Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

- 2 Surface Ni-O-Co Sites in Cube-Shaped Ni-Co₃O₄ Spinel Oxides for
- **Boosting Soot Oxidation**
- 4 Linsheng Xu, a Haoqi Guo, a Wen Cao, b Jing Xiong, a Yaxiao Ma, a Baolong Cui, a Zekai Cui, a Hao Guo, a
- 5 Peng Zhang,^a and YuechangWei,*a
- ^a State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for
- 7 Oil and Gas, China University of Petroleum, Beijing 102249, China
- 8 b China Tobacco Shaanxi Industrial Co., Ltd., Xi'an 710065, China.
- 9 * Corresponding author: weiyc@cup.edu.cn (Y. Wei)

Methods

Chemicals

Cobalt(II) nitrate hexahydrate [Co(NO₃)₂·6H₂O], nickel(II) nitrate hexahydrate [Ni(NO₃)₂·6H₂O] and sodium hydroxide [NaOH] purchased from Aladdin Ltd. (Shanghai, China), were used as received without further purification.

Catalyst preparation

Preparation of cube-shaped Co₃O₄.

Co(NO₃)₂·6H₂O was dissolved in 10 mL of deionized water to yield a precursor solution with a metal cation concentration of 2 mol/L. NaOH was dissolved in 10 mL of deionized water to yield a solution with a metal cation concentration of 2 mol/L. The solution of NaOH was slowly added dropwise to the precursor solution and stirred continuously for 40 minutes to form a slurry. The slurry was transformed into a Teflon-lined stainless-steel autoclave and hydrothermally treated at 180 °C for 12 h to obtain black precursor. After being cooled to room temperature, the obtained precipitate was collected by centrifugation and washed with deionized water and ethanol, and then dried overnight at 50 °C. The black precursor was annealed at 500 °C for 4 hours in air to obtain cube-shaped Co₃O₄.

Preparation of Ni_x-Co₃O₄ catalysts. Different qualities of Ni(NO₃)₂·6H₂O were dissolved in deionized water to prepare solutions with Ni ion concentrations of 0.5, 1.0, and 2.0 mol L⁻¹. The black precursor of 0.1g was annealed at 500 °C in a muffle furnace. After annealing for 3 hours, the precursor is removed from the furnace and immediately quenched by pouring it into 50 mL pre-prepared Ni solutions of 0 (deionized water), 0.5, 1.0, and 2.0 mol L⁻¹ to obtain water-Co₃O₄, Ni_{0.5}-Co₃O₄, Ni_{1.0}-Co₃O₄ and Ni_{2.0}-Co₃O₄ catalysts respectively.

Characterizations

Powder X-ray diffraction (XRD) patterns were obtained by a diffractometer (Bruker D8

advance) over the 2θ range from 5 to 90° with a 5° min⁻¹ scanning rate using Cu-Kα radiation to obtain the phase structure of all as-prepared catalysts. The Ni/Co content of catalysts was measured by using inductively coupled plasma optical emission spectrometry (ICP-OES). Scanning electron microscopy (SEM), images were obtained by Quanta 200F. Transmission electron microscope (TEM) and mapping images were obtained by FEI Tecnai G2 F20 transmission electron microscope. Raman spectra of all catalysts were measured on an inVia Reflex-Renishaw spectrometer with an excitation wave-length of 532 nm. The temperature programmed reduction of hydrogen (H₂-TPR) was carried out on an Automatic Chemisorption Analyzer. The catalysts were pretreated with N₂ at 350 °C for 30 min before test. After cooling to room temperature, H₂-TPR was conducted with flowed the gaseous contained H₂ (7 vol%) balanced with N₂ (30 mL min⁻¹). And the temperature range of the H₂-TPR is 50 to 900 °C with a ramp rate of 10 °C min⁻¹. The temperature-programmed oxidation of NO (NO-TPO) was carried out on a fixed-bed tubular quartz reactor, and the products can be detected by online FT-IR. The catalysts were pretreated with N₂ at 100 °C for 30 min before test. After cooling to room temperature, NO-TPO was conducted with flowed the gaseous contained O₂ (5 vol%) and NO (0.1 vol%) balanced with N₂ (50 mL min⁻¹). And the temperature range of the NO-TPO reaction is 50 to 500 °C with a ramp rate of 2 °C min⁻¹. Temperature-programmed desorption of O₂ (O₂-TPD) measurements were conducted on a fixed bed and the desorption signal of oxygen was recorded with an online mass spectrometer apparatus (HIDEN DECRA). 0.1 g fresh catalyst was put into a quartz tube reactor and pretreated in an Ar flow with a flow rate of 50 mL min⁻¹ for 30 min at 300 °C at a heating rate of 10 °C min⁻¹. After cooling to room temperature, the catalyst was exposed to high-purity O₂ with 50 mL min⁻¹ for 30 min. Then, the stream was switched to Ar to purge for 1 h. Finally, the heating rate was set to be 10 °C min⁻¹ with a 50 mL min⁻¹ Ar flow. Temperature programmed surface reaction of CO (CO-TPSR) was performed on a fixed-bed tubular quartz microreactor. 0.1 g catalyst was pretreated with

