Supporting Information for

Two-Dimensional PdSn Meso-Macroporous Nanosieves for Robust Methanol Electrooxidation

Xiyue Zhang,^a Wen Zhang,^a Fei Gao,^a* Chang Zhou,^a Tienan Zhang,^a Yunchong Cao,^a Shanshan Zhang,^a Tingjie Mao,^b Juan Wang,^b* and Yangping Zhang,^a*

^a School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China

*College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China

*Corresponding author: E-mail: gaofei006@just.edu.cn (F. Gao),

juanwang@wzu.edu.cn (J. Wang), ypzhang@just.edu.cn (Y. Zhang).

Experimental Section

1. Reagents and chemicals

Sodium tetrachloropalladate (NaPdCl₄, \geq 98%), Tin(II) oxalate (C₂O₄Sn, \geq 99.7%), hexacarbonyl tungsten (W(CO)₆, \geq 97%) was purchased from Energy Chemical Co., Ltd. (Shanghai, China). N, N-Dimethylformamide (DMF, \geq 99.5%), methanol (CH₄O, \geq 99.5%), acetic acid (C₂H₄O₂, \geq 99%) were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All chemicals were used without any purifications. The water (18 M Ω cm⁻¹) used in all experiments was obtained by passing through an ultrapure purification system.

2. Synthesis of sub-two nanometer Pd₄Sn Meso-Macroporous Nanosieves (MNSs), Pd₂Sn MNSs and Pd₈Sn MNSs.

For the synthesis of Pd_4Sn MNSs, typically, $NaPdCl_4$ (10 mg), C_2O_4Sn (1.5 mg), $W(CO)_6$ (30mg) was dispersed in 2 mL acetic acid and 8 mL DMF with ultrasonication. Then, the mixture was heated in an oil bath at 140 °C for 3h. The products were collected by centrifugation and washed with ethanol for 3 times, then disperse in ethanol for further use. The synthesis of Pd_2Sn MNSs and Pd_8Sn MNSs was similar to

that of Pd₄Sn MNSs by simply alter the content of C_2O_4Sn .

3. Characterizations

The morphologies, sizes, and structures of the catalysts were observed using transmission electron microscopy (TEM, acceleration voltage: 120 kV, HT-7700), and high-resolution transmission electron microscopy (HRTEM, working voltage: 200 kV, F20). X-ray diffraction (XRD) spectra were collected by the X'Pert-Pro MPD diffractometer (Netherlands PANalytical) with a 40 kV Cu Kα radiation. The contents of Pd and Sn were determined by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) with a working voltage of 15 kV. X-ray photoelectron spectroscopy (XPS) was performed on a VG Scientific ESCALab 220 XL spectrometer using 300 W Al Kα radiation to identify the valence states and chemical bonds of various elements in the samples.

4. Electrochemical measurements

The tests were carried out on a CHI660E electrochemical workstation manufactured by Shanghai Chenhua Instrument Co., Ltd., China. A three-electrode system was employed (counter electrode: a platinum wire; reference electrode: a saturated calomel electrode (SCE); working electrode: a glassy-carbon electrode (GCE) with a diameter of 5 mm). Before tests, GCE was polished with aluminum oxide (Al₂O₃) until its surface became shiny. As for the working electrode preparation, 2 mg of different catalysts were ultrasonically dispersed in a mixture containing 496 µl of isopropanol and 4 μl of Nafion (5%) for 30 minutes to form a homogeneous catalyst ink. Initially, 5 µL of the catalyst ink was dropped onto the surface of the polished GCE and allowed to dry. Subsequently, another 3 µL of the ink was dropped to ensure the catalyst completely covered the working electrode, and then it was dried again. The cyclic voltammetry (CV) curves in 0.5 M KOH at a scan rate of 50 mV s⁻¹ were recorded to measure the electrochemical active surface area (ECSA) value. The MOR tests were operated in 0.5 M KOH and 1 M methanol. The catalytic stability was evaluated by chronoamperometry (i-t) tests and successive CV tests. For comparison, commercial Pd/C (JM, 20 wt% Pd) was used as the as the control catalyst.

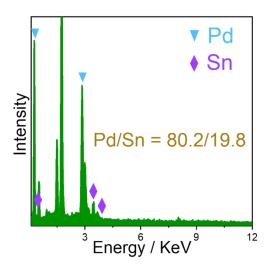
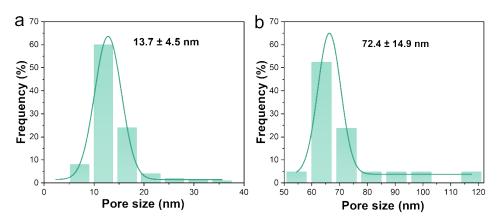



Fig. S1 EDS pattern of Pd₄Sn MNSs.

Fig. S2 Pore size distribution histograms of Pd₄Sn MNSs for (a) mesopores and (b) macropores.

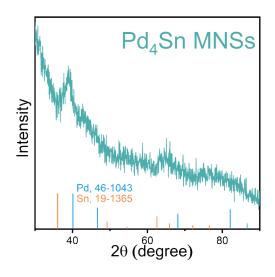


Fig. S3 XRD pattern of Pd₄Sn MNSs.

