Supporting Information

for

Facile Synthesis of Multisubstituted 2,3-Dihydrofurans via Intermolecular Cyclization of Enals or Alkyl/Aryl Aldehydes with Acyl-Stabilized Sulfur Ylides

Yin Su, Ziyi Sun, Quansheng Zhao* and Liang Fu*

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China

Email: liangfu-chem@ahnu.edu.cn

Table of Contents

1. General	S2
2. Synthesis of Acyl-Stabilized Sulfur Ylides 1a-1j	S2
3. General Procedure for the synthesis of 2,3-Dihydrofurans	S2
4. Optimization of the Reaction Conditions	S3
5. General Procedure for the One-Pot Synthesis of Multisubstituted Furans	S6
6. Gram-Scale Reaction	S6
7. Evaluation of Biologically Active 2,3-Dihydrofurans	S7
8. Mechanistic Studies	S9
9. Product Characterization	S11
10. Single Crystal X-Ray Diffraction Data (9 and 53)	S31
11. References	S33
12. NMR Spectra of Products	S34

1. General

All commercially available compounds were purchased from Aldrich, Alfa Aesar or Adamas. NMR spectra were recorded on Bruker 400 (400 MHz for 1 H, 376 MHz for 19 F, 162 MHz for 31 P and 100 MHz for 13 C) spectrometer. Chemical shifts (δ) are given in parts per million relative to CDCl₃ (7.26 ppm for 1 H and 77.0 ppm for 13 C) to internal TMS (δ = 0 ppm) as an internal standard. High-resolution mass spectra (HRMS) were performed on Shimadzu LCMS-9030, using a quadrupole time-of-flight mass spectrometer equipped with an ESI source. Single-crystal data were performed on the Bruker D8 Venture single-crystal X-ray diffractometer. Infrared spectra were recorded on a Perkin-Elmer Spectrum 100 Series FTIR spectrometer as KBr plates. Melting points (uncorrected) were determined on a Thomas-Hoover capillary melting point apparatus. Flash column chromatography was performed on silica gel (particle size 200-300 mesh, purchased from Shandong) and eluted with petroleum ether/ethyl acetate. Solvent was purified according to the procedure from a book named "Purification of Laboratory Chemicals".

2. Synthesis of Acyl-Stabilized Sulfur Ylides 1a-1j

Acyl-stabilized sulfur ylides **1a-j** were prepared according to the literatures.^[S1]

3. General Procedure for the Synthesis of 2,3-Dihydrofurans

Conditions A for the intermolecular cyclization of alkyl aldehydes with acyl-stabilized sulfur ylides:

In a 25 mL one-necked round bottom flask equipped with a stirring bar, butyraldehyde **2a** (43.3mg, 0.6 mmol), DABCO (56.1 mg, 0.5 mmol) and PivOH (71.5 mg, 0.7 mmol) were dissolved in CH₃CN (1.0 mL), and the mixture was stirred at room temperature for 1 h. Then, phenacyl sulfur ylide **1a** (180.3 mg, 1.0 mmol) was added to the mixture, and the reaction mixture was stirred at room temperature for 12 h. The reaction was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate (PE/EA = 2:1), solvent was removed under vacuum. The residue was purified by column chromatography on silica gel

(PE/EA = 200:1 to 80:1) to yield product **3** (150.6 mg, 89% yield, d.r. > 19:1) as yellow oil. The diastereoselective ratio (d.r. > 19:1) was determined by ¹H NMR spectroscopy of the crude mixture.

Conditions B for the intermolecular cyclization of enals with acyl-stabilized sulfur ylides:

In a 25 mL one-necked round bottom flask equipped with a stirring bar, β , β -dimethylacrolein (50.4 mg, 0.6 mmol), DABCO (56.1 mg, 0.5 mmol) and PivOH (71.5 mg, 0.7 mmol) were dissolved in CH₃CN (1.0 mL), and the mixture was stirred at room temperature for 1 h. Then, phenacyl sulfur ylide **1a** (180.3 mg, 1.0 mmol) was added to the mixture, and the reaction mixture was stirred at room temperature for 12 h. The reaction was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate (PE/EA = 2:1), solvent was removed under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 80:1 to 60:1) to yield product **13** (119.4 mg, 68% yield, d.r. > 19:1) as a yellow solid. The diastereoselective ratio (d.r. > 19:1) was determined by ¹H NMR spectroscopy of the crude mixture.

Conditions C for the intermolecular cyclization of aryl aldehydes with acyl-stabilized sulfur ylides:

In a 25 mL one-necked round bottom flask equipped with a stirring bar, 4-bromobenzaldehyde (110.4 mg, 0.6 mmol), DABCO (56.1 mg, 0.5 mmol) and PivOH (71.5 mg, 0.7 mmol) were dissolved in isopropyl alcohol (1.0 mL), and the mixture was stirred at room temperature for 1 h. Then, phenacyl sulfur ylide **1a** (180.3 mg, 1.0 mmol) was added to the mixture, and the reaction mixture was stirred at room temperature for 12 h. The reaction was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate (PE/EA = 1:1), solvent was removed under vacuum. The residue was purified by column chromatography on silica gel (PE/Et₂O = 80:1 to 40:1) to yield product **18** (144.3 mg, 64% yield, d.r. > 19:1) as a light yellow solid. The diastereoselective ratio (d.r. > 19:1) was determined by ¹H NMR spectroscopy of the crude mixture.

4. Optimization of the Reaction Conditions

Table S1. Evaluation of various bases. *a,b*

Table S2. Evaluation of various acids. *a,b*

Table S3. Evaluation of various solvents. *a,b*

	+	.0 equiv.)	O + Ph
CH₃	ⁿ Pr Solvent	, rt, 12 h H ₃ CS	ⁿ Pr
1a	2a	3 (d.r. >	
Entry	Solvent	Yield of 3	Yield of 3'
1	CH₃CN	68%	5%
2	acetone	59%	3%
3	THF	30%	3%
4	MTBE	37%	6%
5	CHCI ₃	28%	8%
6	CCI ₄	24%	11%
7	DCE	45%	11%
8	DMF	31%	13%
9	toluene	47%	20%
10	CH ₃ OH	13%	30%
11	EtOH	39%	10%
12	IPA	57%	4%
13	HFIP	0%	10%
14	TFE	13%	29%

 $^{^{8}}$ Reaction conditions: DABCO (0.5 mmol), phenacyl sulfur ylide **1a** (1.0 mmol), butyraldehyde **2a** (2.0 mmol) and PivOH (1.0 mmol) in solvent (1.0 mL) under air at rt for 12 h. b ¹H NMR yields using CH₂Br₂ as an internal standard and the diastereoselective ratio (*d.r.* > 19:1) was determined by 1 H NMR spectroscopy of the crude mixture.

Table S4. Evaluation of the reaction concentration. *a,b*

 $[^]a$ Reaction conditions: base (0.5 mmol), phenacyl sulfur ylide **1a** (1.0 mmol), butyraldehyde **2a** (2.0 mmol) and CH₃COOH (1.0 mmol) in CH₃CN (1.0 mL) under air at rt for 12 h. b 1 H NMR yields using CH₂Br₂ as an internal standard and the diastereoselective ratio (d.r. > 19:1) was determined by 1 H NMR spectroscopy of the crude mixture.

 $[^]a$ Reaction conditions: acid (1.0 mmol), phenacyl sulfur ylide ${f 1a}$ (1.0 mmol), butyraldehyde ${f 2a}$ (2.0 mmol) and DABCO (0.5 mmol) in CH $_3$ CN (1.0 mL) under air at rt for 12 h. b 1 H NMR yields using CH $_2$ Br $_2$ as an internal standard and the diastereoselective ratio (d.r. > 19:1) was determined by 1 H NMR spectroscopy of the crude mixture.

Table S5. Evaluation of the equivalent of pivalic acid. *a,b*

Table S6. Evaluation of the equivalent of aldehyde 2a. a,b

Table S7. Evaluation of the equivalent of DABCO. a,b

^a Reaction conditions: DABCO (0.5 mmol), phenacyl sulfur ylide **1a** (1.0 mmol), butyraldehyde **2a** (2.0 mmol) and PivOH (1.0 mmol) in CH₃CN (X mL) under air at rt for 12 h. ^b ¹H NMR yields using CH₂Br₂ as an internal standard and the diastereoselective ratio (d.r. > 19:1) was determined by ¹H NMR spectroscopy of the crude mixture.

 $[^]a$ Reaction conditions: DABCO (0.5 mmol), phenacyl sulfur ylide **1a** (1.0 mmol), butyraldehyde **2a** 2.0 mmol) and PivOH (X mmol) in CH $_3$ CN (1.0 mL) under air at rt for 12 h. b 1 H NMR yields using CH $_2$ Br $_2$ as an internal standard and the diastereoselective ratio (d.r. > 19:1) was determined by 1 H NMR spectroscopy of the crude mixture.

 $[^]a$ Reaction conditions: DABCO (0.5 mmol), phenacyl sulfur ylide **1a** (1.0 mmol), butyraldehyde **2a** (X mmol) and PivOH (0.7 mmol) in CH₃CN (1.0 mL) under air at rt for 12 h. b ¹H NMR yields using CH₂Br₂ as an internal standard and the diastereoselective ratio (d.r. > 19:1) was determined by ¹H NMR spectroscopy of the crude mixture.

5. General Procedure for the One-Pot Synthesis of Multisubstituted Furans

After the intermolecular cyclization of enals or alkyl/aryl aldehydes with acyl-stabilized sulfur ylides (on a 1 mmol scale) was completed, CH₃CN or IPA as solvent was directly removed under vacuum. Then, to a solution of the resulting residue in toluene (2 mL) was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (272.4 mg, 1.2 mmol), the reaction mixture was heated up to 130 °C for 7 h. After reaction completion and cooling down to room temperature, the reaction mixture was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate (PE/EA = 1:1), solvent was removed under vacuum. The residue was purified by column chromatography on silica gel to yield products **48-58** as shown in Scheme 2.

6. Gram-Scale Reaction

6.1 Gram-Scale Synthesis of 2,3-Dihydrofuran 18

In a 50 mL one-necked round bottom flask equipped with a stirring bar, 4-bromobenzaldehyde (1.01 g, 6.0 mmol), DABCO (560.9 mg, 5.0 mmol) and PivOH (715.0 mg, 7.0 mmol) were dissolved in IPA (10.0 mL), and the mixture was stirred at room temperature for 1 h. Then, phenacyl sulfur ylide 1a (1.80 g, 10.0 mmol) was added to the mixture, and the reaction mixture was stirred at room temperature for 12 h. The reaction was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate (PE/EA = 1:1), solvent was removed under vacuum. The residue was purified by column chromatography on silica gel (PE/Et₂O = 100:1 to 40:1) to yield product 18 (1.32 g, 58% yield) as a yellow solid.

^a Reaction conditions: DABCO (X equiv.), phenacyl sulfur ylide **1a** (1.0 mmol), butyraldehyde **2a** (0.6 mmol) and PivOH (0.7 mmol) in CH₂CN (1.0 mL) under air at rt for 12 h. ^b 1 H NMR yields using CH₂Br₂ as an internal standard and the diastereoselective ratio (*d.r.* > 19:1) was determined by 1 H NMR spectroscopy of the crude mixture.

The diastereoselective ratio (d.r. > 19:1) was determined by ¹H NMR spectroscopy of the crude mixture.

6.2 Gram-Scale Synthesis of Multisubstituted Furan 53

As mentioned above, after the intermolecular cyclization of 4-bromobenzaldehyde with phenacyl sulfur ylide **1a** (on a 10 mmol scale) was completed, IPA was directly removed under vacuum. To a solution of the resulting residue in toluene (20 mL) was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (2.72 g, 12.0 mmol), the reaction mixture was heated up to 130 °C for 7 h. After reaction completion and cooling down to room temperature, the reaction mixture was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate (PE/EA = 1:1), solvent was removed under vacuum. The residue was purified by column chromatography on silica gel (PE/EA = 80:1 to 60:1) to yield product **53** (1.26 g, 56% yield) as a yellow solid.

7. Evaluation of Biologically Active Multisubstituted 2,3-Dihydrofurans

The anti-inflammatory and immune-regulation effect of these compounds was tested by the inhibition of T cells. Primary splenic T cells were isolated from healthy mice and activated by concanavalin A (ConA) for 24 hours. Then T cells were co-incubated with these compounds for 24 hours. Cell proliferation inhibition and viability were assessed using a CCK-8 kit, with absorbance measurements at 450 nm in the microplate reader.

