

1 **Supporting Information**

2 **Structure evolution of NiMn₂O₄-based materials induced by**
3 **atmosphere and its impact on dry reforming of methane**
4 **activity**

5

6 Jun Duan,^a Xueying Zheng,^a Shiying Fan,^a Shaomin Liu,^b and Xinyong Li*^a

7

8 ^a*State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and
9 Environmental Engineering (MOE), School of Environmental Science and Technology,
10 Dalian University of Technology, Dalian 116024, PR China*

11 ^b*Dongguan Key Laboratory of Intelligent Equipment and Smart Industry, School of
12 Engineering, Great Bay University, Dongguan 523000, China.*

13

14

15

16

17

18

19

20

21

22

23

24

25 **Corresponding author:**

26 Email address: xyli@dlut.edu.cn (X. Li);

28 **1. Experiment**

29 ***1.1. Chemicals and materials***

30 The reagents used include nickel nitrate hexahydrate ($\text{Ni}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$, 98.0%),
31 manganese nitrate tetrahydrate ($\text{Mn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, 98.0%), glycerol ($\geq 99.0\%$, 1.250-
32 1.264 g mL^{-1} at 20 °C), isopropanol ($\geq 99.7\%$, 0.784-0.786 g mL^{-1} at 20 °C), and
33 ethanol ($\geq 99.7\%$, 0.789-0.791 mL^{-1} at 20 °C).

34 ***1.2. Materials synthesis***

35 A homogeneous solution was prepared by dissolving 0.25 mmol of
36 $\text{Ni}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$ and 0.5 mmol of $\text{Mn}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ in 80 mL of isopropanol
37 containing 16 mL of glycerol under continuous stirring. After magnetically stirring at
38 room temperature for 60 min, the well-dispersed solution was transferred into a 100
39 mL Teflon-lined autoclave and hydrothermally treated at 180 °C for 6 h. The resulting
40 precipitate was collected by centrifugation, washed with ethanol, and vacuum-dried
41 overnight. The as-obtained precursor was then annealed in a tube furnace under a gas
42 flow of 50 mL min^{-1} . After purging at room temperature for 30 min, the temperature
43 was raised to 400 °C at a heating rate of 1 °C min^{-1} and held for 2 h before cooling to
44 ambient conditions. Four calcination atmospheres were employed: air, argon (Ar), and
45 hydrogen (H_2), yielding the NiMn_2O_4 materials (NMO) denoted as NMO-Air, NMO-
46 Ar, and NMO- H_2 . An additional sample, NMO-Air+ H_2 , was synthesized by first
47 calcining the precursor in air (1 °C min^{-1} to 400 °C, 2 h), followed by reduction under
48 H_2 using the same temperature program as the dry reforming of methane (DRM)
49 activity test (10 °C min^{-1} to 400 °C, 2 h).

50 **1.3. Characterizations**

51 The X-ray diffraction (XRD) patterns were recorded by using a BRUKER D8
52 ADVANCE equipped with Cu K α radiation. Fourier transform infrared reflection
53 (FTIR) spectra were collected on a BRUKER VERTEX 70 FTIR spectrometer. The
54 Raman spectra were performed via a Renishaw inVia Qontor. The scanning electron
55 microscopy (SEM) and transmission electron microscopy (TEM) images were
56 measured on SU5000 ultrahigh resolution field emission scanning electron
57 microscopy and FEI Tecnai G2F30 STWIN, respectively. Concurrently, the elemental
58 composition of the catalyst was further examined using X-ray energy dispersive
59 spectroscopy (EDS). N₂ adsorption-desorption isotherms were studied on a
60 Quantachrome equipment (NOVA 4200e) instrument to analyze the surface area and
61 pore size distribution. X-ray photoelectron spectroscopy (XPS) was recorded in a
62 Thermos K-Alpha+ spectrometer. Low-temperature electron paramagnetic resonance
63 (EPR) was conducted by a Bruker A300 Electron Paramagnetic Resonance
64 Spectrometer from Germany.

