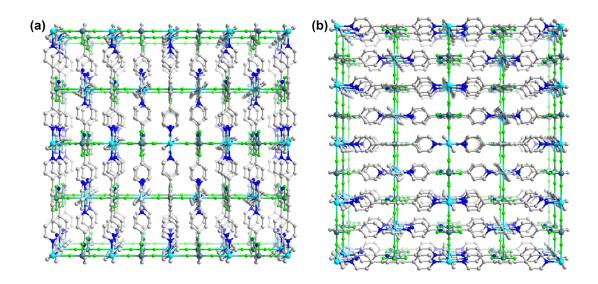
<sup>b</sup>Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.

#### **Materials and Instrumentation**

The reagents and solvents used in the study were purchased commercially without further purification. Single crystal diffraction data were obtained using a Bruker APEX-II QUAZAR single crystal diffractometer. PXRD patterns were obtained using a Haoyuan DX-2700BH X-ray power diffractometer. TGA data were obtained using an SDT Q600 thermal analyzer. Gas adsorption measurements were performed with ASAP 2020 V4.02 (V4.02 H). Breakthrough experiments were performed on a BSD-MAB instrument coupled with a gas BSD-mass mass spectrometry (TCD-Thermal Conductivity Detector, detection limit 1 ppm) from Beishide Co, Ltd.

#### Adsorption/desorption experiments

ASAP 2020 V4.02 (V4.02 H) was used for both activation and testing prior to gas adsorption. Fresh **TNU-DPA-1** samples were subjected to reagent exchange with anhydrous methanol for 3 days, followed by vacuum drying at 353 K for 10 hours to remove solvent molecules from the material pores. The activated samples were subjected to gas adsorption in liquid nitrogen, ice-water bath and water bath, respectively. N<sub>2</sub> adsorption isotherms at 77 K and C<sub>3</sub>H<sub>4</sub>, C<sub>3</sub>H<sub>6</sub> adsorption isotherms at 273 K and 298 K were collected.


#### Column breakthrough experiments

Dynamic breakthrough experiments of  $C_3H_4/C_3H_6$  (v/v,1/99) were carried out on a dynamic gas breakthrough apparatus, in which a gas chromatography (GC) detector was used to monitor the gas flow at the outlet of the packed column. Before the start of the breakthrough experiments, the **TNU-DPA-1** samples need to be packed tightly into a stainless-steel packed column of 180 mm length and 3 mm inner diameter. Afterwards, it was activated for 10 hours under He gas flow and 353 K. Then a gas mixture of  $C_3H_4/C_3H_6$  was passed at the corresponding flow rate. The flow rates of the

gases used can all be regulated with a mass flow controller. For breakthrough cycling experiments, samples need to be desorbed for 30 min under activated conditions to achieve material regeneration.

### Computational details

The binding sites for C<sub>3</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>4</sub> in TNU-DPA-1 were determined through classical molecular simulations. The single X-ray crystallographic structures were subject to geometry optimization through the CASTEP module implemented with the Materials Studio [1] program, using density functional theory (DFT) using the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional and the double numerical plus d-functions (DNP) basis set. The energy, force, and displacement convergence criteria were set as  $1 \times 10^{-5}$  Ha,  $2 \times 10^{-3}$  Ha/Å and  $5 \times 10^{-3}$  Å, respectively. The calculated electrostatic potential for TNU-DPA-1 was mapped onto the Connolly surface with a probe radius of 1.0 Å. Simulated annealing (SA) calculations [2] were performed for a single molecule of C<sub>3</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>4</sub> through a canonical Monte Carlo (NVT) process, and all MOF atoms were kept fixed at their positions throughout the simulations. The initial configurations were further optimized to ensure a more efficient energy landscape scanning for every MOF- C<sub>x</sub>H<sub>x</sub> complex, and the optimized configuration having the lowest energy was used as the global minimum for the subsequent analysis and calculation. The static binding energy (at T= 0 K) was then calculated:  $\Delta E = E_{MOF} + E_{gas} - E_{MOF+gas}$ .