Table S8. Inhibition of Compounds against splenic T cells at 10 μM in vitro

Compounds	Spleen T Cell inhibition rate (%)	Compounds	Spleen T Cell inhibition rate (%)	Compounds	Spleen T Cell inhibition rate (%)
PFD	19.09±3.15	17	12.84±9.47	34	15.76±11.74
AKF-PD	21.84 ± 5.01	18	14.41 ± 6.66	35	7.57 ± 3.77
3	20.34 ± 4.02	19	25.68 ± 3.99	36	17.45 ± 11.78
4	14.05 ± 3.33	20	19.68 ± 7.06	37	23.26 ± 2.27
5	15.11 ± 0.88	22	14.74 ± 3.26	38	24.14 ± 9.40
6	13.46 ± 11.41	23	18.03 ± 1.13	39	19.13 ± 4.32
7	13.17 ± 6.51	24	15.91 ± 5.67	40	15.44 ± 9.77
8	17.08 ± 4.28	25	14.78 ± 3.62	41	16.24 ± 3.58
9	19.35 ± 10.83	26	22.46 ± 2.63	42	4.50 ± 2.60
10	20.89 ± 3.44	27	14.74 ± 4.79	43	22.28 ± 0.91
11	23.66 ± 5.16	28	20.37 ± 10.31	44	16.35 ± 4.02
12	21.32 ± 12.36	29	21.87 ± 1.79	45	15.62 ± 1.50
13	27.07 ± 2.41	30	23.34 ± 8.34	46	20.37 ± 2.96
14	13.42 ± 2.78	31	19.13 ± 4.43	47	15.40 ± 3.44
15	13.13±1.98	32	25.46±4.13		

16	19.39 ± 8.12	33	24.65 ± 1.87	

All data were average data of three replicates

Rat hepatic stellate cells (HSC-T6) were activated with transforming growth factor $\beta 1$ (TGF- $\beta 1$) for 24 hours to induce the activation and proliferation, which simulated liver fibrosis. HSC-T6 were incubated with the compounds for 24 hours subsequently. The inhibition and viability of the cells were assessed using CCK-8 kit. The absorbance at 450 nm was detected utilizing a Microplate Reader.

Table S9. The inhibition of the compounds to the HSC-T6.

Compound	HSC-T6 inhibition rate (%)	Compound	HSC-T6 inhibition rate (%)	Compound	HSC-T6 inhibition rate (%)
PFD	12.70±1.75	17	19.99±3.82	34	8.05±4.00
AKF-PD	16.77 ± 1.79	18	20.49 ± 2.72	35	9.89 ± 6.19
3	24.04 ± 3.25	19	24.73 ± 6.25	36	33.81 ± 2.74
4	10.53 ± 4.68	20	20.07 ± 5.46	37	21.35 ± 3.72
5	13.25 ± 5.91	22	-4.78 ± 1.39	38	20.92 ± 4.57
6	10.79 ± 8.78	23	15.89 ± 1.25	39	13.37 ± 2.02
7	12.70 ± 6.72	24	31.34 ± 10.19	40	15.45 ± 5.91
8	17.98 ± 6.14	25	11.74 ± 10.59	41	5.67 ± 8.24
9	-2.33 ± 5.15	26	3.89 ± 2.74	42	5.40 ± 5.29
10	10.56 ± 5.25	27	15.50 ± 1.80	43	5.55 ± 6.41
11	10.53 ± 6.10	28	26.07 ± 12.01	44	8.31 ± 5.46
12	19.63 ± 9.94	29	9.60 ± 2.26	45	22.46 ± 7.57
13	49.61 ± 20.97	30	9.10 ± 0.45	46	17.94 ± 6.05
14	18.63 ± 6.36	31	5.08 ± 5.41	47	14.33 ± 2.53
15	14.99 ± 3.72	32	9.82 ± 2.91		
16	10.51±7.63	33	7.24±6.62		

All data were average data of three replicates

Mouse renal tubular epithelial cells (MTEC) were activated with transforming growth factor β 1 (TGF- β 1) for 24 hours to induce the activation and proliferation, which simulated renal fibrosis respectively. MTEC were incubated with the compounds for 24 hours subsequently. The inhibition and viability of the cells were assessed using CCK-8 kit. The absorbance at 450 nm was detected utilizing a Microplate Reader.

Table S10. Inhibition of Compounds against MTECs at 10 µM in vitro

Compound	MTEC inhibition rate (%)	Compound	MTEC inhibition rate (%)	Compound	MTEC inhibition rate (%)
PFD	22.53 ± 9.17	17	18.75 ± 8.32	34	24.62 ± 5.22
AKF-PD	18.62 ± 4.52	18	23.59 ± 2.53	35	13.25 ± 4.30
3	23.91 ± 5.14	19	21.38 ± 6.32	36	24.00 ± 6.14
4	27.49 ± 11.90	20	22.85 ± 6.53	37	8.55 ± 3.17

5	14.74 ± 7.90	22	6.00 ± 5.90	38	13.15±6.55
6	21.59 ± 3.26	23	7.61 ± 6.50	39	20.94 ± 2.08
7	17.06 ± 12.85	24	25.07 ± 6.85	40	24.49 ± 8.47
8	23.06 ± 6.42	25	14.96 ± 10.95	41	16.91 ± 8.32
9	16.22 ± 3.05	26	9.48 ± 5.90	42	21.19 ± 9.05
10	14.22 ± 10.01	27	22.64 ± 0.32	43	12.38 ± 3.06
11	10.29 ± 8.39	28	23.59 ± 12.38	44	14.22 ± 7.58
12	7.01 ± 6.24	29	13.05 ± 13.41	45	9.45 ± 7.46
13	33.42 ± 2.35	30	18.37 ± 12.18	46	16.91 ± 5.38
14	9.37 ± 2.97	31	7.83 ± 15.86	47	12.75 ± 6.85
15	7.01 ± 9.31	32	7.42 ± 9.52		
16	23.70 ± 8.11	33	16.94 ± 7.06		

All data were average data of three replicates

We detected and screened 46 PFD derivatives to explore their effects on anti-inflammatory and anti-fibrosis. The results showed that compound 13 inhibited T cells, HSC-T6, and MTEC proliferation, and the effects were similar or superior to PFD and AKF-PD, which indicated that compound 13 has excellent anti-inflammatory and anti-fibrosis potency (Fig. 1).

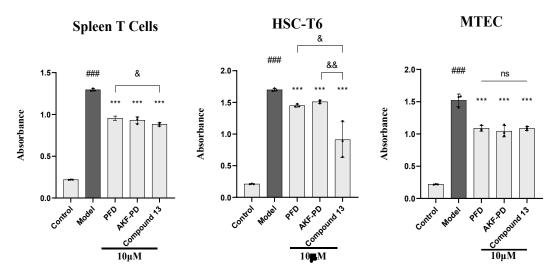
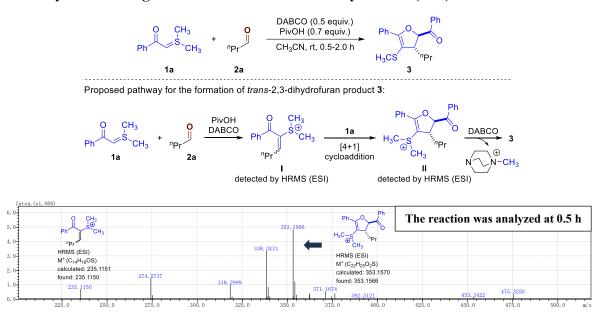


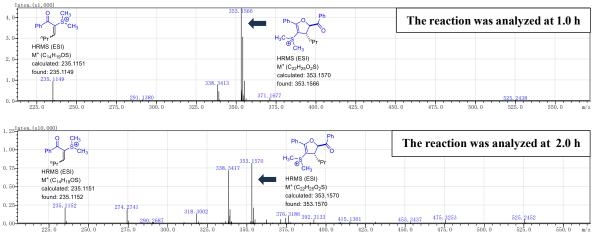
Figure S1. The inhibition of compound **13** to spleen T cells (A). HSC-T6 and (B) MTEC (C). Data are presented as means \pm SD. Data analysis was performed via one-way ANOVA. ****P<0.001 compared to controls; ****P<0.001 compared to models; **P<0.05, ***P<0.01; ns, no statistically significant difference.

8. Mechanistic Studies

8.1 Reaction of vinylsulfonium salt 59 with phenacyl sulfur ylide 1a

Vinylsulfonium salt **59** was prepared according to the literatures. [S2] Vinylsulfonium salt **59** (124.2 mg, 0.3 mmol, E/Z = 6.3:1), phenacyl sulfur ylide **1a** (54.1 mg, 0.3 mmol), DABCO (33.7 mg, 0.3 mmol) and PivOH (42.9 mg, 0.42 mmol) were dissolved in CH₃CN (0.6 mL), the resulting reaction mixture was stirred at room temperature for 12 h. The reaction was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate (PE/EA = 2:1), solvent was removed under vacuum. The residue was analyzed by ¹H NMR spectroscopy of the crude mixture using CH₂Br₂ as an internal standard.


As we expected, the reaction provided the desired product 21 in 41% yield, along with trace cyclopropanation product 21', suggesting that vinylsulfonium salt 59 might be involved in the reaction.


8.2 Ruling out α-sulfenylenone 60 as possible intermediates

α-Sulfenylenone **60** was prepared according to the literature. [S2b] α-Sulfenylenone **60** (149.7 mg, 0.5 mmol, E/Z = 1:1.1), phenacyl sulfur ylide **1a** (90.1 mg, 0.5 mmol), DABCO (56.1 mg, 0.5 mmol) and PivOH (71.5 mg, 0.7 mmol) were dissolved in CH₃CN (1.0 mL), the resulting reaction mixture was stirred at room temperature for 12 h. The reaction was quenched by a short pad of silica gel with a gradient eluent of petroleum ether and ethyl acetate (PE/EA = 2:1), solvent was removed under vacuum. The residue was analyzed by ¹H NMR spectroscopy of the crude mixture using CH₂Br₂ as an internal standard.

Notably, the reaction of α -sulfenylenone **60** with phenacyl sulfur ylide **1a** under the standard reaction conditions furnished the desired product **21** in 8% yield and cyclopropanation product **21'** in 7% yield, respectively, indicating that α -sulfenylenone **60** is much less likely than vinylsulfonium salt **59** to be involved in the reaction.

8.3 Analysis of an original crude reaction mixture by HRMS (ESI)

An original crude reaction mixture was analyzed by high resolution mass spectrum (HRMS) at various time. A highly reactive vinyl sulfonium salt (int-I) could not be separated from the reaction mixture by flash column chromatography, due to its high reactivity and low quantities, however, the highly reactive vinylsulfonium salt can be detected by HRMS (ESI) from the reaction mixture. In addition, a 2,3-dihydrofurylsulfonium salt intermediate (int-II) generated by the subsequent formal [4+1] cycloaddition of the possible vinylsulfonium salt intermediate (int-I) with a second equivalent of phenacyl sulfur ylide 1a can also be detected by HRMS (ESI) from the same reaction mixture.