pure oxygen at 350 °C for 30 min. After being cooled to ambient temperature under pure argon, a 10 vol% CO/Ar gas stream was introduced (50 mL min-1). The temperature was increased from room temperature to 900 °C with a heating rate of 10 °C min-1. The outlet gases were monitored with an online mass spectrometer apparatus (HIDEN DECRA). The CO2 signal (m/z = 44) and CO signal (m/z = 28) were monitored during the surface reaction without gaseous oxygen supply. The surface element valence state was detected by X-ray photoelectron spectra (XPS, XPSPHI-1600 ESCA spectrometer), calibrated using a C 1s binding energy of 284.8 eV. In situ diffuse reflectance infrared Fourier transforms (in situ DRIFT) spectra were carried on a Bruker FT-IR spectrometer (TENSOR II) equipped with a liquid nitrogen-cooling mercury-cadmium-telluride (MCT) detector. The catalyst was added into high-temperature IR cell with ZnSe window, and heated in N2 flow at 200 °C for 30min to remove adsorbed H2O and other materials. After cooling down to 50 °C with N2 atmosphere, the background spectrum was recorded. Finally, the gas to be measured were fed into cell at a flow rate of 50 mL min-1. IR spectra of simultaneous NO and CH4 oxidation were recorded in a flow of 0.2 vol %NO/5 vol% O2/N2 balance (50 mL min-1) under heating from 30 to 450 °C.

Catalytic activity tests

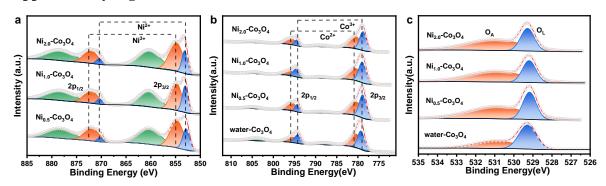
The catalytic activity of all as-prepared catalysts for soot oxidation was evaluated by soot temperature programmed oxidation (soot-TPO) on a continuous flow micro-reactor constituted of a quartz tube of 8 mm of the outside diameter. The reactor was heated from 150 to 650 °C at a heating rate of 2 °C min⁻¹ in a stream of 0.2 vol% NO and 5 vol% O₂ balanced with N₂ at a total flow rate of 50 mL min⁻¹. The catalyst (0.1 g) and soot (0.01 g) were fully mixed using a spatula for 10 min to simulate loose contact. The concentration of CO and CO₂ in the outlet gas was monitored by online gas chromatography (GC 9890B, Shanghai) with a flame ionization detector (FID). The catalytic activity was evaluated and compared in terms of T₁₀, T₅₀, and T₉₀, corresponding to the temperature at which 10%, 50%, and 90% of soot is

converted. The selectivity of CO_2 formation (S_{CO2}) was defined as the CO_2 outlet concentration (C_{CO2}) divided by the sum of CO_2 and CO outlet concentration. S_{CO2}^{m} was denoted as the S_{CO2} at which the C_{CO2} value was the maximum. The CO_2 selectivity (S_{CO2}) was measured according to the following equation (1):