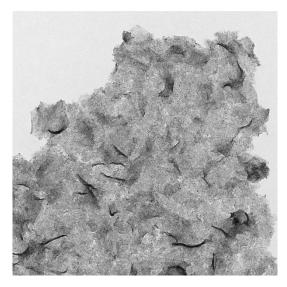
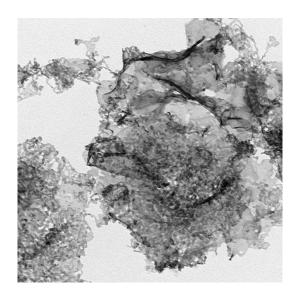
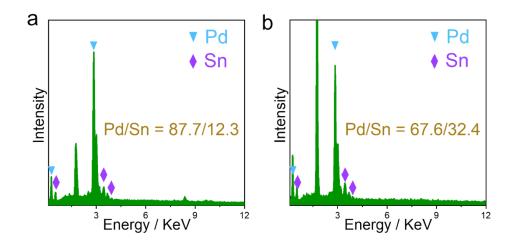
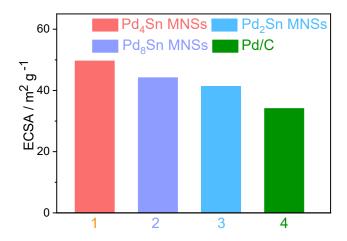
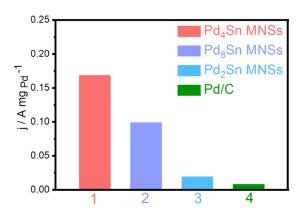



Fig. S4 Additional TEM images of Pd_2Sn MNSs.

 $\textbf{Fig. S5} \ \, \textbf{Additional TEM images of Pd}_{8} \textbf{Sn MNSs}.$

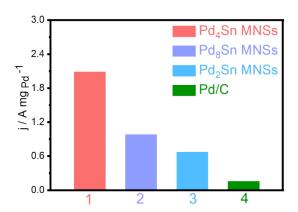

Fig. S6 EDS pattern of (a) Pd₈Sn MNSs and (b) Pd₂Sn MNSs.

Fig. S7 Calculated ECSA values of Pd_4Sn MNSs, Pd_8Sn MNSs, Pd_2Sn MNSs and Pd/C catalysts, respectively.

Fig. S8 Calculated remaining activity of Pd_4Sn MNSs, Pd_8Sn MNSs, Pd_2Sn MNSs and Pd/C catalysts after i-t tests.

Fig. S9 Calculated remaining activity of Pd₄Sn MNSs, Pd₂Sn MNSs and Pd/C catalysts after 500 successive cycles.

The reaction evolution processes of MOR^{1, 2}.

$$*CH_3OH \rightarrow *CH_2OH + H^+ + e^-$$
 (1)

$$*CH2OH \rightarrow *CHOH + H+ + e-$$
 (2)

*CHOH
$$\rightarrow$$
 *CHO + H⁺ + e⁻ (3)

*CHO +
$$H_2O \rightarrow *HCOOH + H^+ + e^-$$
 (4-1)

$$*CHO \rightarrow *CO + H^+ + e^-$$
 (4-2)

*HCOOH
$$\rightarrow$$
 *COOH + H⁺ + e⁻ (5-1)

$$*CO + H_2O \rightarrow *COOH + H^+ + e^-$$
 (5-2)

$$*COOH \rightarrow *CO_2 + H^+ + e^-$$
 (6)

The symbol * represents the catalyst. Among them, equations (4-1) and (5-1) represent the non-CO pathway of the MOR, while equations (4-2) and (5-2) correspond to the CO pathway. The other reaction steps are identical in both the CO and non-CO pathways.

1. Y. Qin, K. Yu, G. Wang, Z. Zhuang, Y. Dou, D. Wang and Z. Chen, *Angew. Chem. Int. Ed.*, 2025, **64**, e202420817.

2. Y. Lv, P. Liu, R. Xue, Q. Guo, J. Ye, D. Gao, G. Jiang, S. Zhao, L. Xie, Y. Ren, P. Zhang, Y. Wang and Y. Qin, *Adv. Sci.*, 2024, **11**, e2309813.

Table. S1 MOR performances of Pd₄Sn MNSs and various electrocatalysts from published works.

	Peak currents from CV		Electrolyte	Reference
Catalysts	curves			
	J _m (A mg ⁻¹)	J _s (mA cm ⁻²)		
Pd ₄ Sn MNSs	2.321	4.67	0.5 M KOH + 1 M CH ₃ OH	This work
Pd₄Sn WNWs	1.04	0.12	0.1 M KOH + 0.5 M CH ₃ OH	Nano Lett., 2019 , 19, 6894-6903
CrO _x -Pd	2.05	5.30	1 M KOH + 1 M CH ₃ OH	Nano Lett., 2023 , 23, 9555-9562
Pd-PdO PNTs	1.111	4.69	0.1 M KOH + 0.3 M CH ₃ OH	Adv. Funct. Mater., 2020 , 30, 2000534.
Pd ₇₂ Cu ₁₄ Co ₁₄	1.062		1 M KOH + 1 M CH ₃ OH	J. Energy Chem., 2019 , 29, 72.
Pd-Co J-NWs	1.205	3.584	1 M KOH + 1 M CH ₃ OH	ACS Appl. Mater. Inter., 2018, 10, 29965
PdAg@Pd	1.38	1.50	0.5 M NaOH + 1 M CH ₃ OH	J. Power Sources, 2018 , 398, 201.
PdFe NCs	1.07	3.4	1 M KOH + 1 M CH ₃ OH	Nanoscale, 2020 , 12, 2126–2132.
Pd ₂ Cu ₂ /rGO	0.916		1 M KOH + 1 M CH₃OH	J. Mater. Sci., 2018 , 53, 15871.
Pd _{0.52} Ag	1.38		0.5 M NaOH + 1 M CH ₃ OH	Angew. Chem. Int. Ed., 2019 , 58, 8794-8798