9. Product Characterization

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 80:1) yielded product **3** (150.6 mg, 89% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.06-8.04 (m, 2H), 7.85-7.82 (m, 2H), 7.62-7.58 (m, 1H), 7.51-7.48 (m, 2H), 7.37-7.29 (m, 3H), 5.42 (d, J = 4.8 Hz, 1H), 3.64-3.60 (m, 1H), 2.16 (s, 3H), 1.95-1.86 (m, 1H), 1.74-1.65 (m, 1H), 1.52-1.41 (m, 2H), 0.99 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 152.7, 134.8, 133.4, 130.1, 129.1, 128.9, 128.6, 127.9, 127.7, 107.2, 84.7, 47.9, 34.8, 19.3, 16.9, 14.2. IR (KBr): ν = 2958, 1694, 1595, 1492, 1446, 1218, 1075, 955, 782, 696 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₁H₂₃O₂S) [M+H]⁺: 339.1413, found: 339.1416.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 80:1) yielded product 4 (169.9 mg, 85% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.05-8.03 (m, 2H), 7.84 (d, J = 6.8 Hz, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.36-7.31 (m, 3H), 7.29-7.22 (m, 4H), 7.17 (t, J = 7.2 Hz, 1H), 5.45 (d, J = 4.8 Hz, 1H), 3.72-3.69 (m, 1H), 2.80-2.74 (m, 2H), 2.27-2.24 (m, 1H), 2.11 (s, 3H), 2.09-2.05 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 152.9, 141.6, 134.8, 133.5, 129.9, 129.1, 128.9, 128.6, 128.43, 128.41, 127.9, 127.7, 125.9, 106.9, 84.5, 47.6, 34.2, 32.3, 16.8. IR (KBr): V = 2920, 1690, 1596, 1490, 1445, 1230, 1053, 768, 689 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₆H₂₅O₂S) [M+H]⁺: 401.1570, found: 401.1573.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 40:1) yielded product **5** (145.6 mg, 70% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.16-8.14 (m, 2H), 7.94-7.92 (m, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.42-7.31 (m, 10H), 5.86 (d, J = 3.6 Hz, 1H), 4.64 (dd, J = 14.0, 11.6 Hz, 2H), 3.91 (dd, J = 9.2, 3.6 Hz, 1H), 3.77 (t, J = 8.8 Hz, 1H), 3.72-3.69 (m, 1H), 2.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 155.5, 138.0, 134.0, 133.5, 129.9, 129.2, 129.1, 128.6, 128.4, 128.0, 127.9, 127.75, 127.71, 102.8, 82.4, 73.4, 70.5, 49.8, 17.4. IR (KBr): ν = 3055, 2854, 1696, 1597, 1495, 1449, 1219, 1113, 1029, 763, 692 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₆H₂₅O₃S) [M+H]⁺: 417.1519, found: 417.1515.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Et_2O , 100:0 to 40:1) yielded product **6** (119.6 mg, 71% yield) as a yellow solid (m.p. = 81-82 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.08-8.06 (m, 2H), 7.91-7.88 (m, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 2H), 7.38-7.30 (m, 3H), 5.58 (d, J = 5.2 Hz, 1H), 2.90 (dd, J = 9.2, 4.8 Hz, 1H), 2.19 (s, 3H), 1.16-1.07 (m, 1H), 0.79-0.72 (m, 1H), 0.65-0.58 (m, 1H), 0.56-0.49 (m, 1H), 0.27-0.21 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 153.9, 134.6, 133.5, 130.0, 129.1, 129.0, 128.6, 127.9, 107.2, 85.7, 53.7, 17.7, 15.7, 4.6, 2.3. IR (KBr): ν = 3057, 2917, 1697, 1595, 1492, 1443, 1222, 1093, 966, 766, 698, 551 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₁H₂₁O₂S) [M+H]⁺: 337.1257, found: 337.1250.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 10:1) yielded product 7 (179.1 mg, 75% yield) as a yellow solid (m.p. = 125-126 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.2 Hz, 2H), 7.79-7.77 (m, 2H), 7.61 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.36-7.31 (m, 3H), 5.43 (d, J = 3.6 Hz, 1H), 4.22 (s, 2H), 3.72 (s, 1H), 2.77-2.67 (m, 2H), 2.18 (s, 3H), 2.16-2.09 (m, 1H), 1.65 (d, J = 12.4 Hz, 2H), 1.46 (s, 9H), 1.43-1.37 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 154.7, 153.3, 134.8, 133.5, 129.7, 129.2, 129.0, 128.6, 127.9, 127.8, 105.0, 81.4, 79.4, 51.6, 44.2, 37.4, 29.8, 28.4, 26.6, 16.8. IR (KBr): ν = 3371, 2928, 1687, 1595, 1432, 1363, 1238, 1172, 1083, 759, 693 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₈H₃₄NO₄S) [M+H]⁺: 480.2203, found: 480.2211.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 60:1) yielded product **8** (136.8 mg, 63% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.06-8.04 (m, 2H), 7.85-7.83 (m, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.36-7.28 (m, 3H), 5.86-5.76 (m, 1H), 5.42 (d, J = 4.8 Hz 1H), 5.01-4.91 (m, 2H), 3.63-3.59 (m, 1H), 2.15 (s, 3H), 2.03 (q, J = 7.2 Hz, 2H), 1.94-1.87 (m, 1H), 1.73-1.66 (m, 1H), 1.44-1.29 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 152.6, 139.1, 134.8, 133.4, 130.0, 129.1, 128.9, 128.6, 127.9, 127.7, 114.1, 107.2, 84.6, 48.0, 33.7, 32.5, 29.7, 29.4, 29.3, 29.0, 28.8, 25.9, 16.8. IR (KBr): ν = 2915, 1694, 1596, 1490, 1446, 1229, 1065, 963, 769, 692 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₈H₃₅O₂S) [M+H]⁺: 435.2352, found: 435.2360.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/DCM, 100:0 to 2:1) yielded product **9** (119.8 mg, 53% yield) as a white solid (m.p. = 149-150 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (m, 2H), 7.84-7.79 (m, 4H), 7.72-7.68 (m, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.37-7.31 (m, 5H), 5.84 (d, J = 4.4 Hz, 1H), 4.31 (dd, J = 13.2, 2.4 Hz, 1H), 4.07-3.96 (m, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 168.6, 153.9, 134.5, 134.0, 133.3, 131.8, 129.5, 129.1, 129.0, 128.4, 127.9, 127.8, 123.3, 104.1, 83.5, 47.9, 39.7, 16.7. IR (KBr): v = 3454, 2923, 1767, 1699, 1433, 1392, 1329, 1218, 1118, 1059, 1006, 969, 901, 768, 691, 528 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₇H₂₂NO₄S) [M+H]⁺: 456.1264, found: 456.1254.

The reaction was conducted on a 2.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 40:1) yielded product **10** (124.4 mg, 42% yield) as a light yellow solid (m.p. = 80-81 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.6 Hz, 2H), 7.85 (d, J = 7.2 Hz, 2H), 7.61 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.37-7.29 (m, 3H), 5.77 (dd, J = 11.2, 7.6 Hz, 1H), 3.43 (dd, J = 15.6, 7.6 Hz, 1H), 3.34 (dd, J = 15.2, 11.2 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 151.9, 134.5, 133.6, 130.0, 129.1, 128.7, 128.6, 127.9, 127.4, 102.5, 79.5, 37.9, 16.5. IR (KBr): V = 2907, 1686, 1596, 1446, 1325, 1220, 1065, 915, 768, 691 cm⁻¹. HRMS: m/z (ESI) calculated for (C₁₈H₁₇O₂S) [M+H]⁺: 297.0944, found: 297.0949.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/DCM, 100:0 to 1:1) yielded product **11** (115.5 mg, 58% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.06-8.03 (m, 2H), 7.97-7.95 (m, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.43 (d, J = 7.2 Hz, 2H), 7.41-7.32 (m, 5H), 7.26 (t, J = 7.2 Hz, 1H), 6.61 (d, J = 16.0 Hz, 1H), 6.41 (dd, J = 15.6, 9.2 Hz, 1H), 5.63 (d, J = 5.2 Hz, 1H), 4.23 (dd, J = 8.8, 5.2 Hz, 1H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 154.0, 136.4, 134.1, 133.7, 132.9, 129.8, 129.13, 129.08, 128.7, 128.6, 128.0, 127.8, 127.7, 126.5, 105.5, 84.7, 53.8, 17.0. IR (KBr): ν = 3024, 2923, 1694, 1596, 1490, 1447, 1229, 1066, 963, 749, 691 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₆H₂₃O₂S) [M+H]⁺: 399.1413, found: 399.1426.

The reaction was conducted on a 2.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 40:1) yielded product **12** (84.1 mg, 24% yield, E/Z = 15.8:1) as a yellow solid (m.p. = 60-61 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.03-8.01 (m, 2H), 7.95-7.93 (m, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 8.0 Hz, 2H), 7.39-7.31 (m, 3H), 5.72 (dd, J = 15.2, 6.0 Hz, 1H), 5.64 (dd, J = 15.2, 8.4 Hz, 1H), 5.51 (d, J = 5.6 Hz, 1H), 3.99 (dd, J = 8.4, 5.2 Hz, 1H), 2.18-2.11 (m, 5H), 1.05 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 153.4, 136.1, 134.1, 133.5, 130.0, 129.0, 128.9, 128.6, 128.1, 127.9, 127.7, 105.7, 85.0, 53.7, 25.4, 16.8, 13.5. IR (KBr): ν = 2958, 1696, 1597, 1493, 1446, 1229, 1066, 968, 768, 689 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₂H₂₃O₂S) [M+H]⁺: 351.1413, found: 351.1418.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 60:1) yielded product **13** (119.0 mg, 68% yield) as a yellow solid (m.p. = 65-66 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.03-8.01 (m, 2H), 7.94-7.92 (m, 2H), 7.61 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 2H), 7.39-7.33 (m, 3H), 5.46 (d, J = 6.0 Hz, 1H), 5.40 (dt, J = 10.0, 1.2 Hz, 1H), 4.32 (dd, J = 10.4, 6.0 Hz, 1H), 2.14 (s, 3H), 1.82 (d, J = 1.2 Hz, 3H), 1.63 (d, J = 1.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 153.5, 135.7, 134.4, 133.6, 130.1, 129.0, 128.9, 128.6, 127.9, 127.8, 124.6, 106.3, 85.4, 49.4, 25.9, 18.1, 17.1. IR (KBr): ν = 2925, 1694, 1595, 1492, 1446, 1218, 1075, 955, 782, 696 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₂H₂₃O₂S) [M+H]⁺: 351.1413 found: 351.1408.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 40:1) yielded product **14** (137.4 mg, 57% yield) as a yellow solid (m.p. = 149-150 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.06-8.04 (m, 2H), 7.94-7.91 (m, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.40-7.34 (m, 4H), 7.29 (dd, J = 5.2, 1.2 Hz, 1H), 7.02 (dd, J = 5.2, 3.6 Hz, 1H), 6.53 (d, J = 9.2 Hz, 1H), 5.65 (d, J = 4.8 Hz, 1H), 4.80 (dd, J = 9.2, 4.4 Hz, 1H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 154.3, 142.1, 133.9, 133.7, 129.7, 129.3, 129.1, 128.8, 128.4, 128.0, 127.95, 127.88, 127.2, 126.3, 119.4, 105.3, 83.8, 52.5, 17.4. IR (KBr): ν = 2917, 1693, 1597, 1489, 1445, 1245, 1209, 1052, 762, 688 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₄H₂₀BrO₂S₂) [M+H]⁺: 483.0083, found: 483.0094.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Et_2O , 100:0 to 20:1) yielded product **15** (162.1 mg, 74% yield) as a yellow solid (m.p. = 120-121 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 2H), 7.92 (d, J = 6.8 Hz, 2H), 7.61 (t, J = 7.2 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.39-7.33 (m, 4H), 7.27 (d, J = 4.8 Hz, 1H), 7.01 (t, J = 4.8 Hz, 1H), 6.38 (d, J = 9.6 Hz, 1H), 5.64 (d, J = 4.4 Hz, 1H), 4.84 (dd, J = 9.2, 4.4 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 154.1, 140.9, 133.9, 133.7, 129.7, 129.2,

129.0, 128.7, 128.6, 128.0, 127.9, 127.4, 126.6, 126.2, 124.8, 105.4, 84.0, 49.7, 17.2. IR (KBr): $\nu = 2927$, 1694, 1596, 1489, 1445, 1250, 1049, 865, 761, 688 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₄H₂₀ClO₂S₂) [M+H]⁺: 439.0588, found: 439.0595.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 60:1) yielded product **16** (87.5 mg, 47% yield) as a white solid (m.p. = 109-110 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.99-7.96 (m, 4H), 7.60 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.42-7.31 (m, 8H), 5.70 (d, J = 4.8 Hz, 1H), 4.62 (d, J = 4.4 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 153.9, 141.6, 134.1, 133.7, 129.8, 129.1, 129.0, 128.7, 128.0, 127.8, 127.7, 107.2, 87.0, 55.6, 16.8. IR (KBr): ν = 3021, 2914, 1693, 1593, 1487, 1445, 1373, 1222, 1095, 962, 763, 695, 548 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₄H₂₁O₂S) [M+H]⁺: 373.1257, found: 373.1261.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Et_2O , 100:0 to 40:1) yielded product 17 (96.5 mg, 50% yield) as a yellow solid (m.p. = 97-98 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.99-7.96 (m, 4H), 7.61 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.42-7.36 (m, 3H), 7.26 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 5.69 (d, J = 4.8 Hz, 1H), 4.57 (d, J = 4.8 Hz, 1H), 2.38 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 153.8, 138.5, 137.4, 134.1, 133.7, 129.9, 129.7, 129.14, 129.12, 128.7, 128.0, 127.93 127.86, 107.3, 87.1, 55.3, 21.2, 16.7. IR (KBr): ν = 2920, 1696, 1594, 1443, 1225, 1092, 961, 775, 686, 574 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₅H₂₃O₂S) [M+H]⁺: 387.1413, found: 387.1410.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Et_2O , 100:0 to 40:1) yielded product **18** (144.1 mg, 64% yield) as a light yellow solid (m.p. = 99-100 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.99-7.94 (m, 4H), 7.62 (t, J = 7.6 Hz, 1H), 7.54-7.47 (m, 4H), 7.42-7.37 (m, 3H), 7.27-7.25 (m, 2H), 5.63 (d, J = 5.2 Hz, 1H), 4.63 (d, J = 4.8 Hz, 1H), 2.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 154.2, 140.6, 134.1, 133.8, 132.1, 129.8, 129.6, 129.3, 129.1, 128.7, 128.1, 127.8, 121.6, 106.8, 86.8, 54.8, 16.8. IR (KBr): ν = 3060, 2937,

