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Experimental section

(1) Synthesis of Co,V-POM@GO

Firstly, [Co3(4-NH2-trz))6][V6O18]·3H2O (Co,V-POM) was synthesized by the previous report.s1 Subsequently, it was mixed with GO with a 

mass ratio of 1:2 under ultrasound for 24h. Finally, the product was obtained after cleaning and freeze-drying.

(2) Material characterization

The morphologies of the final product were characterized by scanning electron microscopy (SEM, JSM-6700F, JEOL) and transmission 

electron microscopy (TEM, Tecnai G2 F30, FEI). X-ray photoelectron spectroscope (XPS, Thermo ESCALAB 250Xi) was utilized to analyze the 

surface elemental composition and valence.

(3) Electrochemical tests

   The positive electrode was composed of Co,V-POM@GO (70 wt%), Ketjen Black (20 wt%) and polyvinylidene fluoride (PVDF 10 wt%), which 

were mixed and dispersed in methyl-2-pyrrolidinone (NMP) and ground evenly. The slurry was coated on aluminum foil and dried in a vacuum 

drying oven at 60° for 12 h. The loading mass of active materials is about 0.6~1.2 mg cm-2. Finally, the CR2032 coin cells were assembled in an 

argon-filled glovebox with Whatman glass microfiber filter (GF/A) as the separator, ACC (1500-2500 m2g-1, GUN EI Chemical Industry Co. Ltd) as 

the counter electrode and 0.8 M Ca(TFSI)2 dissolved in a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate 

(PC), ethylmethyl carbonate (EMC) (vol/vol/vol/vol=2:3:2:3) as the electrolyte. Galvanostatic charge/discharge measurement was conducted 

with a multi-channel battery testing system (Neware CT-4008T-5V20 mA-164, Shenzhen, China). Cyclic voltammetry (CV) tests were carried out 

using an electrochemical workstation (CHI660E). 

(4) Theoretical calculations

In this work, all structural models are fully subjected to density-functional theory (DFT) calculations using the ultra-soft pseudopotential 

(USP) from the CASTEP package, and the exchange and correlation energies are treated using the generalised gradient approximation (GGA) of 

the Perdew-Burke-Ernzerhof (PBE) generalisation. The electronic wave function is expanded using a plane wave basis group with a cut-off 

energy of 340 eV. A Monkhorst-Pack Brillouin lattice of 2π × 0.04 A-1 was used for all calculations, with a convergence value of 0.02 meV/atom 

for the total energy and 0.05 eV/Å for the atom. Three possible locations for calcium ion adsorption in Co,V-POM@GO, two possible diffusion 

paths, and a number of other possible routes for the calcium ion adsorption in Co,V-POM@GO were calculated. The diffusion barriers of 

calcium ions in Co,V-POM@GO were calculated by the periodic LST/QST method in CASTEP.
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Fig. S1 XRD patterns of Co, V-POMOF@GO.
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Fig. S2  FTIR spectra of GO and Co, V-POMOFs@GO.

It can be seen that that the characteristic peak of the C=O stretching vibration in GO shifts from 1720 cm-1 to 1726.9 cm-1 upon 

complexation with Co, V-POMOFs.This shift indicates a strong interaction between the oxygen-containing functional groups on the GO surface 

(specifically the carboxyl groups) and the metal centers (Co/V) of the POMOFs, confirming the successful functionalization of GO with the 

POMOFs .
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Fig. S3 TGA curves of Co,V-POMOFs and Co,V-POMOFs@GO.
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Fig. S4 (a) N2 adsorption-desorption isotherms and (b) The pore size distribution curves of Co,V-POMOFs@GO.

Co,V-POMOFs@GO exhibits a Type IV nitrogen isotherm with a broad hysteresis loop in the pressure range of 0.4-1.0 (P/P0), which 

implies the existence of mesopores. Simultaneously, the pore size distribution plot presents that Co,V-POMOFs@GO possesses a relatively 

wide pore size distribution with an average pore size of approximately 7.74 nm. Furthermore, the Brunauer-Emmett-Teller (BET) specific 

surface area of Co,V-POMOFs@GO was calculated to be around 88.60 m2 g-1 (Fig. S4).  