65 *In-situ* temperature-programmed (TP) experiments were conducted using a
66 chemisorption analyzer (manufactured by Anton Paar, America). Here, 50 mg
67 catalysts were placed into a U-shaped quartz tube for chemisorption tests. For
68 hydrogen temperature-programmed reduction experiments (H₂-TPR), the apparatus
69 was equipped with a cold trap containing a gel mixture of isopropyl alcohol and liquid
70 nitrogen. Initially, the samples were pretreated at 200 °C in a high-purity helium
71 atmosphere (30 mL min⁻¹) for 30 min and cooled down to room temperature naturally.

72 Then, the temperature was gradually increased to 800 °C at a heating rate of 10 °C
73 min⁻¹ in a 10% H₂/Ar mixture atmosphere (30 mL/min). For a series of temperature-
74 programmed desorption experiments (NH₃-TPD/CO₂-TPD/O₂-TPD), the samples
75 were pretreated at 200 °C in a high-purity helium atmosphere (30 mL min⁻¹) for 30
76 min. After cooling down to room temperature naturally, the samples were exposed to
77 the 10% mixture (NH₃/Ar, CO₂/Ar, O₂/Ar) atmosphere (30 mL min⁻¹) for 1 h until
78 achieving adsorption saturation. Then, the samples were purged in a helium
79 atmosphere at room temperature at a flow rate of 30 mL min⁻¹ for 30 min, followed by
80 heating from room temperature to 900 °C at a heating rate of 10 °C min⁻¹.