1692, 1593, 1485, 1449, 1220, 1072, 1008, 769, 691 cm⁻¹. HRMS: m/z (ESI) calculated for $(C_{24}H_{20}BrO_{2}S)[M+H]^{+}$: 451.0362, found: 451.0368.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 50:1) yielded product **19** (154.4 mg, 62% yield) as a yellow solid (m.p. = 123-124 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.98-7.94 (m, 4H), 7.72 (d, J = 8.4 Hz, 2H), 7.61 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.40-7.36 (m, 3H), 7.12 (d, J = 8.4 Hz, 2H), 5.62 (d, J = 4.8 Hz, 1H), 4.61 (d, J = 4.8 Hz, 1H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 154.2, 141.3, 138.1, 134.0, 133.8, 130.0, 129.6, 129.3, 129.1, 128.7, 128.0, 127.8, 106.8, 93.2, 86.7, 54.8, 16.8. IR (KBr): ν = 3055, 2937, 1692, 1595, 1479, 1446, 1219, 1076, 1005, 966, 769, 692, 556 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₄H₂₀IO₂S) [M+H]⁺: 499.0223, found: 499.0218.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 50:1) yielded product **20** (107.8 mg, 49% yield) as a yellow solid (m.p. = 80-81 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.00-7.94 (m, 4H), 7.67-7.61 (m, 3H), 7.52-7.48 (m, 4H), 7.42-7.37 (m, 3H), 5.65 (d, J = 4.8 Hz, 1H), 4.78 (d, J = 4.8 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 154.4, 145.6, 134.1, 133.9, 130.0 (q, J = 32.5 Hz), 129.5, 129.4, 129.2, 128.8, 128.5, 128.1, 127.9, 126.0 (q, J = 3.6 Hz), 124.1 (q, J = 270.1 Hz), 106.7, 86.7, 54.7, 16.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.41 (s, 3F). IR (KBr): ν = 3064, 2940, 1693, 1671, 1450, 1320, 1128, 1066, 956, 849, 769, 691 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₅H₂₀F₃O₂S) [M+H]⁺: 441.1131 found: 441.1125.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/DCM, 100:0 to 1:1) yielded product **21** (131.4 mg, 63% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.8 Hz, 2H), 8.01-7.99 (m, 2H), 7.96-7.93 (m, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.55 (d, J = 8.8 Hz, 2H), 7.49 (t, J = 8.0 Hz, 2H), 7.40-7.33 (m, 3H), 5.66 (d, J = 4.8 Hz, 1H), 4.88 (d, J = 4.8 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

194.0, 154.6, 149.0, 147.4, 134.0, 133.9, 129.5, 129.3, 129.2, 129.0, 128.7, 128.1, 127.8, 124.2, 106.5, 86.3, 54.4, 16.7. IR (KBr): ν = 2919, 1691, 1597, 1519, 1347, 1224, 690 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₄H₂₀NO₄S) [M+H]⁺: 418.1108, found: 418.1118.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Et_2O , 100:0 to 40:1) yielded product **22** (97.4 mg, 42% yield) as a white solid (m.p. = 101-102 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 7.6 Hz, 2H), 7.95-7.93 (m, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.40-7.31 (m, 6H), 7.14-7.02 (m, 5H), 6.96-6.94 (m, 1H), 5.70 (d, J = 4.8 Hz, 1H), 4.60 (d, J = 4.4 Hz, 1H), 2.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 157.7, 156.9, 154.2, 143.7, 134.1, 133.7, 130.3, 129.8, 129.2, 129.1, 128.7, 128.0, 127.9, 123.4, 122.8, 118.9, 118.6, 117.8, 107.0, 86.8, 55.3, 16.9. IR (KBr): ν =3052, 2918, 1697, 1585, 1482, 1442, 1253, 1218, 1092, 868, 758, 689 cm⁻¹. HRMS: m/z (ESI) calculated for (C₃₀H₂₅O₃S) [M+H]⁺: 465.1519, found: 465.1525.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Et_2O , 100:0 to 20:1) yielded product **23** (114.8 mg, 51% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.01-7.98 (m, 2H), 7.97-7.95 (m, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.52-7.46 (m, 4H), 7.42-7.37 (m, 3H), 7.32-7.30 (m, 1H), 7.27-7.25 (m, 1H), 5.65 (d, J = 4.8 Hz, 1H), 4.66 (d, J = 4.8 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 154.3, 143.9, 134.1, 133.9, 131.1, 130.9, 130.6, 129.6, 129.4, 129.2, 128.8, 128.1, 127.9, 126.8, 123.1, 106.8, 86.7, 54.7, 16.8. IR (KBr): ν = 3055, 2917, 1689, 1593, 1446, 1223, 1066, 768, 692 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₄H₂₀BrO₂S) [M+H]⁺: 451.0362, found: 451.0369.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Et_2O , 100:0 to 20:1) yielded product **24** (111.6 mg, 49% yield) as a white solid (m.p. = 107-108 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.00-7.95 (m, 4H), 7.62 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 2H), 7.45-7.37 (m, 4H), 7.33 (d, J = 7.6 Hz, 1H), 7.22-7.19 (m, 2H), 5.66 (d, J = 5.2 Hz, 1H),

4.70 (d, J = 5.2 Hz, 1H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3, 154.5, 149.7, 144.0, 134.0, 133.9, 130.4, 129.6, 129.4, 129.2, 128.8, 128.1, 127.9, 126.4, 120.7, 120.4 (q, J = 255.7 Hz), 120.1, 106.6, 86.7, 54.9, 16.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.65 (s, 3F). IR (KBr): ν = 2930, 1693, 1596, 1446, 1258, 1213, 1115, 966, 768, 693 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₅H₂₀F₃O₃S) [M+H]⁺: 457.1080, found: 457.1088.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/DCM, 100:0 to 2:1) yielded product **25** (91.3 mg, 46% yield) as a yellow solid (m.p. = 93-94 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.2 Hz, 2H), 7.95-7.92 (m, 2H), 7.67-7.62 (m, 4H), 7.54-7.49 (m, 3H), 7.40-7.38 (m, 3H), 5.61 (d, J = 4.8 Hz, 1H), 4.80 (d, J = 4.8 Hz, 1H), 2.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 154.5, 143.1, 134.1, 134.0, 132.7, 131.7, 131.4, 129.9, 129.5, 129.3, 129.2, 128.8, 128.1, 127.8, 118.6, 113.1, 106.5, 86.6, 54.1, 16.8. IR (KBr): v = 2925, 2227, 1693, 1596, 1446, 1216, 1090, 963, 763, 693 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₅H₂₀NO₂S) [M+H]⁺: 398.1209 found: 398.1218.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/DCM, 100:0 to 2:1) yielded product **26** (121.6 mg, 63% yield) as a yellow solid (m.p. = 105-106 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.99-7.94 (m, 4H), 7.62-7.58 (m, 1H), 7.48-7.45 (m, 2H), 7.41-7.35 (m, 4H), 7.28-7.20 (m, 3H), 5.64 (d, J = 4.4 Hz, 1H), 5.03 (d, J = 4.8 Hz, 1H), 2.34 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 153.8, 139.9, 136.0, 134.3, 133.7, 130.6, 129.9, 129.2, 129.1, 128.7, 128.0, 127.8, 127.4, 126.9, 107.5, 87.0, 50.9, 19.6, 17.1. IR (KBr): ν = 2915, 1687, 1595, 1489, 1443, 1216, 1089, 759, 696 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₅H₂₃O₂S) [M+H]⁺: 387.1413, found: 387.1422.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 40:1) yielded product **27** (122.9 mg, 61% yield) as a yellow solid (m.p. = 118-119 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.98-7.93 (m, 4H), 7.59 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.41-7.28 (m, 5H), 7.04-7.00 (m, 1H), 6.91 (d, J = 8.4 Hz, 1H), 5.65 (d, J = 4.8 Hz, 1H), 5.15 (d, J = 4.4 Hz, 1H), 3.71 (s, 3H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 156.9, 153.7, 134.4, 133.4, 130.1, 129.4, 129.2, 129.1, 128.9, 128.7, 128.5, 128.0, 127.8, 121.2, 110.6, 106.8, 86.2, 55.3, 47.8, 16.7. IR (KBr): ν = 2920, 1686, 1596, 1490, 1440, 1239, 1092, 1025, 963, 756, 695 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₅H₂₃O₃S) [M+H]⁺: 403.1362, found: 403.1372.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 40:1) yielded product **28** (147.4 mg, 53% yield) as a light yellow solid (m.p. = 148-149 °C).

¹H NMR (400 MHz, CDCl₃) δ 7.87-7.82 (m, 4H), 7.52-7.47 (m, 2H), 7.41 (t, J = 7.6 Hz, 1H), 7.35-7.25 (m, 10H), 7.23-7.20 (m, 1H), 7.14-7.12 (m, 4H), 7.08-7.05 (m, 1H), 7.00-6.97 (m, 1H), 5.84 (dd, J = 7.6, 2.8 Hz, 1H), 5.39 (d, J = 3.2 Hz, 1H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 153.2, 145.9 (d, J = 24.5 Hz), 136.5 (d, J = 10.1 Hz), 136.3 (d, J = 13.7 Hz), 135.9 (d, J = 10.1 Hz), 134.4, 134.1 (d, J = 13.0 Hz), 133.9 (d, J = 12.3 Hz), 133.2, 129.8 (d, J = 5.1 Hz), 129.1, 128.9, 128.6 (d, J = 1.5 Hz), 128.5, 128.4, 128.3, 127.9, 127.7, 127.6, 109.0, 85.3, 50.3 (d, J = 28.2 Hz), 16.9 (d, J = 4.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -17.03 (s, 1P). IR (KBr): ν = 3050, 2920, 1690, 1582, 1433, 1228, 1060, 993, 751, 698, 498 cm⁻¹. HRMS: m/z (ESI) calculated for (C₃₆H₃₀O₂PS) [M+H]⁺: 557.1699, found: 557.1714.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Et_2O , 100:0 to 40:1) yielded product **29** (132.0 mg, 50% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.95-7.93 (m, 2H), 7.66-7.62 (m, 2H), 7.52 (t, J = 8.0 Hz, 2H), 7.44 (d, J = 1.6 Hz, 2H), 7.42-7.38 (m, 3H), 5.60 (d, J = 4.8 Hz, 1H), 4.70 (d, J = 4.8 Hz, 1H), 2.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 154.6, 145.6, 134.1, 134.0, 133.4, 130.0, 129.5, 129.4, 129.3, 128.8, 128.1, 127.9, 123.5, 106.3, 86.5, 54.0, 16.9. IR (KBr): ν = 3064, 2918, 1686, 1556, 1423, 1229, 1068, 963, 736, 688 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₄H₁₉Br₂O₂S) [M+H]⁺: 528.9467, found: 528.9473.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 4:1) yielded product **30** (111.9 mg, 60% yield) as a light yellow solid (m.p. = 81-82 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.68-8.67 (m, 1H), 8.07-8.05 (m, 2H), 8.00-7.97 (m, 2H), 7.74-7.70 (m, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.49-7.42 (m, 3H), 7.40-7.34 (m, 3H), 7.27-7.23 (m, 1H), 6.16 (d, J = 5.2 Hz, 1H), 4.87 (d, J = 5.6 Hz, 1H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 160.2, 155.0, 149.9, 136.8, 134.2, 133.6, 129.8, 129.23, 129.19, 128.6, 127.94, 127.90, 123.3, 122.5, 106.0, 85.1, 57.0, 17.1. IR (KBr): ν = 3057, 2915, 1694, 1586, 1433, 1228, 1110, 958, 772, 688 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₃H₂₀NO₂S) [M+H]⁺: 374.1209, found: 374.1222.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = DCM/MeOH, 100:0 to 60:1) yielded product **31** (155.9 mg, 86% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 10.17 (br, 1H), 8.04-8.02 (m, 2H), 7.95-7.93 (m, 2H), 7.60-7.56 (m, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.39-7.34 (m, 3H), 6.34 (d, J = 2.0 Hz, 1H), 5.87 (d, J = 5.2 Hz, 1H), 4.93 (d, J = 4.8 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 154.0, 150.9, 134.0, 133.7, 131.6, 129.8, 129.22, 129.19, 128.7, 128.0, 127.8, 105.8, 103.9, 85.4, 48.4, 16.9. IR (KBr): ν = 3342, 3177, 2918, 1687, 1596, 1492, 1447, 1226, 1065, 963, 768, 691 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₁H₁₉N₂O₂S) [M+H]⁺: 363.1162, found: 363.1173.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Dioxane, 100:0 to 8:1) yielded product **32** (174.7 mg, 85% yield) as a brown solid (m.p. = 181-182 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.05-8.03 (m, 2H), 8.01-7.99 (m, 2H), 7.63-7.60 (m, 2H), 7.50 (t, J = 8.0 Hz, 2H), 7.43-7.36 (m, 4H), 7.21-7.17 (m, 1H), 7.14-7.11 (m, 1H), 6.53 (d, J = 1.6 Hz, 1H), 5.80 (d, J = 4.8 Hz, 1H), 4.91 (d, J = 4.8 Hz, 1H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 154.2, 137.7, 136.5, 133.9, 133.8, 129.5, 129.4, 129.2, 128.8, 128.4, 128.1, 127.9, 122.1, 120.4, 120.0, 111.0, 104.9, 101.3, 85.3, 49.1, 16.7. IR (KBr): $\nu = 3308$, 3057, 2918, 1689, 1596, 1447, 1213, 1093, 963, 751, 688 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₆H₂₂NO₂S) [M+H]⁺: 412.1366, found: 412.1377.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 25:1) yielded product **33** (132.2 mg, 73% yield) as a light yellow solid (m.p. = 109-110 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.05-8.03 (m, 2H), 7.97-7.95 (m, 2H), 7.61 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.45 (d, J = 1.2 Hz, 1H), 7.39-7.35 (m, 3H), 6.40 (dd, J = 3.2, 2.0 Hz, 1H), 6.34 (d, J = 3.2 Hz, 1H), 5.86 (d, J = 5.6 Hz, 1H), 4.83 (d, J = 5.6 Hz, 1H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 154.9, 153.4, 142.4, 134.1, 133.8, 129.7, 129.3, 129.2, 128.7, 128.0, 127.9, 110.8, 108.0, 104.2, 83.7, 49.1, 17.0. IR (KBr): ν = 2920, 1696, 1597, 1443, 1222, 1110, 962, 742, 683 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₂H₁₉O₃S) [M+H]⁺: 363.1049, found: 363.1060.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/dioxane, 100:0 to 60:1) yielded product **34** (109.5 mg, 58% yield) as a light yellow solid (m.p. = 107-108 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.04-8.02 (m, 2H), 7.96-7.94 (m, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.40-7.35 (m, 3H), 7.29-7.28 (m, 1H), 7.06-7.05 (m, 1H), 7.02-7.00 (m, 1H), 5.74 (d, J = 4.8 Hz, 1H), 4.99 (d, J = 4.8 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 154.1, 145.1, 134.0, 133.8, 129.7, 129.3, 129.2, 128.7, 128.0, 127.9, 127.1, 125.6, 125.2, 107.0, 86.8, 50.3, 16.9. IR (KBr): ν = 2917, 1696, 1596, 1442, 1215, 1090, 958, 765, 706 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₂H₁₉O₂S₂) [M+H]⁺: 379.0821, found: 379.0832.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 15:1) yielded product **35** (152.2 mg, 72% yield) as a brown solid (m.p. = 134-135 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.4 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.0 Hz, 2H), 8.02 (d, J = 7.6 Hz, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.76-7.71 (m, 1H), 7.62-7.53 (m, 3H), 7.48-7.37 (m, 5H), 6.30 (d, J = 4.8 Hz, 1H), 5.04 (d, J = 4.4 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 160.5, 155.2, 147.7, 137.3, 134.0, 133.7, 129.8, 129.7, 129.3, 129.26, 128.7, 128.0, 127.6, 127.5, 126.5, 120.6, 105.9, 84.9, 57.8, 17.1. IR (neat): ν = 3051,