**Figure S1.** Stacking diagram of the **TNU-DPA-1** crystal structure in the (a) a-axis and (b) b-axis directions.

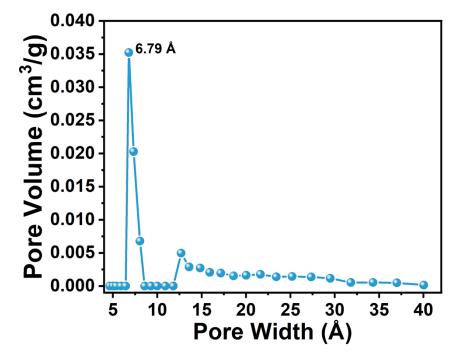
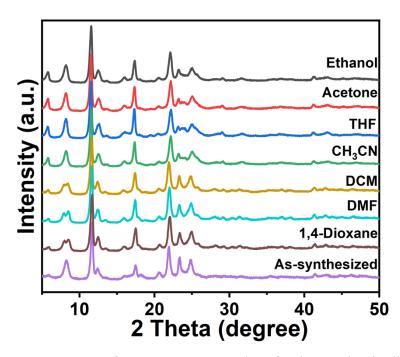
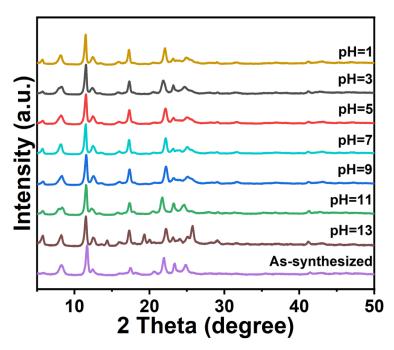





Figure S2. Pore size distribution of TNU-DPA-1.



**Figure S3.** PXRD patterns of **TNU-DPA-1** samples after immersion in different solvents for 24 hours.



**Figure S4.** PXRD patterns of **TNU-DPA-1** samples after immersion in aqueous solutions of different pH values for 24 hours.

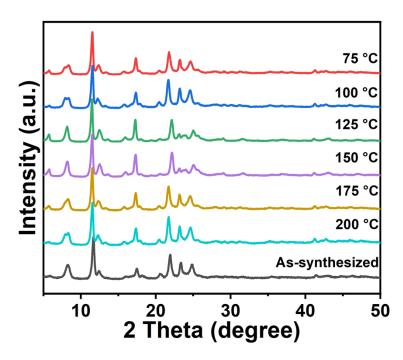



Figure S5. Variable temperature PXRD patterns of TNU-DPA-1 samples.

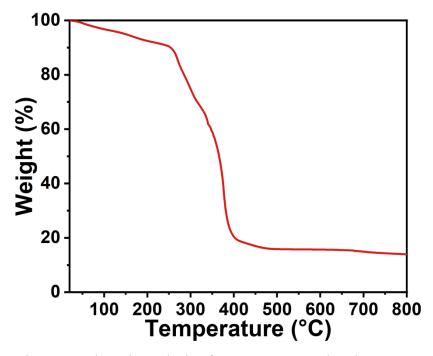
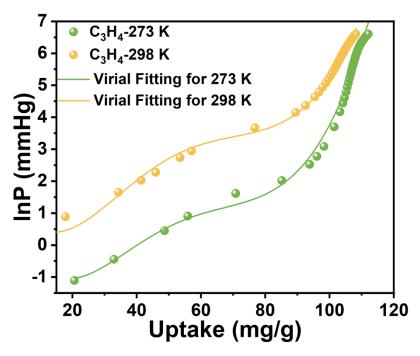
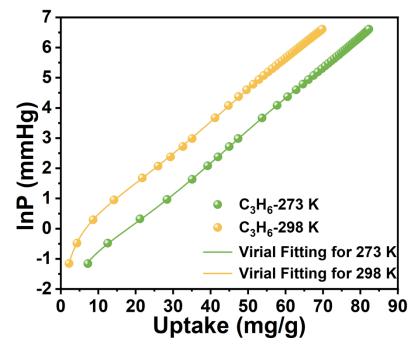





Figure S6. Thermogravimetric analysis of TNU-DPA-1 under nitrogen atmosphere.