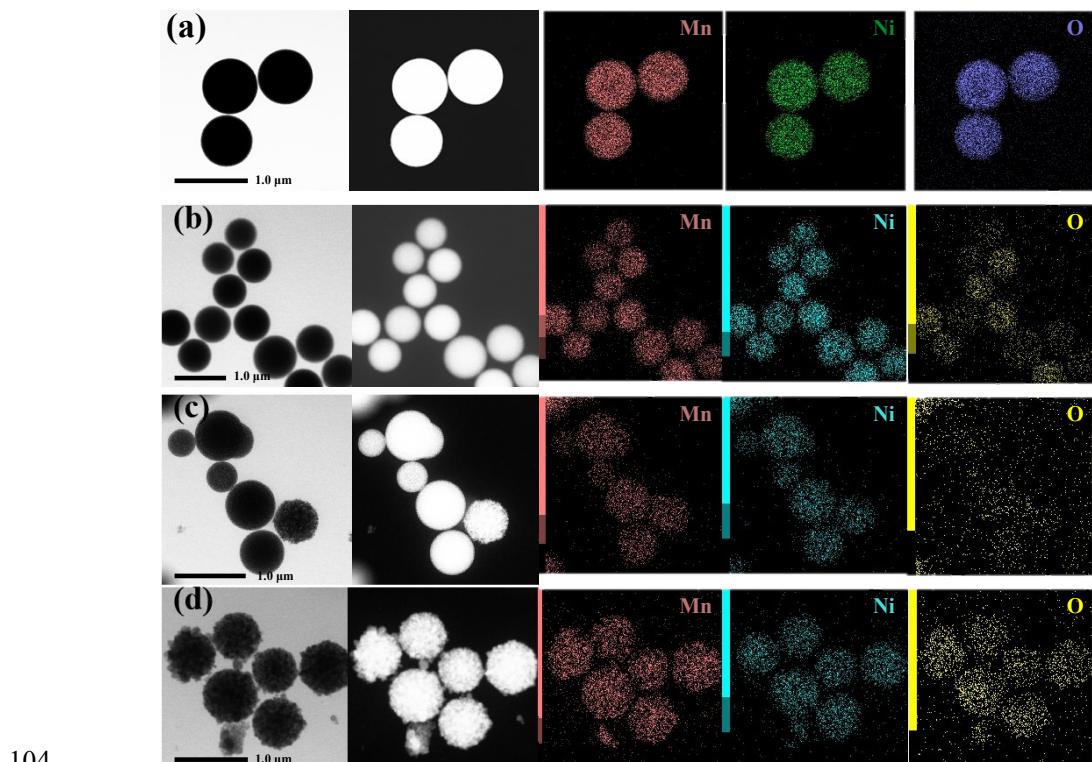
81 **1.4. DRM Reaction**

82 The activity tests of DRM were carried out continuously in a fix bed system. In
83 each reaction, 50 mg of screened 40-60 mesh samples were placed in the quartz tube
84 with quartz cotton placed at both ends to prevent leakage. The quartz tube was
85 installed in the YDL type electric heating furnace of the *in-situ* evaluation system. In a
86 typical DRM reaction, the catalyst was pretreated in an Ar atmosphere (30 mL min⁻¹)
87 by heating to 300 °C at a heating rate of 10 °C min⁻¹ for 30 min. Then, the mixture gas
88 of CH₄/CO₂/Ar=1/1/3 (30 mL min⁻¹) was introduced and heated to 700 °C at a heating
89 rate of 10 °C min⁻¹ and maintained every 50 °C for 60 min for reaction and data
90 collection. To detecting the change of gas composition, the tail gas was continuously
91 introduced into a gas chromatograph (GC7890A, manufactured by Agilent
92 Technologies Co., LTD.). The GC apparatus was equipped with TCD detector, PQ
93 and 5A equipped as chromatographic columns, with Ar as carrier gas. The DRM

94 performances were studied based on CH₄ and CO₂ conversion rates (χ_{CH_4}, χ_{CO_2}), and

95 H₂/CO ratio. The produced syngas productivity was calculated by ideal gas equation.

96
$$\chi_{CH_4}(\%) = \frac{(A_{CH_4}^{in} - A_{CH_4}^{out})}{A_{CH_4}^{in}} \times 100\% \#(1)$$

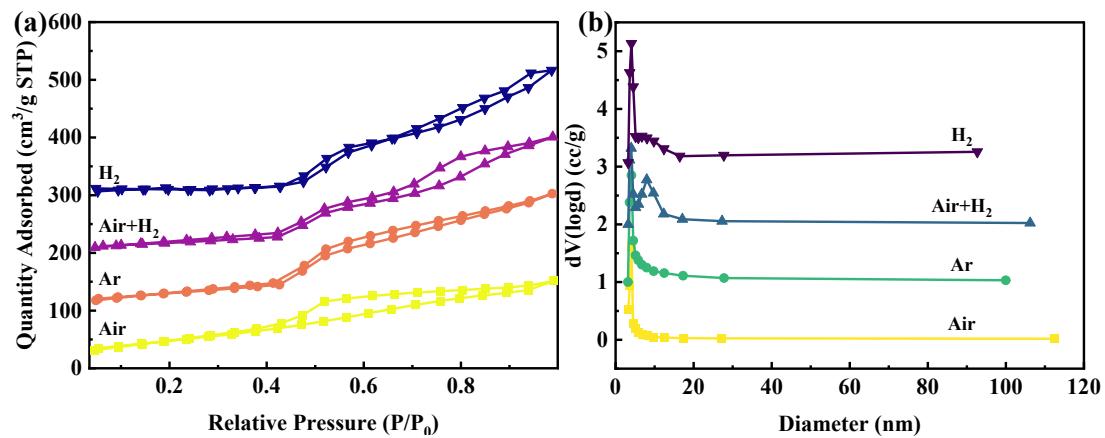

97
$$\chi_{CO_2}(\%) = \frac{(A_{CO_2}^{in} - A_{CO_2}^{out})}{A_{CO_2}^{in}} \times 100\% \#(2)$$

98
$$H_2/CO = V_{H_2}/V_{CO} \#(3)$$

99 Where $A_{CH_4}^{in}$, $A_{CH_4}^{out}$, $A_{CO_2}^{in}$, $A_{CO_2}^{out}$, represent the integral area of inward and
100 outward of CH₄, CO₂, V_{H_2} , V_{CO} , refer to the volume of H₂ and CO detected by GC,
101 respectively.

102

103 **2. Figures and Tables**


104

105 **Fig. S1** TEM images and EDS mapping of catalysts after calcination in different
106 atmospheres: (a) NMO-Air, (b) NMO-Ar, (c) NMO-Air+H₂, and (d) NMO-H₂.

