

Simple-Structured High-Performance Narrow-Band Responsive PM-OPDs Enabled by Deep Trap Charge Capturing

Ji Li, ^{†^a} Dechao Guo, ^{†^{ab}} Dezhi Yang ^{*^a} and Dongge Ma ^{*^a}

^aInstitute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China. E-mail: msdzyang@scut.edu.cn, and msdgma@scut.edu.cn

^bKunming Institute of Physics, Kunming 650223, China

† These authors contributed equally to this work.

Materials

Copper (II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-Hexadecafluorophthalocyanine (F16CuPc) was purchased from Macklin. 1,4,5,8,9,11-Hexaazatriphenylene hexacarbonitrile (HAT-CN) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (B CP) were purchased from Jilin OLED Material Tech Co., Ltd. All the materials were used as received without further purification.

Device Fabrication

For the device fabrication, the glass substrate was ultrasonically cleaned in a washing solution for 90 minutes, then rinsed with deionized water and dried with high-purity nitrogen gas. Subsequently, it was placed in a real oven at 120 °C for 30 minutes. Subsequently, the glass substrate was treated with oxygen plasma for 4 minutes to further remove the residual impurities on the glass surface, and then the substrate was transferred into the vacuum evaporation system. All subsequent materials were deposited via thermal evaporation under high vacuum conditions of 10^{-5} Pa, with an effective area of 0.09 cm² for each device. A quartz crystal monitor was employed to control the evaporation rates, layer thicknesses, and mixing ratios. All measurements were carried out in an air environment. The absorption spectra of the film were measured using a UV-Visible dual-beam spectrophotometer (TU-1900, PG Instrument Co., Ltd.).

OPD characterization

For the external quantum efficiency (*EQE*) measurements, an incident light from halogen lamp (250 W) was passed through a monochromator, which was chopped at 35 Hz, and focused onto the device active region. The photocurrent signal was amplified

using a low-noise current preamplifier (SR570, Stanford Research Systems) and detected by a lock-in amplifier (SR830, Stanford Research Systems). The reverse bias voltage was applied by using a Keithley 236 Source-Measure Unit. Prior to measurements, a crystalline silicon photodiode (S1337-1010BQ, Hamamatsu), which was calibrated by National Institute of Metrology of China, was used as a reference. For the dark current measurements, the current-voltage characteristics were recorded with a Keithley 2636B source measurement unit.

Table S1. The key parameters of representative PM-OPD based on phthalocyanine-based materials over the past ten years

Device structure	Response range[nm]	$J_d[\text{A cm}^{-2}]$	EQE[%]	[Ref.]
ITO/HAT(CN) ₆ (10 nm)/C ₆₀ (30 nm)/ZnPc:C ₆₀ (30 wt%, 100 nm)/HATNA-Cl ₆ (10 nm)/HATNA-Cl ₆ :W ₂ (hpp) ₄ (10 nm)/Al	300-900	$\sim 10^{-4}$ @-8V	1290 @ (650nm,-8V)	[1]
Au/p-TPD/Y-TiOPc:ZnS/ITO	365-940	-	2985.5 @ (365nm,-18V)	[2]
ITO/TAPC(30 nm)/PbPc(50 nm)/SubPc:C ₇₀ (30 wt%, 75 nm)/C ₇₀ (50 nm)/C ₇₀ :10 wt% MoO ₃ (10 nm)/BCP(10 nm) /Al	300-1000	$\sim 10^{-4}$ @-8V	6000% @ (890nm,-8V)	[3]
ITO/TAPC(30 nm)/PbPc(80 nm)/HATCN(10 nm)/BCP(10 nm) /Al	300-1000	$\sim 10^{-2}$ @-6V	~ 5675 @ (755nm,-6V)	[4]
ITO/ZnPc:C ₆₀ (3 wt%, 400 nm)/HATCN-Cl ₆ (10 nm)/Al	300-900	$\sim 10^{-3}$ @-10V	~ 1000 @ (760nm,-10V)	[5]
P-Si/PTCDA :CuPc : PbPc (2 : 1 : 1.5) /Cathode	400-850	$\sim 10^{-1}$ @-15V	~ 5500 @ (655nm,-15V)	[6]
Au/Y-TiOPc(2μm)/Au	400-900	-	356 @ (830nm,-5V)	[7]
ITO/NTCDA/C ₆₀ /CuPc:C ₆₀ (1:2)/BCP/Al	300-800	$\sim 10^{-4}$ @-3V	~ 700 @ (300nm,-3V)	[8]
ITO/F16CuPc:HATCN/BCP/Al	300-800	$\sim 10^{-3}$ @-8V	5579 @ (640nm,-8V)	This work

Notes and references

- [1] A. Sarwar, Y. Wang, L. C. Winkler, T. Zhang, J. Schröder, D. Spoltore, K. Leo, J. Benduhn, *Adv. Funct. Mater.* 2025, 35, 2424456.
- [2] X. Li, Y. Tang, C. Wang, T. Wei, D. Lv, M. Guo, Y. Ma, Y. Yang, *J. Mater. Chem. C*, 2023, 11, 13971.
- [3] D. Guo, L. Yang, J. Li, G. He, J. Zheng, S. Tao, D. Yang, L. Wang, A. Vadim, D. Ma, *Sci. China Mater.* 2023, 66, 1172–1179.
- [4] D. Guo, D. Yang, Ji Li, G. He, J. Li, J. Fu, L. Wang, D. Ma; *Appl. Phys. Lett.* 2023, 123, 243501.
- [5] Kublitski, J., Fischer, A., Xing, S., Baisinger, L., & Leo, K, *Nat Commun*, 2021, 12, 4259.
- [6] F. Zhao, X. Luo, J. Liu, L. Du, W. Lv, L. Sun, Y. Li, Y. Wang and Y. Peng, *J. Mater. Chem. C*, 2016, 4, 815—822.
- [7] W. Peng, Y. Liu, C. Wang, R. Hu, J. Zhang, D. Xu and Y. Wang, *J. Mater. Chem. C*, 2015, 3, 5073 —5077.
- [8] William T. Hammond, John P. Mudrick, J. Xue, *J. Appl. Phys.* 2014, 116, 214501.