2924, 1694, 1595, 1502, 1446, 1219. 1011, 766, 692 cm $^{-1}$. HRMS: m/z (ESI) calculated for (C₂₇H₂₂NO₂S) [M+H] $^{+}$: 424.1366, found: 424.1379.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/DCM, 100:0 to 1:1) yielded product **36** (117.9 mg, 55% yield) as a brown solid (m.p. = 152-153 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.37 (br, 1H), 7.96-7.93 (m, 2H), 7.92-7.88 (m, 2H), 7.49-7.46 (m, 2H), 7.37-7.34 (m, 2H), 6.81 (dd, J = 4.4, 2.8 Hz, 1H), 6.22 (dd, J = 6.0, 2.8 Hz, 1H), 6.18-6.16 (m, 1H), 5.66 (d, J = 4.8 Hz, 1H), 4.73 (d, J = 5.2 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 152.4, 140.5, 135.1, 132.2, 130.6, 130.2, 129.2, 129.0, 128.3, 128.1, 118.3, 109.0, 106.9, 106.3, 85.6, 48.6, 16.6. IR (KBr): ν = 3024, 2923, 1692, 1592, 1487, 1400, 1229, 1092, 965, 828, 722, 532 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₂H₁₈Cl₂NO₂S) [M+H]⁺: 430.0430, found: 430.0442.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 2:1) yielded product **37** (122.9 mg, 63% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 10.40 (br, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 2.4 Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 6.33 (d, J = 2.4 Hz, 1H), 5.83 (d, J = 5.2 Hz, 1H), 4.90 (d, J = 5.2 Hz, 1H), 2.39 (s, 3H), 2.35 (s, 3H), 2.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 154.4, 150.9, 144.7, 139.3, 131.8, 131.5, 129.4, 129.3, 128.7, 127.8, 127.0, 104.7, 103.9, 85.4, 48.3, 21.7, 21.4, 16.9. IR (KBr): ν = 3315, 3174, 2923, 1689, 1607, 1509, 1412, 1230, 1183, 1066, 962, 822, 765, 476 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₃H₂₃N₂O₂S) [M+H]⁺: 391.1475, found: 391.1481.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 3:1) yielded product **38** (127.4 mg, 57% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.91-7.89 (m, 1H), 7.57-7.54 (m, 1H), 7.51-7.43 (m, 3H), 7.36-7.32 (m, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.96 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.08 (d, J = 4.0 Hz, 1H), 4.49 (d, J = 4.0 Hz, 1H), 3.80 (s, 3H), 3.37 (s, 3H), 2.35 (s, 3H), 1.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 159.4, 158.8, 157.4, 154.4, 149.1, 137.6, 134.3, 131.3, 131.2, 131.1, 130.7, 124.6, 121.6, 120.8, 120.1, 119.6, 111.3, 111.1, 108.4, 89.2, 56.9, 55.5, 54.9, 18.1, 16.5. IR (KBr): v = 2921, 1676, 1595, 1485, 1288, 1245, 1025, 755, 651 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₆H₂₆NO₄S) [M+H]⁺: 448.1577, found: 448.1590.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 40:1) yielded product **39** (138.7 mg, 67% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.90-7.86 (m, 1H), 7.61-7.55 (m, 1H), 7.48-7.44 (m, 1H), 7.38-7.33 (m, 1H), 7.30-7.27 (m, 2H), 7.19-7.12 (m, 2H), 7.10-7.06 (m, 2H), 7.02-7.00 (m, 1H), 5.67-5.66 (m, 1H), 4.89 (d, J = 1.6 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.3 (d, J = 3.6 Hz), 161.6 (d, J = 254.2 Hz), 160.0 (d, J = 251.4 Hz), 151.3, 144.6, 135.2 (d, J = 8.7 Hz), 131.4 (d, J = 7.9 Hz), 131.2 (d, J = 2.9 Hz), 131.0 (d, J = 2.9 Hz), 127.1, 125.4, 125.1, 124.7 (d, J = 3.6 Hz), 123.7 (d, J = 3.7 Hz), 123.4 (d, J = 13.0 Hz), 117.9 (d, J = 13.8 Hz), 116.5 (d, J = 22.4 Hz), 115.9 (d, J = 21.7 Hz), 110.7, 90.0 (d, J = 5.8 Hz), 49.3, 16.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -108.27 (d, J = 2.63 Hz, 1F), -110.19 (d, J = 4.51 Hz, 1F). IR (KBr): ν = 2917, 1696, 1610, 1455, 1276, 1220, 1060, 762, 701 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₂H₁₇F₂O₂S) [M+H]⁺: 415.0633, found: 415.0642.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 25:1) yielded product **40** (139.6 mg, 50% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 2H), 7.57-7.54 (m, 2H), 7.51-7.50 (m, 2H), 7.37 (t, J =8.4 Hz, 1H), 7.31 (t, J =8.0 Hz, 1H), 7.16-7.11 (m, 3H), 6.92 (dd, J = 8.4, 2.4 Hz,

1H), 5.60 (d, J = 4.8 Hz, 1H), 4.57 (d, J = 4.8 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 2.02 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 159.8, 159.2, 153.9, 141.1, 138.1, 135.2, 130.8, 130.0, 129.7, 129.1, 121.7, 120.5, 120.3, 115.5, 113.0, 112.8, 107.0, 93.3, 86.7, 55.4, 55.2, 55.1, 16.7. IR (KBr): ν = 2914, 1693, 1577, 1486, 1430, 1265, 1038, 782, 695, 551 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₆H₂₄IO₄S) [M+H]⁺: 559.0435, found: 559.0445.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/Et₂O, 100:0 to 60:1) yielded product **41** (233.1 mg, 79% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.17 (t, J = 1.6 Hz, 1H), 7.99 (t, J = 1.6 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.74-7.72 (m, 1H), 7.45-7.42 (m, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.21 (t, J = 8.0 Hz, 1H), 5.84-5.76 (m, 1H), 5.36 (d, J = 4.8 Hz, 1H), 5.02-4.91 (m, 2H), 3.61-3.57 (m, 1H), 2.17 (s, 3H), 2.06-2.01(m, 2H), 1.92-1.86 (m, 1H), 1.71-1.66 (m, 1H), 1.39-1.29 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 150.6, 139.1, 136.3, 132.1, 131.8, 131.7, 130.4, 130.2, 129.5, 127.6, 126.1, 122.9, 122.1, 114.1, 109.2, 84.4, 48.1, 33.7, 32.3, 29.6, 29.44, 29.38, 29.0, 28.8, 26.0, 16.7. IR (KBr): ν = 2924, 1694, 1559, 1467, 1420, 1206, 1070, 909, 786, 688 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₈H₃₃Br₂O₂S) [M+H]⁺: 591.0563, found: 591.0572.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 30:1) yielded product **42** (184.3 mg, 69% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 8.0 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.94-7.85 (m, 3H), 7.81 (d, J = 8.0 Hz, 1H), 7.64-7.56 (m, 2H), 7.53-7.41 (m, 4H), 7.32-7.28 (m, 1H), 5.87-5.77 (m, 1H), 5.69 (d, J = 4.4 Hz, 1H), 5.03-4.93 (m, 2H), 3.52-3.47 (m, 1H), 2.06-2.03 (m, 2H), 2.00 (s, 3H), 1.90-1.83 (m, 1H), 1.77-1.72 (m, 1H), 1.43-1.22 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 201.1, 155.4, 139.2, 133.9, 133.6, 133.4, 132.7, 131.5, 130.8, 129.9, 129.0, 128.6, 128.11, 128.09, 127.7, 127.5, 126.7, 126.3, 126.1, 125.9, 125.1, 124.7, 124.3, 114.1, 109.2, 86.8, 48.4, 33.8, 33.0, 29.5, 29.4, 29.3, 29.1, 28.9, 25.9, 17.2. IR (KBr): V = 2920, 1685, 1590, 1506, 1432, 1233, 1180, 1029, 776 cm⁻¹. HRMS: m/z (ESI) calculated for (C₃₆H₃₉O₂S) [M+H]⁺: 535.2665, found: 535.2678.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 30:1) yielded product **43** (103.2 mg, 43% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.72 (d, J = 7.6 Hz, 1H), 7.61-7.55 (m, 3H), 7.51-7.47 (m, 1H), 7.34-7.23 (m, 8H), 7.20-7.16 (m, 1H), 5.45 (d, J = 4.4 Hz, 1H), 3.69-3.64 (m, 1H), 2.94-2.78 (m, 2H), 2.35-2.27 (m, 1H), 2.17 (s, 3H), 2.14-2.06 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 187.8, 155.6, 154.4, 150.1, 146.2, 144.6, 141.3, 128.9, 128.5, 128.4, 127.9, 126.9, 126.0, 125.3, 124.0, 123.7, 123.2, 121.4, 116.3, 112.4, 111.5, 110.7, 107.8, 86.0, 49.2, 34.3, 32.2, 16.4. IR (KBr): ν = 2918, 1683, 1547, 1452, 1255, 1163, 1140, 1080, 751, 698, 612, 427 cm⁻¹. HRMS: m/z (ESI) calculated for (C₃₀H₂₅O₄S) [M+H]⁺: 481.1468, found: 481.1478.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 50:1) yielded product 44 (96.3 mg, 55% yield) as cyan oil.