107

108 As the process proceeds, internal O atoms must diffuse through the already
109 reduced outer layers to reach the surface, where they were subsequently reduced by
110 H₂ and escaped. However, this diffusion pathway was protracted and intricate, likely
111 hindered by lattice defects or grain boundaries, ultimately impairing uniform O
112 migration to the surface. In contrast, direct H₂ reduction of the precursor enabled
113 simultaneous reduction of Ni and Mn oxides, allowing more orderly atomic diffusion
114 and facilitating homogeneous Ni/MnO formation.

115

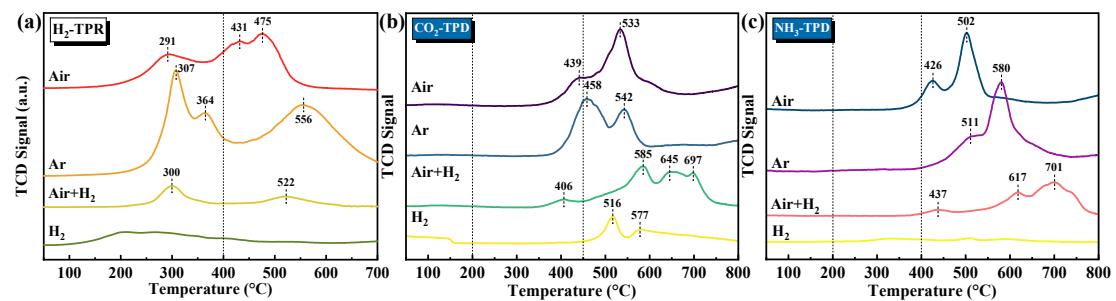
116

117 **Fig. S2** (a) The N₂ adsorption-desorption isotherms and (b) pore diameter distribution

118

curves.

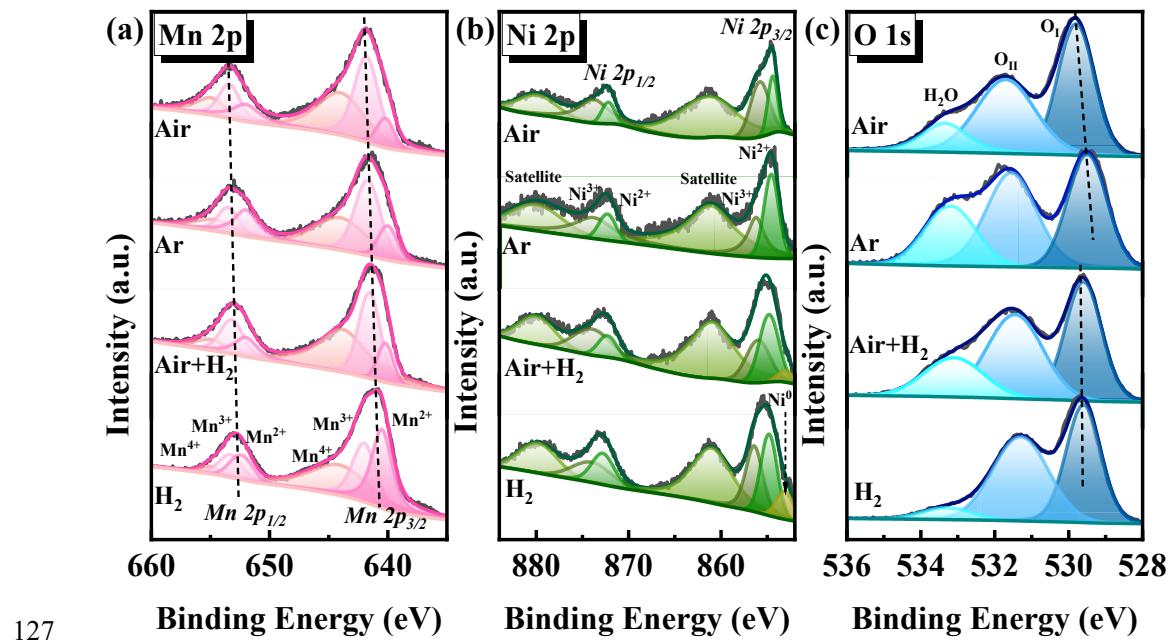
119


120 **Table. S1** Structural properties and integrated peak area of the total amount of H₂

121 consumption, CO₂ desorption and NH₃ desorption.