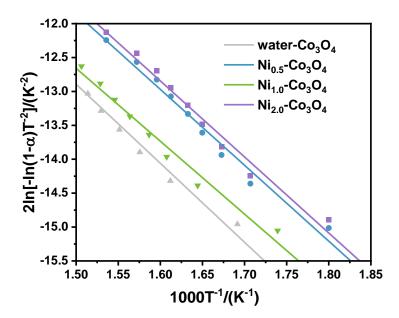
$$S_{CO2}(\%) = \frac{[CO_2]_{out}}{[CO]_{out} + [CO_2]_{out}} \times 100\%$$
 (1)

Here, the [CO₂]_{out} and [CO]_{out} represent the outlet CO₂ and CO concentration, respectively. he apparent activation energy of soot oxidation was measured by the single heating rate method (Coats-Redfern integral method) according to the equation (2):

$$\beta \frac{d\alpha}{dT} = k(T)f(\alpha) \to \beta \frac{d\alpha}{dT} = A \times \exp\left(-\frac{E_a}{RT}\right)f(\alpha)$$
 (2)


Where β is the heating rate (K min⁻¹), α is the soot conversion rate (α <15 %), T is the reaction temperature (K), k is the reaction rate constant, $f(\alpha)$ is the kinetic expression for the reaction model, $f(\alpha)$ =(1- α)ⁿ, where n is the number of reaction stages. A is the pre-finger factor (s^{-1}), E_a is the apparent activation energy (kJ mol⁻¹), R is the ideal gas constant. Previous studies have shown that the reaction of soot with NO₂ is a one-stage reaction, i.e., n=1. The equation (5) can be obtained:

$$\ln\left[-\frac{\ln(1-\alpha)}{T^2}\right] = \ln\left[\frac{AR}{\beta E_a}\left(1-\frac{2RT}{E_a}\right)\right] - \frac{E_a}{RT}$$
(3)


In most cases, $\frac{2RT}{Ea}$ much smaller than 1, and $ln\left[\frac{AR}{\beta E_a}\left(1-\frac{2RT}{E_a}\right)\right]$ can be regarded as a

constant. Then, the apparent activation energy is estimated by plotting $ln \left[-\frac{ln(1-\alpha)}{T^2} \right] \ vs \ 1/RT.$

Supplementary Figures

Figure S1. XPS spectra of Ni 2p (**b**), Co 2p (**a**), and O 1s (**c**) over water-Co₃O₄ and Ni_x-Co₃O₄ catalysts.

Figure S2. The apparent activation energy of water- Co_3O_4 and Ni_x - Co_3O_4 catalysts for soot oxidation.

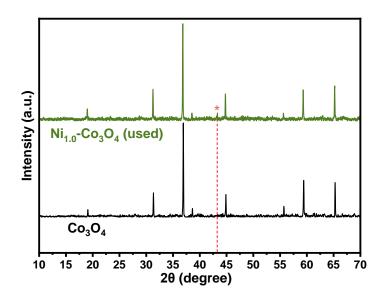
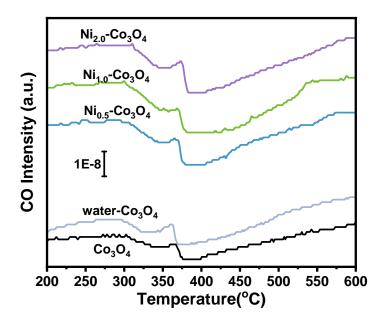
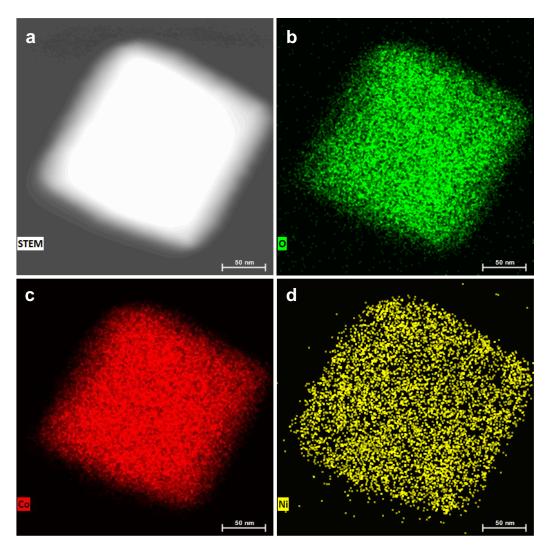
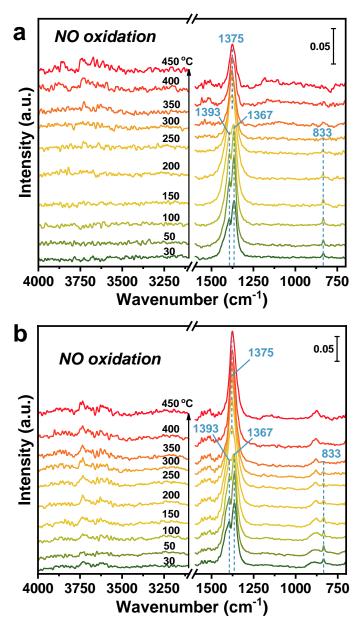