**Figure S7.** Virial fitting of C<sub>3</sub>H<sub>4</sub> adsorption isotherms for **TNU-DPA-1** at 273 K and 298 K.



**Figure S8.** Virial fitting of C<sub>3</sub>H<sub>6</sub> adsorption isotherms for **TNU-DPA-1** at 273 K and 298 K.

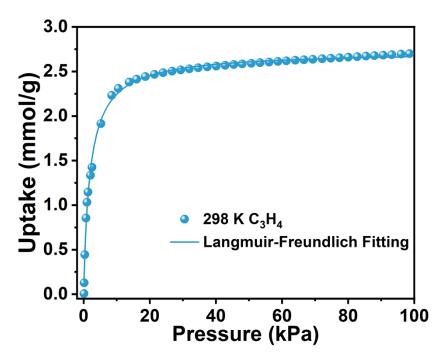



Figure S9. Langmuir-Freundlich fitting of C<sub>3</sub>H<sub>4</sub> at 298 K.

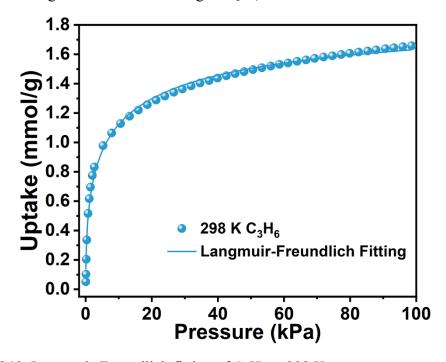



Figure S10. Langmuir-Freundlich fitting of C<sub>3</sub>H<sub>6</sub> at 298 K.

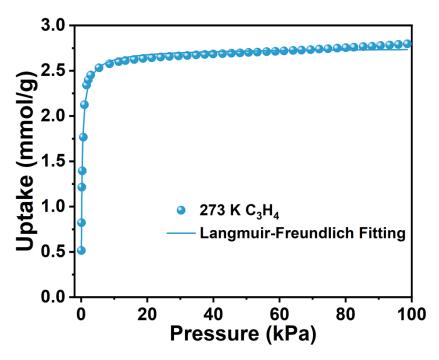



Figure S11. Langmuir-Freundlich fitting of C<sub>3</sub>H<sub>4</sub> at 273 K.

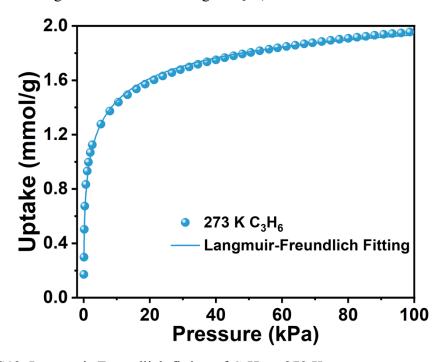
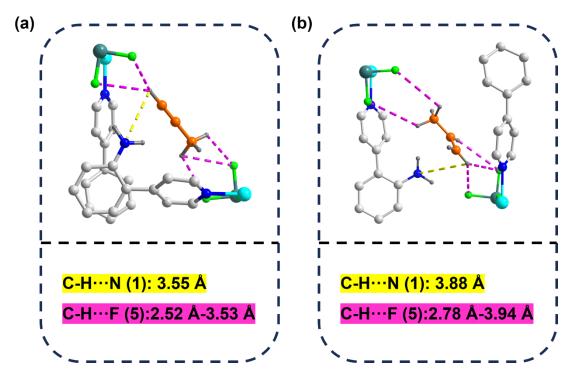




Figure S12. Langmuir-Freundlich fitting of C<sub>3</sub>H<sub>6</sub> at 273 K.