Sample	BET surface area (m ² g ⁻¹)	Pore size (nm)	Pore volume (cm ³ g ⁻¹)	H ₂ consumption peak area (a.u.)	CO ₂ desorption peak area (a.u.)	NH ₃ desorption peak area (a.u.)
NMO-Air	178.54	4.026	0.220	17266	5526	6098
NMO-Ar	116.82	4.060	0.386	33502	4688	7449
NMO-Air+H ₂	71.595	4.015	0.391	4383	5268	5609
NMO-H ₂	32.796	4.052	0.598	2792	1826	1213

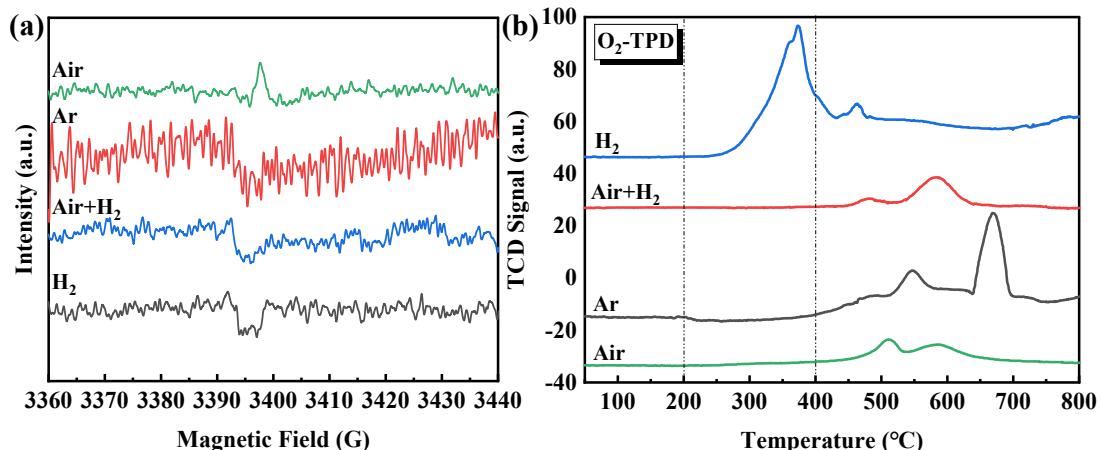
122


123

124 **Fig. S3** (a) H₂-TPR, (b) CO₂-TPD, and (c) NH₃-TPD of catalysts after calcination in

125 different atmospheres.

126


127 **Fig. S4** XPS spectra of as-prepared catalysts: (a) Mn 2p, (b) Ni 2p, and (c) O 1 s.
128

129

130 **Table. S2** The XPS results of the samples

Sample	O species		
	H ₂ O ratio	O _{II} ratio	O _I ratio
NMO-Air	0.12	0.39	0.49
NMO-Ar	0.29	0.35	0.36
NMO-Air+H ₂	0.16	0.46	0.38
NMO-H ₂	0.02	0.50	0.48