Figure S3. XRD patterns of $Ni_{1.0}$ - Co_3O_4 after five cycles tests and fresh Co_3O_4 catalysts.

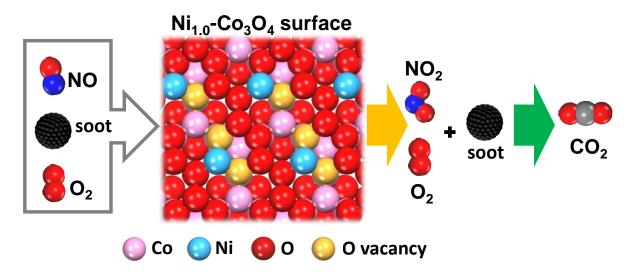

Figure S4. CO signal intensity in CO-TPSR testing of catalysts

Figure S5. STEM and corresponding element mapping images of cube-shaped Ni_{1.0}-Co₃O₄ catalyst.

Figure S6. Temperature-dependent *in situ* DRIFT spectra of NO oxidation over (a) water- Co_3O_4 and (b) $Ni_{1.0}$ - Co_3O_4 catalysts.

Figure S7. Schematic diagram of NO_x -assisted soot oxidation mechanism on $Ni_{1.0}$ - Co_3O_4 catalyst surface.

Supplementary Tables

Table S1. The practical Ni/Co molar ratios in the prepared catalysts determined by ICP-OES

Catalyst	Ni/Co
Ni _{0.5} -Co ₃ O ₄	0.124
$Ni_{1.0}$ - Co_3O_4	0.222
Ni _{2.0} -Co ₃ O ₄	0.386

Table S2. Curve-fitting results of Ni (2p), Co (2p) and O (1s) for catalysts.

	Ni 2p			Co 2p			О	1 <i>s</i>	
Catalysts	Ni ³⁺	Ni ²⁺	Ni ³⁺ /Ni ²⁺	Co ³⁺	Co ²⁺	Co ³⁺ /Co ²⁺	OA	O_L	O_A/O_L
water-Co ₃ O ₄	-	-	-	0.43	0.57	0.75	0.57	0.43	1.33
Ni _{0.5} -Co ₃ O ₄	0.76	0.24	3.12	0.42	0.58	0.72	0.65	0.35	1.85
$Ni_{1.0}$ - Co_3O_4	0.71	0.29	2.45	0.46	0.54	0.85	0.67	33.2	2.01
Ni _{2.0} -Co ₃ O ₄	0.78	0.22	3.55	0.41	0.59	0.69	0.66	0.34	1.93

Table S3. Catalytic activities of catalysts for soot oxidation.

Catalysts	T ₁₀ (°C)	T ₅₀ (°C)	T ₉₀ (°C)	S_{co2}^{m} (%)	E _a (kJ mol ⁻¹)
Without catalyst	461	584	648	65.2	-
Co ₃ O ₄	380	447	502	82.2	-
water-Co ₃ O ₄	330	393	443	89.6	96.7
Ni _{0.5} -Co ₃ O ₄	302	366	408	99.1	93.0
$Ni_{1.0}$ - Co_3O_4	282	339	378	99.3	89.4
Ni _{2.0} -Co ₃ O ₄	318	381	418	98.9	93.3

Table S4. Comparison of Co-based oxides system for soot oxidation: synthesis method, reaction condition, catalytic activity (T_{50}) and corresponding reference.