¹H NMR (400 MHz, CDCl₃) δ 8.03-8.02 (m, 1H), 7.69-7.68 (m, 1H), 7.62-7.61 (m, 1H), 7.38-7.36 (m, 1H), 7.16-7.14 (m, 1H), 7.07-7.05 (m, 1H), 5.17 (d, J = 5.6, 1H), 3.59-3.55 (m, 1H), 2.20 (s, 3H), 1.95-1.86 (m, 1H), 1.68-1.58 (m, 1H), 1.50-1.40 (m, 2H), 0.98 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.6, 149.7, 140.4, 134.8, 133.9, 131.6, 128.2, 127.6, 127.3, 126.7, 106.4, 87.2, 49.3, 35.1, 19.3, 17.0, 14.1. IR (KBr): $\nu = 2931$, 1659, 1413, 1353, 1242, 1056, 846, 711 cm⁻¹. HRMS: m/z (ESI) calculated for (C₁₇H₁₉O₂S₃) [M+H]⁺: 351.0542, found: 351.0550.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 10:1) yielded product **45** (206.4 mg, 76% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.06-8.04 (m, 2H), 7.86-7.83 (m, 2H), 7.61-7.54 (m, 5H), 7.47 (t, J = 8.0 Hz, 2H), 7.37-7.29 (m, 9H), 5.58 (d, J = 4.4 Hz, 1H), 3.86-3.82 (m, 1H), 3.06 (t, J = 8.0 Hz, 2H), 2.57-2.49 (m, 1H), 2.39-2.30 (m, 1H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.6, 162.8, 153.5, 145.2, 135.0, 134.5, 133.5, 132.4, 129.8, 129.11, 129.06, 128.9, 128.7, 128.6, 128.5, 128.3, 127.9, 127.8, 126.4, 106.1, 84.1, 47.1, 29.5, 24.7, 16.9. IR (KBr): ν = 3058, 2918, 1693, 1597, 1489, 1445, 1226, 1056, 962, 761, 691 cm⁻¹. HRMS: m/z (ESI) calculated for (C₃₅H₃₀NO₃S) [M+H]⁺: 544.1941, found: 544.1957.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 30:1) yielded product **46** (159.7 mg, 76% yield, d.r. = 1:1) as yellow oil. The diastereoselective ratio was determined by ¹H NMR spectroscopy of the crude mixture.

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.4 Hz, 2H), 7.80-7.78 (m, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.35-7.28 (m, 3H), 5.39-5.34 (m, 1H), 5.10-5.05 (m, 1H), 3.76-3.70 (m, 1H), 2.18-2.16 (m, 3H), 2.06-1.75 (m, 3H), 1.67-1.64 (m, 3H), 1.61-1.59 (m, 3H), 1.57-1.11 (m, 4H), 0.99-0.94 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 196.2, 152.2, 151.8, 135.02, 135.0, 133.4, 131.4, 131.3, 130.1, 129.23, 129.19, 128.82, 128.78, 128.6, 128.57, 127.9, 127.7, 127.67, 124.59, 124.56, 108.44, 108.4, 85.3, 85.1, 45.6, 45.5, 41.0, 40.3, 38.0, 35.8, 30.4, 30.0, 25.7, 25.6, 25.5, 25.2, 20.6, 19.0, 17.7, 17.6, 17.0, 16.8. IR (KBr): ν =2927, 1690, 1596, 1493, 1446, 1225, 1060, 913, 769, 693 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₇H₃₃O₂S) [M+H]⁺: 421.2196, found: 421.2203.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions. Column chromatography (eluent = PE/EA, 100:0 to 60:1) yielded product 47 (178.8 mg, 65% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.02-8.00 (m, 2H), 7.95-7.93 (m, 2H), 7.61 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.40-7.34 (m, 3H), 6.63 (dd, J = 15.2, 11.2 Hz, 1H), 6.38 (d, J = 15.2 Hz, 1H), 6.21-6.11 (m, 3H), 5.73 (d, J = 10.4 Hz, 1H), 5.52 (d, J = 5.6 Hz, 1H), 4.50 (dd, J = 10.4, 5.6 Hz, 1H), 2.13 (s, 3H), 2.02 (t, J = 6.4 Hz, 2H), 1.97 (s, 3H), 1.85 (s, 3H), 1.72 (s, 3H),

1.65-1.58 (m, 2H), 1.48-1.45 (m, 2H), 1.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 154.0, 137.8, 137.6, 137.1, 136.3, 136.27, 134.2, 133.7, 131.3, 130.04, 129.97, 129.3, 129.1, 129.0, 128.7, 128.0, 127.8, 126.8, 125.3, 106.0, 85.1, 49.7, 39.6, 34.2, 33.0, 28.9, 21.7, 19.2, 17.3, 12.8, 12.7. IR (KBr): ν = 2920, 1693, 1597, 1493, 1446, 1360, 1226, 965, 766, 692 cm⁻¹. HRMS: m/z (ESI) calculated for (C₃₇H₄₃O₂S) [M+H]⁺: 551.2978, found: 551.2978.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/Et_2O , 100:0 to 20:1) yielded product 48 (134.0 mg, 62% yield) as yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.24-8.22 (m, 2H), 8.06-8.04 (m, 2H), 7.58 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 5.86-5.76 (m, 1H), 5.01-4.90 (m, 2H), 3.00 (t, J = 8.0 Hz, 2H), 2.27 (s, 3H), 2.06-2.01 (m, 2H), 1.70-1.63 (m, 2H), 1.50-1.43 (m, 2H), 1.38-1.31 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 155.4, 146.4, 143.0, 139.2, 138.0, 132.1, 129.7, 129.5, 129.3, 128.7, 128.2, 126.7, 117.8, 114.0, 33.8, 30.0, 29.8, 29.4, 29.3, 29.1, 28.9, 24.9, 19.2. IR (KBr): ν = 2920, 2854, 1640, 1560, 1476, 1443, 1296, 1178, 906, 769, 691 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₈H₃₃O₂S) [M+H]⁺: 433.2196, found: 433.2202.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/Et_2O , 100:0 to 60:1) yielded product **49** (100.9 mg, 58% yield) as a yellow solid (m.p. = 96-97 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 3.2 Hz, 1H), 7.94 (d, J = 3.2 Hz, 1H), 7.71 (d, J = 4.8 Hz, 1H), 7.48 (d, J = 4.8 Hz, 1H), 7.23 (t, J = 4.4 Hz, 1H), 7.18 (t, J = 4.4 Hz, 1H), 2.99 (t, J = 7.6 Hz, 2H), 2.31 (s, 3H), 1.75-1.65 (m, 2H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 153.0, 145.4, 142.9, 142.8, 133.7, 133.4, 131.2, 128.2, 128.0, 127.7, 127.3, 116.8, 26.8, 23.2, 19.0, 14.3. IR (KBr): ν = 2960, 1607, 1536, 1473, 1409, 1355, 1038, 823, 713 cm⁻¹. HRMS: m/z (ESI) calculated for (C₁₇H₁₇O₂S₃) [M+H]⁺: 349.0385, found: 349.0393.

The reaction was conducted on a 2.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/EA, 100:0 to 40:1) yielded product **50** (135.3 mg, 46% yield) as a yellow solid (m.p. = 73-74 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 2H), 8.02 (d, J = 7.6 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.34 (s, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.7, 153.6, 150.2, 137.1, 132.5, 129.4, 129.2, 129.0, 128.6, 128.4, 126.4, 124.0, 118.1, 17.9. IR (KBr): ν = 3055, 1620, 1547, 1507, 1460, 1437, 1323, 1206, 963, 876, 761, 668 cm⁻¹. HRMS: m/z (ESI) calculated for (C₁₈H₁₅O₂S) [M+H]⁺: 295.0787, found: 295.0792.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/DCM, 100:0 to 1:1) yielded product **51** (114.9 mg, 58% yield) as a yellow solid (m.p. = 156-157 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.23-8.16 (m, 3H), 8.03 (d, J = 7.2 Hz, 2H), 7.85 (d, J = 16.8 Hz, 1H), 7.62 (d, J = 7.2 Hz, 2H), 7.58 (d, J = 7.2 Hz, 1H), 7.53-7.42 (m, 5H), 7.39 (t, J = 7.6 Hz, 2H), 7.32-7.29 (m, 1H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.8, 156.4, 146.5, 138.2, 137.4, 136.0, 135.1, 132.3, 129.6, 129.3, 128.7, 128.6, 128.4, 128.2, 127.4, 127.0, 118.4, 115.6, 18.7. IR (KBr): ν = 3054, 2915, 1636, 1513, 1475, 1442, 1245, 973, 908, 756, 688 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₆H₂₁O₂S) [M+H]⁺: 397.1257, found: 397.1261.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/EA, 100:0 to 60:1) yielded product **52** (104.4 mg, 60% yield) as a yellow solid (m.p. = 130-131 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 7.6 Hz, 2H), 7.99 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.49 (d, J = 7.6 Hz, 2H), 7.45 (d, J = 7.6 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H), 6.21 (s, 1H), 2.24 (s, 3H), 1.91 (s, 3H), 1.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 155.2, 146.0, 141.5, 137.9, 136.8, 132.1, 129.54, 129.48, 129.3, 128.6, 128.0, 126.9, 117.6, 114.2, 25.9, 20.5, 18.5. IR (KBr): ν = 3067, 2913, 1639, 1526, 1446, 1298, 1178, 908, 839, 765, 692 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₂H₂₁O₂S) [M+H]⁺: 349.1257, found:349.1266.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/Et_2O , 100:0 to 60:1) yielded product **53** (134.4 mg, 60% yield) as a yellow solid (m.p. = 130-131 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.23-8.21 (m, 2H), 7.91-7.89 (m, 2H), 7.53-7.46 (m, 5H), 7.44-7.36 (m, 5H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 182.9, 155.8, 146.0, 138.2, 137.2, 132.4, 131.7, 131.1, 129.9, 129.6, 129.2, 128.7, 128.1, 127.1, 122.6, 116.9, 18.5. IR (KBr): ν = 2924, 1640, 1482, 1443, 1276, 1009, 893, 736, 689 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₄H₁₈BrO₂S) [M+H]⁺: 449.0205, found: 449.0214.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/EA, 100:0 to 20:1) yielded product 54 (128.1 mg, 64% yield) as a yellow solid (m.p. = 115-116 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.30-8.27 (m, 2H), 7.82-7.80 (m, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.30-7.26 (m, 4H), 6.97-6.93 (m, 1H), 6.80-6.78 (m, 1H), 3.66 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.3, 156.7, 155.6, 146.4, 137.3, 135.7, 131.9, 131.2, 129.8, 129.6, 129.22, 129.17, 128.5, 127.6, 126.9, 120.5, 120.1, 117.7, 110.4, 55.2, 18.3. IR (KBr): ν = 2918, 1640, 1597, 1496, 1446, 1246, 1013, 893, 761, 721, 686 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₅H₂₁O₃S) [M+H]⁺: 401.1206, found: 401.1217.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/EA, 100:0 to 50:1) yielded product **55** (113.2 mg, 61% yield) as a brown foam (m.p. = 122-123 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.4 Hz, 1H), 8.24 (d, J = 7.6 Hz, 2H), 7.88 (d, J = 7.6 Hz, 2H), 7.70-7.66 (m, 1H), 7.50-7.40 (m, 5H), 7.36 (t, J = 7.6 Hz, 2H), 7.26-7.23 (m, 1H), 2.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 182.8, 155.9, 151.0, 149.3, 146.8, 138.8, 137.1, 135.8, 132.3, 129.48, 129.36, 129.2, 128.6, 128.0, 127.1, 125.6, 122.7, 117.0, 19.0. IR (KBr): ν = 3058, 2921, 1652, 1593, 1482, 1370, 1300, 1249, 1173, 893, 722, 693 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₃H₁₈NO₂S) [M+H]⁺: 372.1053, found: 372.1067.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/EA, 100:0 to 10:1) yielded product **56** (147.4 mg, 70% yield) as a brown solid (m.p. = 150-151 °C).

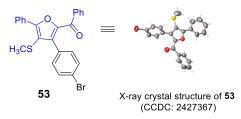
¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 7.2 Hz, 2H), 8.15 (d, J = 8.4 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 7.2 Hz, 2H), 7.81 (d, J = 8.0 Hz, 1H), 7.71-7.67 (m, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.55-7.47 (m, 3H), 7.44-7.36 (m, 2H), 7.30 (t, J = 7.6 Hz, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 182.6, 156.2, 151.7, 147.7, 147.0, 139.5, 137.0, 135.7, 132.2, 129.5, 129.44, 129.37, 129.2, 128.6, 128.0, 127.5, 127.1, 127.0, 126.8, 123.0, 117.2, 19.2. IR (KBr): v = 3061, 2923, 1645, 1600, 1476, 1445, 1370, 1259, 896, 691 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₇H₂₀NO₂S) [M+H]⁺: 422.1209, found: 422.1218.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/DCM, 100:0 to 3:1) yielded product **57** (115.2 mg, 64% yield) as a yellow solid (m.p. = 110-111 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 7.2 Hz, 2H), 7.89 (d, J = 7.2 Hz, 2H), 7.54-7.40 (m, 7H), 7.10 (d, J = 3.2 Hz, 1H), 6.48 (q, J = 1.6 Hz, 1H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.2, 156.1, 146.0, 144.2, 143.2, 137.5, 132.4, 129.5, 129.4, 129.2, 128.6, 128.1, 128.0, 127.3, 115.6, 113.0, 111.4, 18.9. IR (KBr): ν =3068, 2918, 1649, 1593, 1462, 1246, 1176, 1018, 912, 873, 739, 693 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₂H₁₇O₃S) [M+H]⁺: 361.0893, found: 361.0903.