131

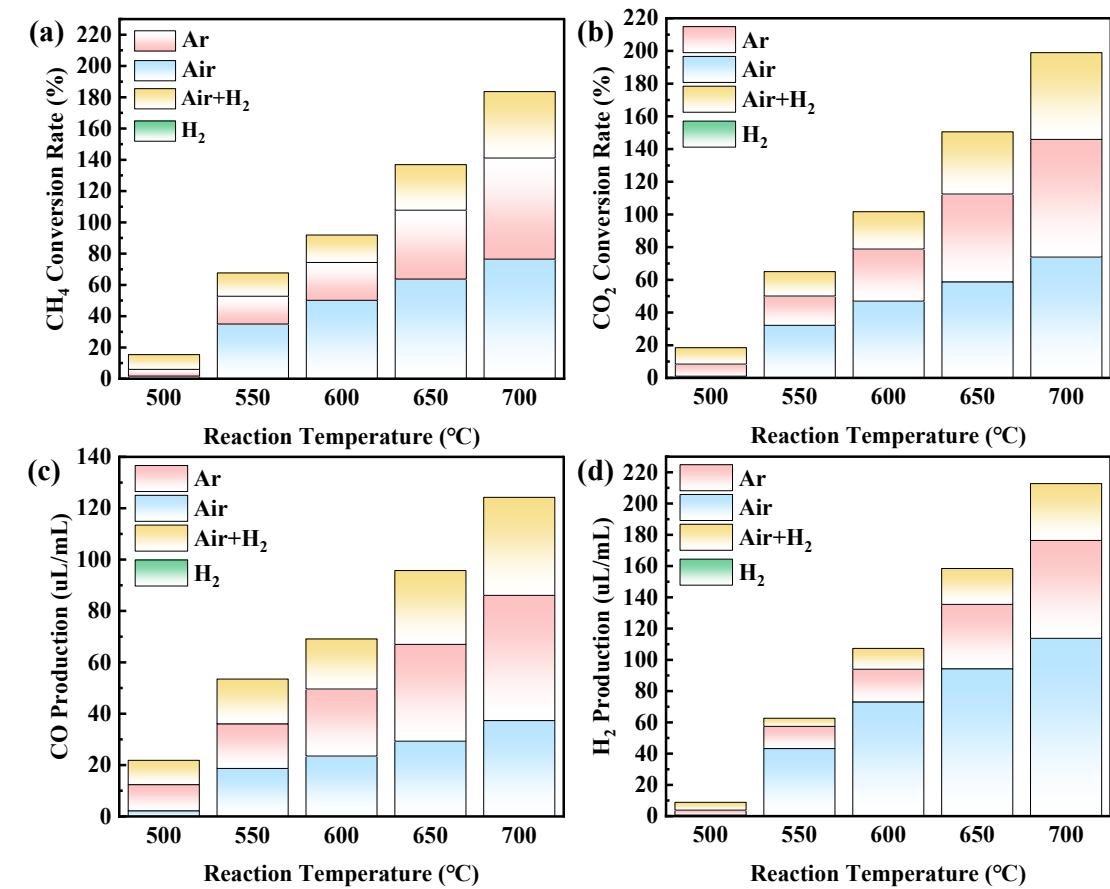

132

Fig. S5 The (a) low-temperature EPR and (b) O₂-TPD of materials.