Catalysts	Synthesis method	Reaction condition	T50 (°C)	Ref.
Ni _{1.0} -Co ₃ O ₄	Quenching method	2000 ppm NO/5% O ₂ /N ₂ , 50 mL min ⁻¹	339.3	This work
3DOM-NiCo ₂ O ₄	Carboxy-modified colloidal crystal templating method	1000 ppm NO/5% O ₂ /N ₂ , 300 mL min ⁻¹	379	1
3DOMM PdCo ₂ O ₄ /CZO	Evaporation-induced self-assembly and colloidal crystal templates methods	2000 ppm NO/5% O ₂ /Ar, 50 mL min ⁻¹	367	2
Ag/Co ₃ O ₄ @CeO ₂	Hydrothermal, chemical precipitation and impregnating methods	500 ppm NO/5% O ₂ /N ₂ , 500 mL min ⁻¹	395	3
K-Co ₃ O ₄ nanowire	Hydrothermal and facile wet impregnation methods	600 ppm NO/5% O ₂ /N ₂ , 100 mL min ⁻¹	324	4
3DOM La _{0.9} K _{0.1} CoO ₃	Carboxy-modified colloidal crystal templates method	2000 ppm NO/5% O ₂ /Ar, 50 mL min ⁻¹	398	5
3DOM Pt@CoO _x /Al ₂ O ₃	colloidal crystal template and GBMR/P methods	2000 ppm NO/5% O ₂ /Ar, 50 mL min ⁻¹	357	6
0.5%Pd-1%Co/Beta	Impregnation method	1000 ppm NO/10% O ₂ /N ₂ , 500 mL min ⁻¹	398	7
5%Cs/1%Co/MnO _x	Hydrothermal, wetness impregnation method	1000 ppm NO/10% O_2/N_2 , 300000 mL $g^{-1}\ h^{-1}$	371	8

CoO _x /TiO ₂	Sequential deposition–precipitation with urea method	250 ppm $NO_x/50\%$ Air/ N_2 , 100 mL min ⁻¹	358	9
Co/Ce-YSZ	Impregnated and redox-aging cycle methods	500 ppm NO/5% O ₂ /N ₂ , 500 mL min ⁻¹	509	10

Reference

- M. Zhao, J. Deng, J. Liu, Y. Li, J. Liu, Z. Duan, J. Xiong, Z. Zhao, Y. Wei, W. Song and Y. Sun, ACS Catal., 2019, 9, 7548-7567.
- J. Xiong, Q. Wu, X. Mei, J. Liu, Y. Wei, Z. Zhao, D. Wu and J. Li, ACS Catal., 2018, 8, 7915-7930.
- 3. X. Wang, B. Jin, R. Feng, W. Liu, D. Weng, X. Wu and S. Liu, *App. Catal. B: Environ.*, 2019, **250**, 132-142.
- 4. C. Cao, L. Xing, Y. Yang, Y. Tian, T. Ding, J. Zhang, T. Hu, L. Zheng and X. Li, *App. Catal. B: Environ.*, 2017, **218**, 32-45.
- 5. J. Xu, J. Liu, Z. Zhao, C. Xu, J. Zheng, A. Duan and G. Jiang, J. Catal., 2011, 282, 1-12.
- 6. Q. Wu, M. Jing, Y. Wei, Z. Zhao, X. Zhang, J. Xiong, J. Liu, W. Song and J. Li, *App. Catal. B: Environ.*, 2019, **244**, 628-640.
- M. Wang, C. Duan, M. Liu, Z. Chen, J. Cai, Y. Zhang, Y. Yu and W. Shan, *Small*, 2025,
 21, 2501373.
- 8. M. Wang, Y. Zhang, Y. Yu, W. Shan and H. He, *Environ. Sci. Technol.*, 2021, **55**, 240-248.
- 9. N. S. Portillo-Vélez and R. Zanella, Chem. Eng. J., 2020, 385, 123848.
- 10. M. P. Yeste, M. Á. Cauqui, J. Giménez-Mañogil, J. C. Martínez-Munuera, M. Á. Muñoz and A. García-García, *Chem. Eng. J.*, 2020, **380**, 122370.