**Figure S13.** DFT-calculated interaction sites of **TNU-DPA-1** with the gas molecules (a)  $C_3H_4$  and (b)  $C_3H_6$ .

Table S1. Crystal data and structure refinement for TNU-DPA-1

| Complex                                                                        | TNU-DPA-1                             |  |  |
|--------------------------------------------------------------------------------|---------------------------------------|--|--|
| formula                                                                        | $C_{32}H_{12}CuF_6N_8Si$              |  |  |
| CCDC                                                                           | 2493666                               |  |  |
| T (K)                                                                          | 222                                   |  |  |
| crystal system                                                                 | tetragonal                            |  |  |
| space group                                                                    | I4/mmm                                |  |  |
| a (Å)                                                                          | 15.391                                |  |  |
| b (Å)                                                                          | 15.391                                |  |  |
| c (Å)                                                                          | 8.068                                 |  |  |
| $\alpha$ (deg)                                                                 | 90                                    |  |  |
| $\beta$ (deg)                                                                  | 90                                    |  |  |
| γ (deg)                                                                        | 90                                    |  |  |
| $V(\mathring{\mathbf{A}}^3)$                                                   | 1911.1                                |  |  |
| Z                                                                              | 16                                    |  |  |
| $D_c$ (g/cm <sup>3</sup> )                                                     | 1.255                                 |  |  |
| $R_{int}$                                                                      | 0.1177                                |  |  |
| F(000)                                                                         | 730                                   |  |  |
| Goof                                                                           | 1.211                                 |  |  |
| $R_1$ , $wR$ $(I > 2\sigma(I))^a$                                              | 0.0644, 0.1868                        |  |  |
| $R_1$ , wR (all date) <sup>b</sup>                                             | 0.0665, 0.1888                        |  |  |
| $=\sum   F_{o}  -  F_{c}  )/\sum  F_{o} ^{b} wR =  \sum w(F_{o} - F_{c}) ^{b}$ | $(F_o^2)^2 / \sum w(F_o^2)^2  ^{1/2}$ |  |  |

**Table S2.** Comparison of the  $C_3H_4/C_3H_6$  separation properties of **TNU-DPA-1** and some superior MOF materials at 298 K and 100 kPa.

|               | C <sub>3</sub> H <sub>4</sub> uptake | C <sub>3</sub> H <sub>6</sub> uptake | C <sub>3</sub> H <sub>4</sub> /C <sub>3</sub> H <sub>6</sub> | Selectivity                                                  | $C_3H_6$     |
|---------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------|
| Sample        | at 100 kPa                           | at 100 kPa                           | adsorption                                                   | C <sub>3</sub> H <sub>4</sub> /C <sub>3</sub> H <sub>6</sub> | Productivity |
|               | (mmol/g)                             | (mmol/g)                             | ratio                                                        | (v/v,1/99)                                                   | (mmol/g)     |
| ELM-12        | 2.77                                 | 1.43                                 | 1.93                                                         | 84                                                           | 17           |
| FJI-W1        | 7.09                                 | 6.27                                 | 1.13                                                         | 2.2                                                          | 52.9         |
| JXNU-6a       | 5.07                                 | 3.57                                 | 1.42                                                         | 3.1                                                          | 8.9          |
| ZJUT-1        | 2.24                                 | 0.84                                 | 2.67                                                         | 70                                                           | 9.8          |
| SIFSIX-1-Cu   | 8.63                                 | 5.88                                 | 1.47                                                         | 8.97                                                         | 9.4          |
| SIFSIX-2-Cu-i | 3.77                                 | 2.63                                 | 1.43                                                         | 30.58                                                        | 25.9         |
| SIFSIX-3-Ni   | 2.85                                 | 2.72                                 | 1.05                                                         | 242.06                                                       | 20.5         |
| ZIF-8         | 6.27                                 | 4.07                                 | 1.54                                                         | 1.9                                                          | 1.3          |
| Cu-BTC        | 10.47                                | 8.33                                 | 1.26                                                         | 3.2                                                          | 6.3          |
| UIO-66        | 10.23                                | 3.33                                 | 3.07                                                         | 15                                                           | 0.9          |
| Co-MOF-74     | 7.47                                 | 5.95                                 | 1.26                                                         | -                                                            | 7.1          |
| Mg-MOF-74     | 9.40                                 | 6.49                                 | 1.45                                                         | -                                                            | 5.4          |
| This work     | 2.70                                 | 1.65                                 | 1.64                                                         | 10.9                                                         | 19.6         |