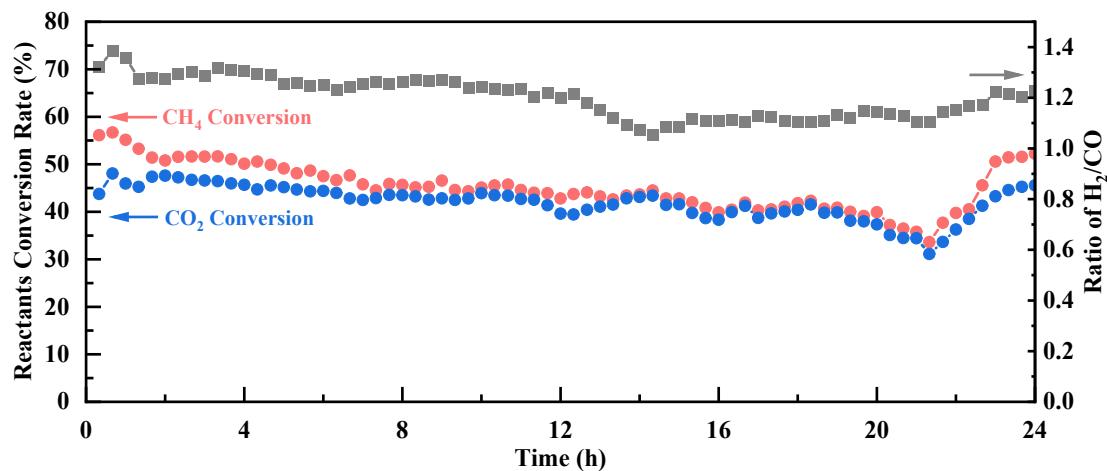
134

135 The O₂-TPD profiles of all catalysts could be divided into three characteristic
 136 temperature regions: < 200 °C, 200-400 °C, and > 400 °C, corresponding to the
 137 desorption of chemisorbed oxygen species desorbed from surfaces,¹ surface, and bulk
 138 lattice oxygen species,² respectively. All samples showed negligible desorption below
 139 200 °C.

140

141

142 **Fig. S6** The DRM activity: (a) CH_4 conversion rate, (b) CO_2 conversion rate, (c)

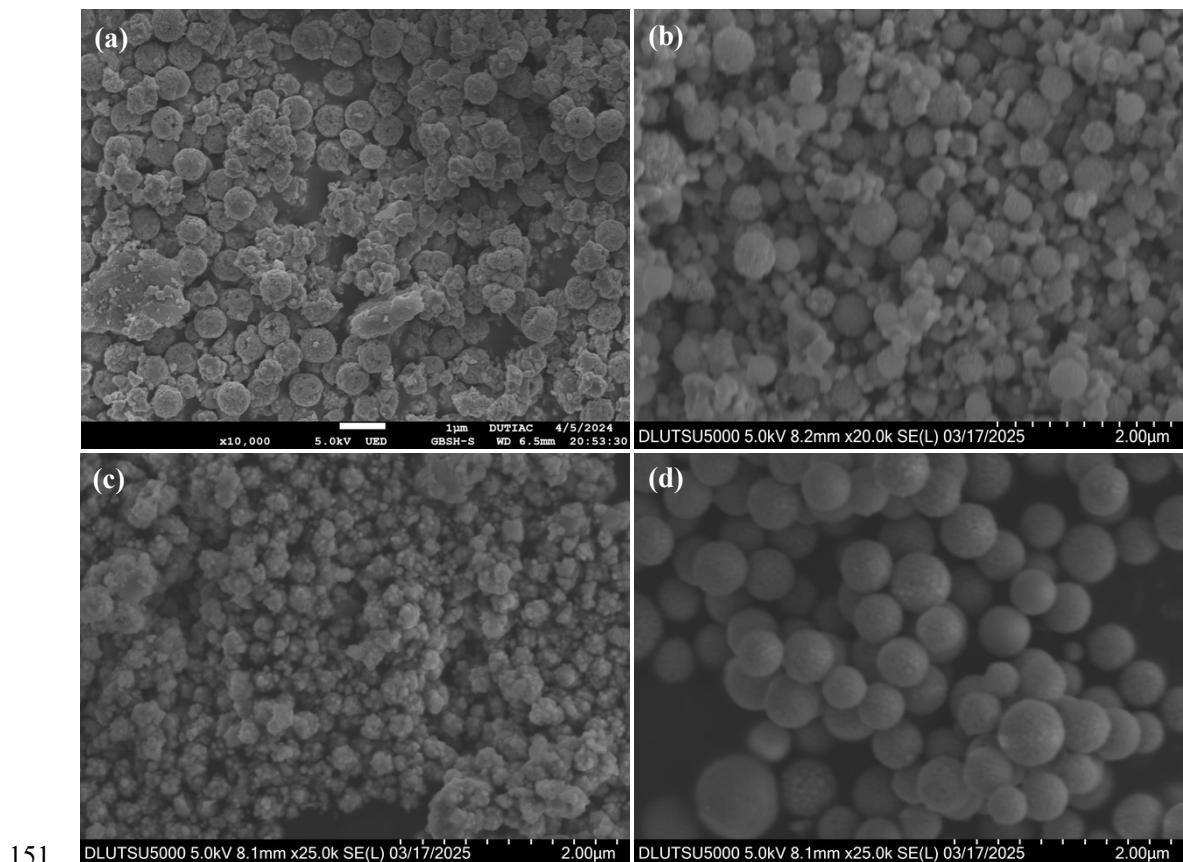

143

144 production, and (d) H_2 production.