The reaction was conducted on a 1.0 mmol scale according to the general reaction conditions for the one-pot synthesis of multisubstituted furans. Column chromatography (eluent = PE/Et_2O , 100:0 to 60:1) yielded product **58** (110.9 mg, 59% yield) as a brown solid (m.p. = 98-99 °C).

¹H NMR (400 MHz, CDCl₃) δ 8.21-8.19 (m, 2H), 7.91-7.89 (m, 2H), 7.52-7.38 (m, 8H), 7.04 (dd, J = 5.2, 3.6 Hz, 1H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.2, 156.0, 146.2, 137.4, 132.4, 132.0, 130.4, 130.2, 129.6, 129.2, 128.6, 128.1, 127.8, 127.2, 126.7, 116.9, 18.7. IR (KBr): $\nu = 2918$, 1640, 1596, 1473, 1445, 1273, 1242, 1180, 949, 882, 691 cm⁻¹. HRMS: m/z (ESI) calculated for (C₂₂H₁₇O₂S₂) [M+H]⁺: 377.0665, found: 377.0676.


10. Single Crystal X-Ray Diffraction Data (9 and 53)

A crystal structure of 9 was obtained by recrystallization from PE and DCM.

Table S11 Crystal data and structure refinement for 20231124c.

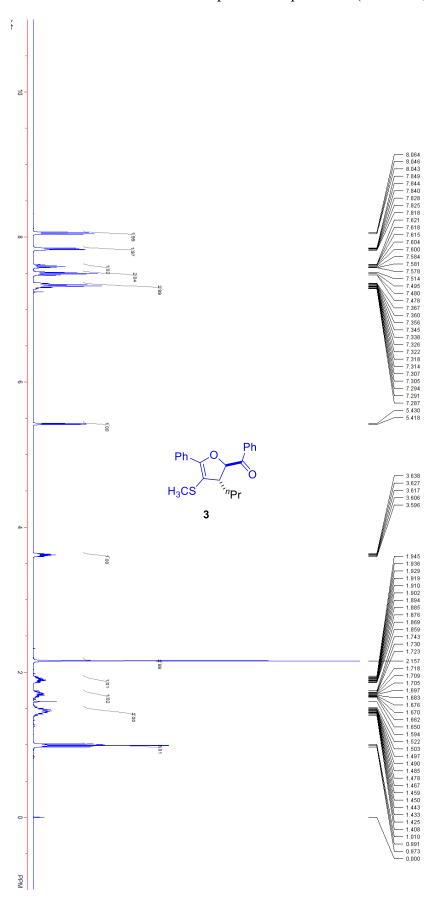
Identification code	20231124c
Empirical formula	$C_{27}H_{21}NO_4S$
Formula weight	455.51
Temperature/K	296.15
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	16.0438(14)
b/Å	20.1986(17)
c/Å	14.2693(13)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	4624.1(7)
Z	8
$\rho_{calc} g/cm^3$	1.309
μ/mm^{-1}	0.174
F(000)	1904.0
Crystal size/mm ³	$0.15 \times 0.13 \times 0.12$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	5.464 to 50.352
Index ranges	$-19 \le h \le 19, -24 \le k \le 24, -17 \le l \le 17$
Reflections collected	237933
Independent reflections	8223 [$R_{int} = 0.1444$, $R_{sigma} = 0.0325$]
Data/restraints/parameters	8223/228/601
Goodness-of-fit on F ²	1.071
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0489$, $wR_2 = 0.1033$
Final R indexes [all data]	$R_1 = 0.0787, wR_2 = 0.1187$
Largest diff. peak/hole / e Å-3	0.17/-0.19

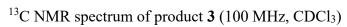
A crystal structure of 53 was obtained by recrystallization from PE and EtOH.

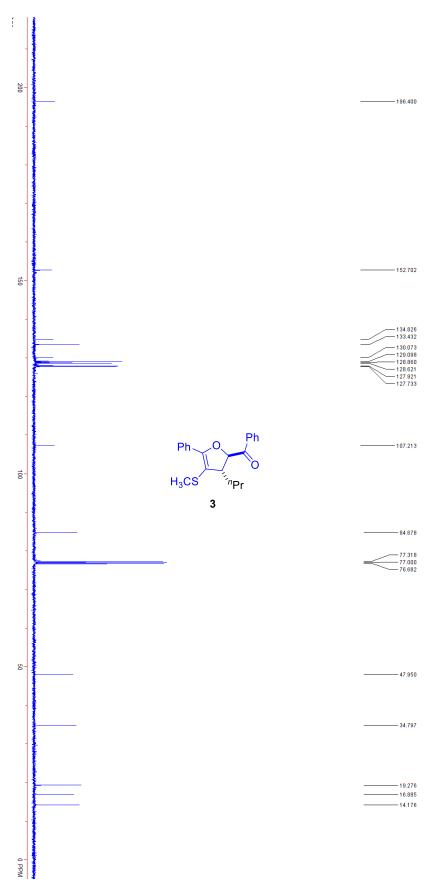
Table S12 Crystal data and structure refinement for 20240327b.

0240327b
02 103270
24H ₁₇ BrO ₂ S
49.34
96.15(10)
riclinic
-1

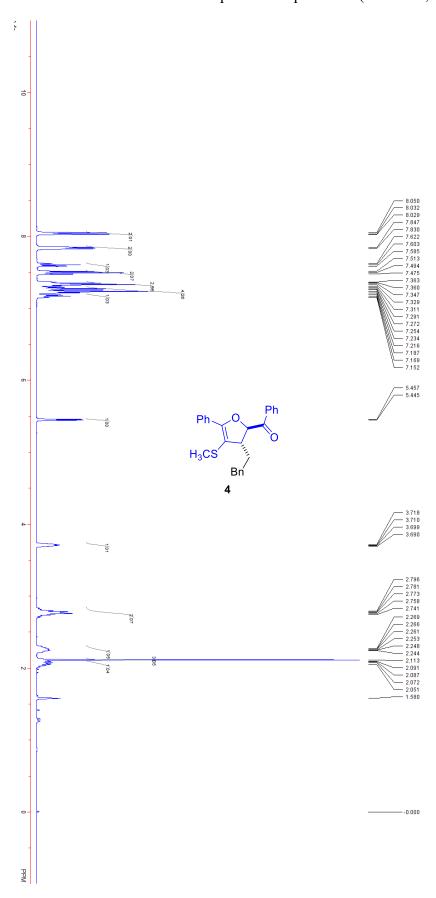
a/Å 9.778(3)b/Å 14.662(5) c/Å 15.350(5) α/° 89.547(8) β/° 78.444(7) γ/° 73.771(7) Volume/Å³ 2067.5(11) Z 1.444 $\rho_{calc}g/cm^3$ μ/mm^{-1} 2.106 F(000) 912.0 Crystal size/mm³ $0.25\times0.23\times0.22$ Radiation $MoK\alpha (\lambda = 0.71073)$ 2Θ range for data collection/° 5.424 to 50.05 Index ranges $-11 \le h \le 11, -17 \le k \le 17, -18 \le l \le 18$ Reflections collected 64006 Independent reflections 7273 [$R_{int} = 0.0920$, $R_{sigma} = 0.0499$] 7273/301/590 Data/restraints/parameters Goodness-of-fit on F2 1.012 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0536$, $wR_2 = 0.1122$ Final R indexes [all data] $R_1 = 0.1181$, $wR_2 = 0.1404$ Largest diff. peak/hole / e Å-3 0.63/-0.58

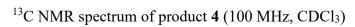

11. References

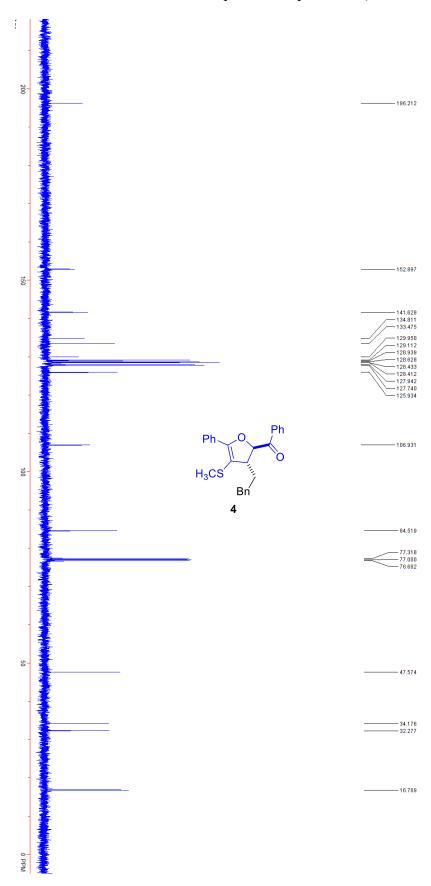

[S1] (a) Ratts, K. W.; Yao, A. N. J. Org. Chem. 1966, 31, 1185-1188. (b) Payne, G. J. Org. Chem. 1967, 32, 3351-3355. (c) Dong, J.; Du, H.; Xu, J. J. Org. Chem. 2019, 84, 10724-10739. (d) Wang, N.; Jia, Y.; Qin, H.; Jiang, Z.-x.; Yang, Z. Org. Lett. 2020, 22, 7378-7382. (e) Pagire, S. K.; Kumagai, N.; Shibasaki, M. ACS Catal. 2021, 11, 11597-11606. (f) Ushakov, P. Y.; Khatuntseva, E. A.; Nelyubina, Y. V.; Tabolin, A. A.; Ioffe, S. L.; Sukhorukov, A. Y. Adv. Synth. Catal. 2019, 361, 5322-5327.
[S2] (a) Gosselck, J.; Béress, L.; Schenk, H.; Schmidt, G. Angew. Chem. Int. Ed. 1965, 4, 1080.

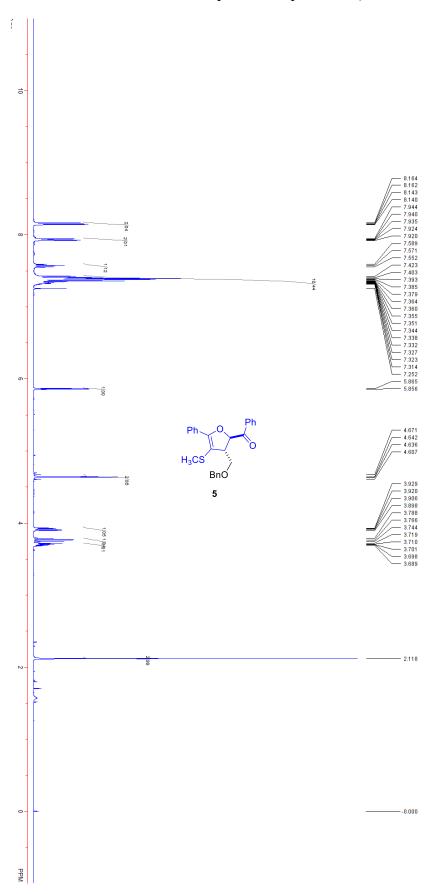

[S2] (a) Gosselck, J.; Béress, L.; Schenk, H.; Schmidt, G. Angew. Chem. Int. Ed. 1965, 4, 1080.
(b) Ling, X.; Zhao, Q.; Liu, X.; Wang, Y.; Su, Y.; Yang, F.; Zhang, Z.; Wang, H.; Shang, Y.; Fu, L. Chem. Eur. J., 2025, 31, e202500471.