**Table S3.** Comparison of **TNU-DPA-1** with fluorinated MOF materials possessing similar structures.

| Sample         | Gas mixtures                                                 | Uptake (cm³ g-¹) | Q <sub>st</sub> (kJ mol <sup>-1</sup> ) | IAST Selectivity |
|----------------|--------------------------------------------------------------|------------------|-----------------------------------------|------------------|
| TNU-DPA-1      | C <sub>3</sub> H <sub>4</sub> /C <sub>3</sub> H <sub>6</sub> | 60.49/37.14      | 42.5/31.3                               | 10.9             |
| SIFSIX-1-Cu    | $C_{3}H_{4}/C_{3}H_{6}$                                      | 193.31/131.71    | 37/27                                   | 8.97             |
| SIFSIX-2-Cu-i  | $C_3H_4/C_3H_6$                                              | 84.45/58.91      | 45/37                                   | 30.58            |
| SIFSIX-3-Ni    | $C_3H_4/C_3H_6$                                              | 63.84/60.93      | 68/47                                   | 242.06           |
|                | C <sub>2</sub> H <sub>2</sub> /CO <sub>2</sub>               | 73.92/60.48      | 36.7/50.9                               | 7.7              |
| SIFSIX-14-Cu-i | $C_3H_4/C_3H_6$                                              | 80.42/35.62      | 51/41                                   | 112.86           |
| GeFSIX-14-Cu-i | $C_3H_4/C_3H_6$                                              | 75.26/33.6       | -                                       | 306.12           |
| TIFSIX-14-Cu-i | $C_3H_4/C_3H_6$                                              | 86.46/31.36      | -                                       | 240.14           |
| SIFSIX-3-Zn    | $C_{3}H_{4}/C_{3}H_{6}$                                      | 50.62/40.32      | -                                       | 115              |
| ZU-16-Co       | $C_{3}H_{4}/C_{3}H_{6}$                                      | 59.36/47.04      | -                                       | 248              |
| ZJUT-1         | $C_{3}H_{4}/C_{3}H_{6}$                                      | 50.18/18.82      | 33.6/-                                  | 70               |
|                | C <sub>2</sub> H <sub>2</sub> /CO <sub>2</sub>               | 73.92/51.52      | 44.2/40.2                               | 11.7             |
| ZU-62          | $C_{3}H_{4}/C_{3}H_{6}$                                      | 81.31/59.81      | 71/52                                   | 46.31            |
| TIFSIX-4-Cu-i  | $C_2H_2/C_2H_4$                                              | 96.32/33.61      | 40.8/29.4                               | 11               |
| USTA-121       | C <sub>2</sub> H <sub>2</sub> /CO <sub>2</sub>               | 71.3/36.4        | -                                       | -                |
| BSF-3          | $C_2H_2/C_2H_4$                                              | 80.42/53.09      | 42.7/28.1                               | 8.1              |

## References

<sup>[1]</sup> Materials Studio v7.0, Biovia Software Inc., S.D., CA 92121, USA.

<sup>[2]</sup> Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by Simulated Annealing. Science 1983, 220, 671.