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Experimental section

(1) Synthesis of Co,V-POM@GO

Firstly, [Cos(4-NH,-trz))e][VeO1s]-3H,0 (Co,V-POM) was synthesized by the previous report.s! Subsequently, it was mixed with GO with a
mass ratio of 1:2 under ultrasound for 24h. Finally, the product was obtained after cleaning and freeze-drying.
(2) Material characterization

The morphologies of the final product were characterized by scanning electron microscopy (SEM, JSM-6700F, JEOL) and transmission
electron microscopy (TEM, Tecnai G2 F30, FEl). X-ray photoelectron spectroscope (XPS, Thermo ESCALAB 250Xi) was utilized to analyze the
surface elemental composition and valence.
(3) Electrochemical tests

The positive electrode was composed of Co,V-POM@GO (70 wt%), Ketjen Black (20 wt%) and polyvinylidene fluoride (PVDF 10 wt%), which

were mixed and dispersed in methyl-2-pyrrolidinone (NMP) and ground evenly. The slurry was coated on aluminum foil and dried in a vacuum
drying oven at 60° for 12 h. The loading mass of active materials is about 0.6~1.2 mg cm2. Finally, the CR2032 coin cells were assembled in an
argon-filled glovebox with Whatman glass microfiber filter (GF/A) as the separator, ACC (1500-2500 m?gt, GUN EI Chemical Industry Co. Ltd) as
the counter electrode and 0.8 M Ca(TFSI), dissolved in a mixture of ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate
(PC), ethylmethyl carbonate (EMC) (vol/vol/vol/vol=2:3:2:3) as the electrolyte. Galvanostatic charge/discharge measurement was conducted
with a multi-channel battery testing system (Neware CT-4008T-5V20 mA-164, Shenzhen, China). Cyclic voltammetry (CV) tests were carried out
using an electrochemical workstation (CHI660E).
(4) Theoretical calculations

In this work, all structural models are fully subjected to density-functional theory (DFT) calculations using the ultra-soft pseudopotential
(USP) from the CASTEP package, and the exchange and correlation energies are treated using the generalised gradient approximation (GGA) of
the Perdew-Burke-Ernzerhof (PBE) generalisation. The electronic wave function is expanded using a plane wave basis group with a cut-off
energy of 340 eV. A Monkhorst-Pack Brillouin lattice of 2rt x 0.04 A* was used for all calculations, with a convergence value of 0.02 meV/atom
for the total energy and 0.05 eV/A for the atom. Three possible locations for calcium ion adsorption in Co,V-POM®@GO, two possible diffusion
paths, and a number of other possible routes for the calcium ion adsorption in Co,V-POM@GO were calculated. The diffusion barriers of

calcium ions in Co,V-POM®@GO were calculated by the periodic LST/QST method in CASTEP.
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Fig. S1 XRD patterns of Co, V-POMOF@GO.
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Fig. S2 FTIR spectra of GO and Co, V-POMOFs@GO.

It can be seen that that the characteristic peak of the C=0 stretching vibration in GO shifts from 1720 cm-1 to 1726.9 cm-1 upon
complexation with Co, V-POMOFs.This shift indicates a strong interaction between the oxygen-containing functional groups on the GO surface

(specifically the carboxyl groups) and the metal centers (Co/V) of the POMOFs, confirming the successful functionalization of GO with the
POMOFs .
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Fig. S3 TGA curves of Co,V-POMOFs and Co,V-POMOFs@GO.
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Fig. 54 (a) N, adsorption-desorption isotherms and (b) The pore size distribution curves of Co,V-POMOFs@GO.

Co,V-POMOFs@GO exhibits a Type IV nitrogen isotherm with a broad hysteresis loop in the pressure range of 0.4-1.0 (P/P0), which
implies the existence of mesopores. Simultaneously, the pore size distribution plot presents that Co,V-POMOFs@GO possesses a relatively
wide pore size distribution with an average pore size of approximately 7.74 nm. Furthermore, the Brunauer-Emmett-Teller (BET) specific

surface area of Co,V-POMOFs@GO was calculated to be around 88.60 m? g (Fig. S4).

s6



3F
e
=
&
o2
[P}
=
<
=
s 1|
7]
=
B Co,V-POMOFs@GO
0™
300 400 500 600 700 800

Wavelength (nm)

Fig. S5 UV-Vis absorption spectrum of the electrolyte after the immersion of Co,V-POMOFs@GO.

The aluminum foil with Co,V-POMOFs@GO was left to stand in the electrolyte for 24 hours. Ultraviolet-visible (UV-Vis) spectroscopy was
performed on the supernatant (Fig. S6). It was found that there were almost no characteristic peaks in the electrolyte, which confirms that

Co,V-POMOFs@GO delivers good stability in the electrolyte.
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Fig. S6. EIS spectra of Co,V-POMOFs@GO after different cycles.
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Fig. S7. Schematic diagram of the Ca?* diffusion steps from pore 1 to pore 2 in Co,V-POMOFs@GO.
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Fig. S8. Schematic diagram of the Ca?* diffusion steps from pore 1 to pore 3 in Co,V-POMOFs@GO.
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Fig. S9 Plots of log(/) vs. log(v) for the two redox peaks in the CV curves of Co, V-POMOF@GO.
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Fig. S10 Pseudocapacitive contribution region (shaded in orange) at a scan rate of 0.8 mV s of Co, V-POMOF@GO.
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Fig. S11 Ragone plot of Co,V-POMOFs@GO.
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Fig.$12 Nyquist and fitted plots of Co,V-POMOFs@GO at 50 and 70 °C.

sl4

1500



Table S1. Calcium storage performance of this work vs. literature data.

Cathode materials Reversible capacity (mAh g1) Current density (mA g1) Capacity retention References
Co,V-POMOFs@GO 320.45 50 96.7% This work
VOPO,4-2H,0 100 20 86% 6
6-MnO, 125 100 53.6% 11
BaV016-3H,0@GO 339.45 50 84% 32
K,V01¢-2.7H,0 94 50 78.3% 33
CaVg016-2.8H,0 131.7 50 94.4% 34
B-Ago.33V,05 179 123 47% 35

MnO, @PANI 150 100 91.9% 36

CuS/C 126 100 92% 37
Cap.28V>05°H,0 120 30 74% 38
CayNagsVPO, Fq 7 65 66.6 92% 39

V,05 150 50 (uA cm?2) 20% 40
Ti,O(P0O,),(H,0) 60.8 50 95% 41
VO,(B) 120 100 79% 42
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Table S2 Diffusion rate of calcium ions in positive electrode materials in the previous reports.

Cathode Diffusion efficient (cm?s) References
VO0,(B)/rGO 7.51x10712 s2
NHVO-H@GO@CNT 5.52x107%-2.61x1013 s3
B-Cao.1aV20s 1077-10787 s4
CaVe016-2.8H,0 7.5x107121.8x10713 s5
BaVeO16-3H,0@GO 2.3x107'-8.92x10 s6
KVPO4F 10%0-1011 s7
M,V,0s-nH,0, M=Ni, Co, Mn NiV0:7.51x107? s8
CoV0:1.32x107™"
MnV0:5.64x107"°
Zn3,Cuy(OH),V,07-2H,0 1076-107 s9
Co,V-POMOFs@GO 10-¢-101° This work
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Table S3 R; values at different temperatures according to equivalent circuit model

T(°C) Ret (Q)
30 1667
40 1429
50 1250
60 1110
70 990
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