145 **Table. S3** Performance comparison of developed catalysts in DRM.

Sample	Reaction temperature (°C)	Flow rate (mL min ⁻¹)	Quality (mg)	Ratio of H ₂ /CO	Ref.
NMO-Air	700	30	50	1.2	This work
CaZr _{0.8} Ni _{0.2} O _{3-δ}	800	80	600	0.95	³
Ni-CeO ₂	500	GHSV: 48000 h ⁻¹		0.7	⁴
Ni ₁ /CoCe	800	30	100	0.95	⁵
Ni@Co ₁ /CeO ₂	800	30	20	0.8	⁶
55Ni/CeO ₂ -G	700	50	100	0.8	⁷
1.2Ni-0.3Co-SiO ₂	700	20	30	0.43	⁸
N3M/A	700	100	200	0.8	⁹

146



147

148 **Fig. S7** the DRM reaction stability of NMO-Air under 600 °C for 24 h. Flow rate: 30

149 30 mL min^{-1} ($\text{CH}_4/\text{CO}_2/\text{Ar}=1/1/3$), catalyst quality: 50 mg.

150

151

152 **Fig. S8** The SEM images after reaction: (a) NMO-Air, (b) NMO-

153

Air+H₂, and (d) NMO-H₂.

154

155 The spherical structure of NMO-Ar exhibited partial separation after reaction,

156 attributable to its argon-atmosphere calcination. The inert argon atmosphere provided

157 limited chemical regulation, leading to non-uniform stress distribution and inadequate

158 lattice stability during high-temperature treatment, which aggravated structural

159 separation under DRM conditions. In contrast, NMO-Air+H₂ underwent more severe

160 structural collapse, revealing that hydrogen pretreatment substantially reduces

161 structural stability. The strong reducibility of H₂ might cause excessive reduction of

162 metal ions, disrupting crystalline integrity and diminishing morphological stability

163 under high-temperature reaction conditions. Although catalytically inactive, NMO-H₂

164 underwent surface reconstruction from rough to smooth, demonstrating that controlled

165 atmosphere treatment can induce morphological optimization.

166

167 **References**

168 1. M. Sun, W. Li, B. Zhang, G. Cheng, B. Lan, F. Ye, Y. Zheng, X. Cheng and L. Yu, *Chem. Eng. J.*, 2018, **331**, 626-635.

170 2. N. Huang, Z. Qu, C. Dong, Y. Qin and X. Duan, *Appl. Catal. A Gen.*, 2018, **560**, 195-205.

172 3. S. Dama, S. R. Ghodke, R. Bobade, H. R. Gurav and S. Chilukuri, *Appl. Catal. B Environ.*, 2018, **224**, 146-158.

174 4. M. Li and A. C. van Veen, *Appl. Catal. B Environ.*, 2018, **237**, 641-648.

175 5. J. Wu, J. Gao, S. Lian, J. Li, K. Sun, S. Zhao, Y. D. Kim, Y. Ren, M. Zhang, Q. Liu, Z. Liu and Z. Peng, *Appl. Catal. B Environ.*, 2022, **314**, 121516.

177 6. E. Yang, E. Nam, Y. Jo and K. An, *Appl. Catal. B Environ.*, 2023, **339**, 123152.

178 7. H. Xia, C. Dang, D. Zhou and W. Cai, *Chem. Eng. J.*, 2024, **489**, 151365.

179 8. J. Zhang, K. Xie, Y. Jiang, M. Li, X. Tan, Y. Yang, X. Zhao, L. Wang, Y. Wang, X. Wang, Y. Zhu, H. Chen, M. Wu, H. Sun and S. Wang, *ACS Catal.*, 2023, **13**, 10855-10865.

182 9. D. Liang, Y. Wang, M. Chen, X. Xie, C. Li, J. Wang and L. Yuan, *Fuel*, 2022, **321**, 124032.

184