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

Q
ua

nt
ity

 a
ds

or
be

d 
(c

m
3  g

-1
 S

T
P)

Relative pressure (P/P0)

 Absorption
 Desorption

Co,V-POMOFs@GO

(b)(a)



s7

Fig. S5  UV-Vis absorption spectrum of the electrolyte after the immersion of Co,V-POMOFs@GO.

The aluminum foil with Co,V-POMOFs@GO was left to stand in the electrolyte for 24 hours. Ultraviolet-visible (UV-Vis) spectroscopy was 

performed on the supernatant (Fig. S6). It was found that there were almost no characteristic peaks in the electrolyte, which confirms that 

Co,V-POMOFs@GO delivers good stability in the electrolyte.
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Fig. S6. EIS spectra of Co,V-POMOFs@GO after different cycles.



s9

 
Fig. S7. Schematic diagram of the Ca²⁺ diffusion steps from pore 1 to pore 2 in Co,V-POMOFs@GO.
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Fig. S8. Schematic diagram of the Ca²⁺ diffusion steps from pore 1 to pore 3 in Co,V-POMOFs@GO.
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Fig. S9 Plots of log(i) vs. log(v) for the two redox peaks in the CV curves of Co, V-POMOF@GO.



s12

 

Fig. S10 Pseudocapacitive contribution region (shaded in orange) at a scan rate of 0.8 mV s-1 of Co, V-POMOF@GO.
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Fig. S11 Ragone plot of Co,V-POMOFs@GO.
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Fig.S12 Nyquist and fitted plots of Co,V-POMOFs@GO at 50 and 70 oC.
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Table S1. Calcium storage performance of this work vs. literature data.

Cathode materials Reversible capacity (mAh g-1) Current density (mA g-1) Capacity retention References

Co,V-POMOFs@GO 320.45 50 96.7% This work

VOPO4·2H2O 100 20 86% 6

δ-MnO2 125 100 53.6% 11

BaV6O16·3H2O@GO 339.45 50 84% 32

K2V6O16·2.7H2O 94 50 78.3% 33

CaV6O16·2.8H2O 131.7 50 94.4% 34

β-Ag0.33V2O5 179 12.3 47% 35

MnO2@PANI 150 100 91.9% 36

CuS/C 126 100 92% 37

Ca0.28V2O5·H2O 120 30 74% 38

CaxNa0.5VPO4.8F0.7 65 66.6 92% 39

V2O5 150 50 (uA cm-2) 20% 40

Ti2O(PO4)2(H2O) 60.8 50 95% 41

VO2(B) 120 100 79% 42
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Table S2 Diffusion rate of calcium ions in positive electrode materials in the previous reports.

Cathode Diffusion efficient (cm2 s−1) References

VO₂(B)/rGO 7.51×10−12 s2

NHVO-H@GO@CNT 5.52×10−1-2.61×10-13 s3

β-Ca₀.₁₄V₂O₅ 10−7.7-10−8.7 s4

CaV₆O₁₆·2.8H₂O 7.5×10−121.8×10−13 s5

BaV₆O₁₆·3H₂O@GO 2.3×10⁻¹-8.92×10-14 s6

KxVPO₄F 10-10-10-11 s7

MₓV₂O₅·nH₂O, M=Ni, Co, Mn NiVO:7.51×10⁻¹²

CoVO:1.32×10⁻¹⁴

MnVO:5.64×10⁻¹⁰

s8

Zn3-xCuₓ(OH)₂V₂O₇·2H₂O 10⁻⁶-10⁻¹⁴ s9

Co,V-POMOFs@GO 10⁻⁶-10-10 This work
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Table S3 Rct values at different temperatures according to equivalent circuit model

T (oC) Rct (Ω)

30 1667

40 1429

50 1250

60 1110

70 990
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