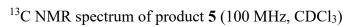
12. NMR Spectra of Products


¹H NMR spectrum of product **3** (400 MHz, CDCl₃)

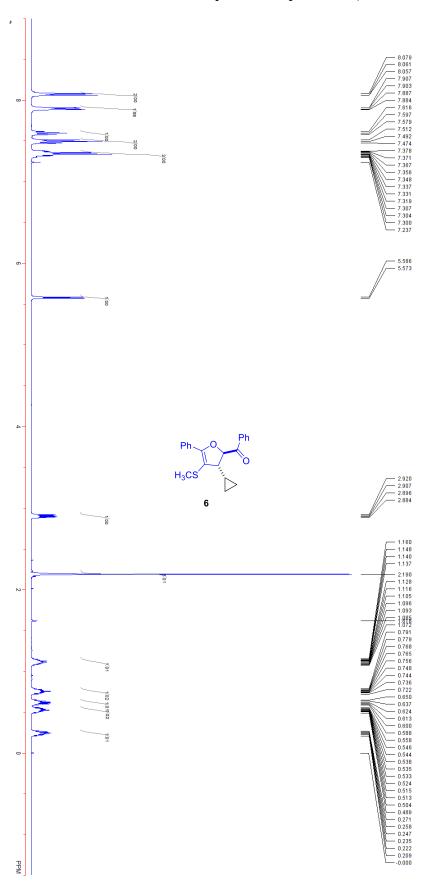


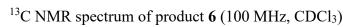


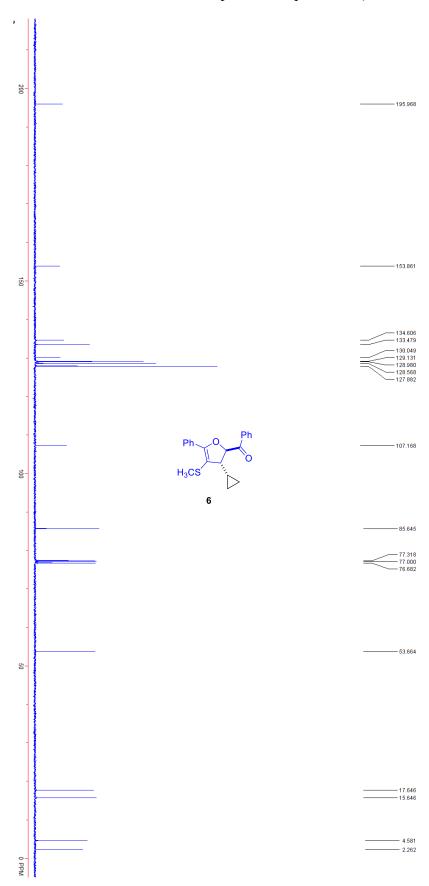

¹H NMR spectrum of product 4 (400 MHz, CDCl₃)

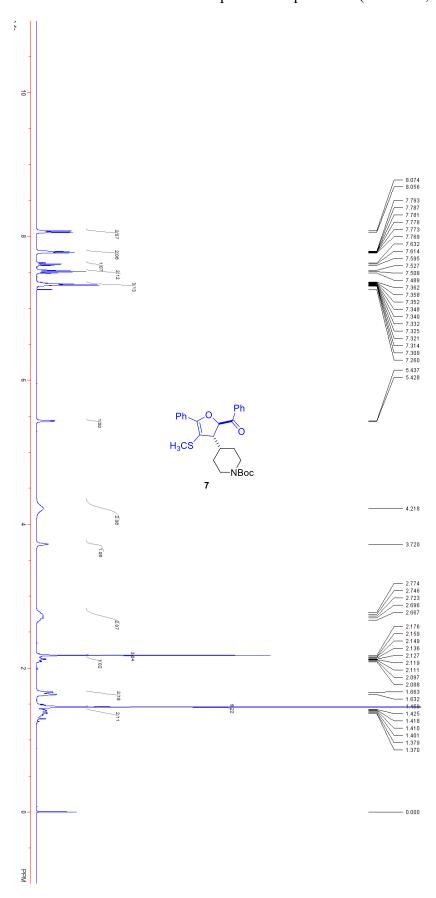


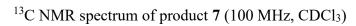


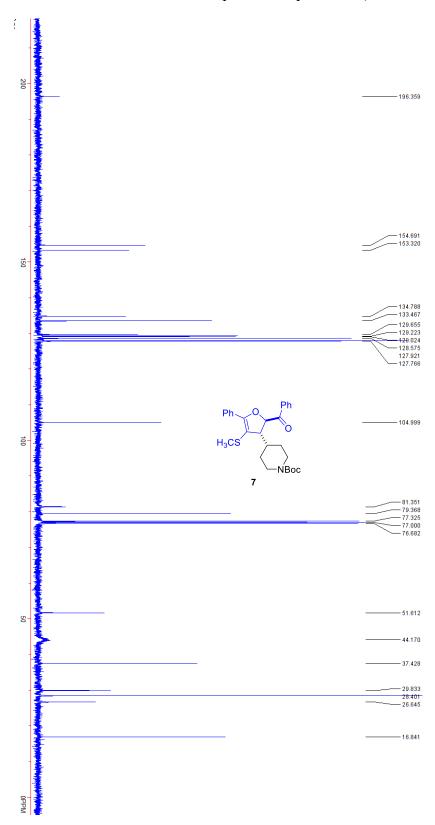

¹H NMR spectrum of product **5** (400 MHz, CDCl₃)

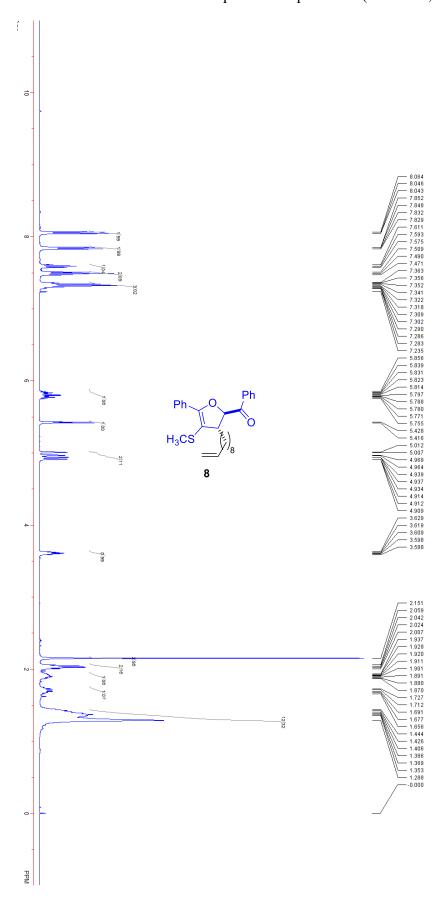


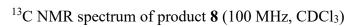


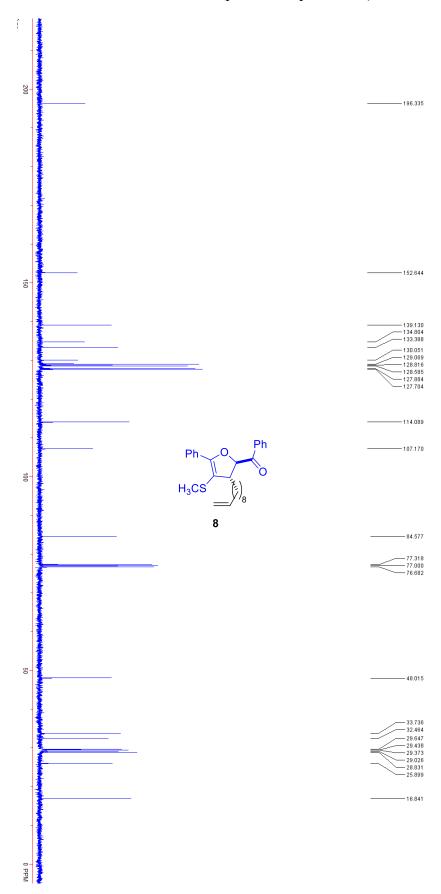

¹H NMR spectrum of product **6** (400 MHz, CDCl₃)

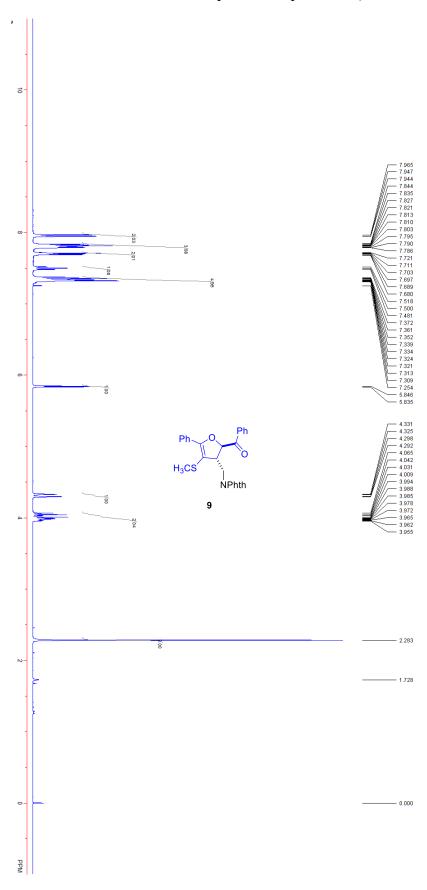


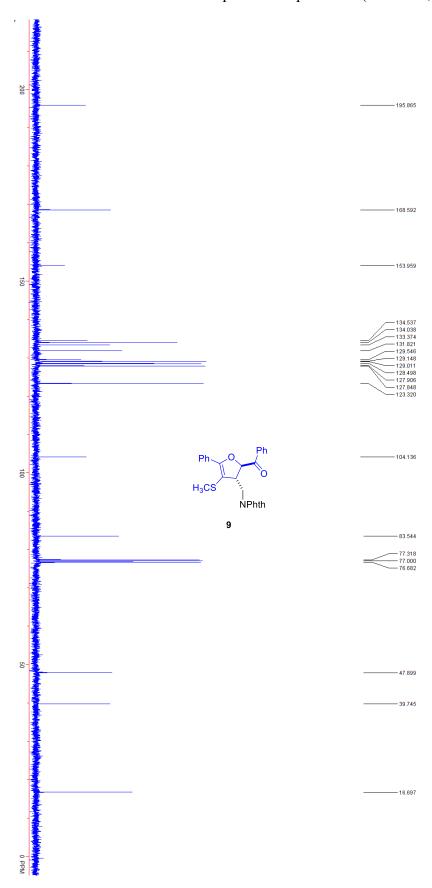


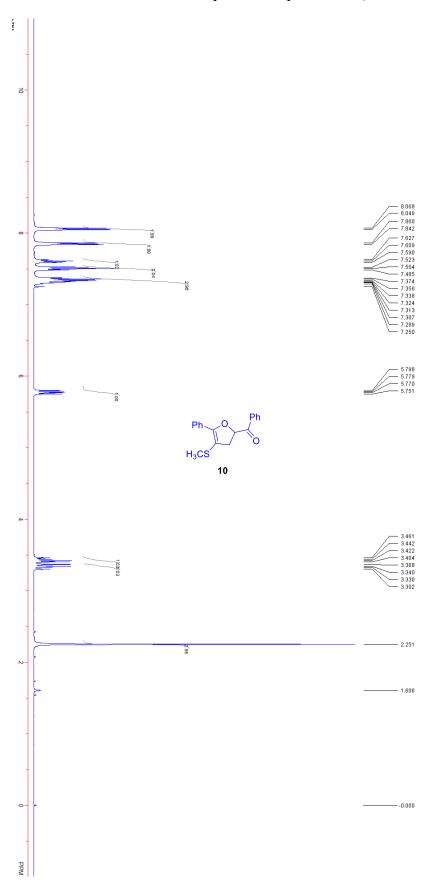

¹H NMR spectrum of product 7 (400 MHz, CDCl₃)

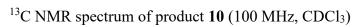


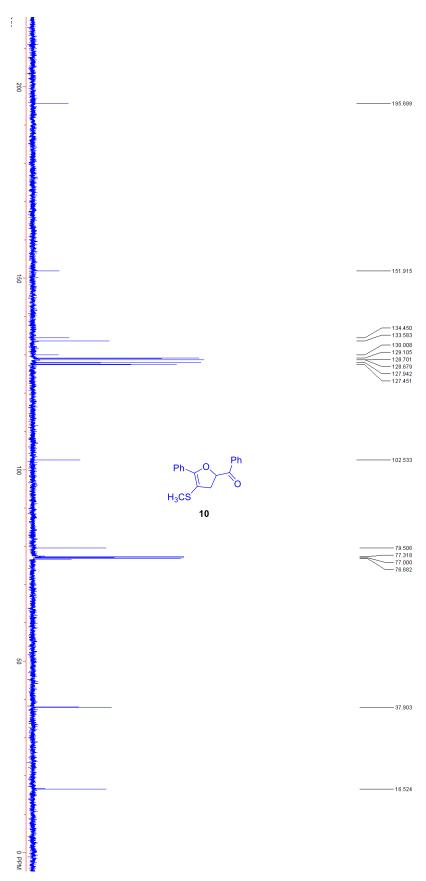


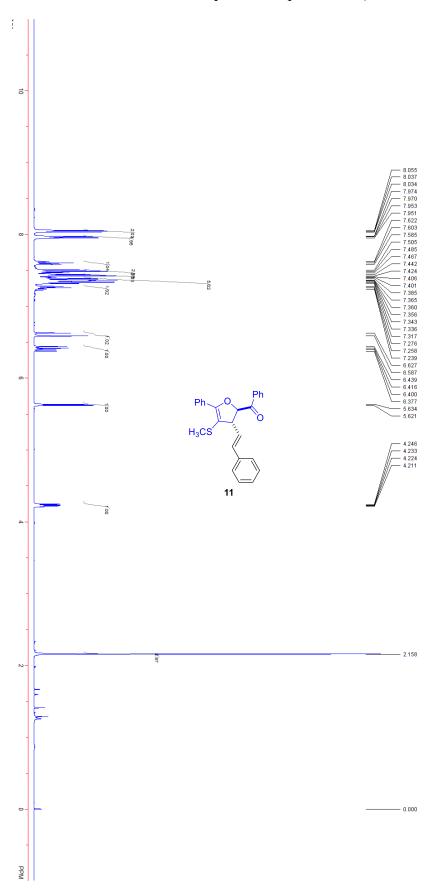

¹H NMR spectrum of product **8** (400 MHz, CDCl₃)

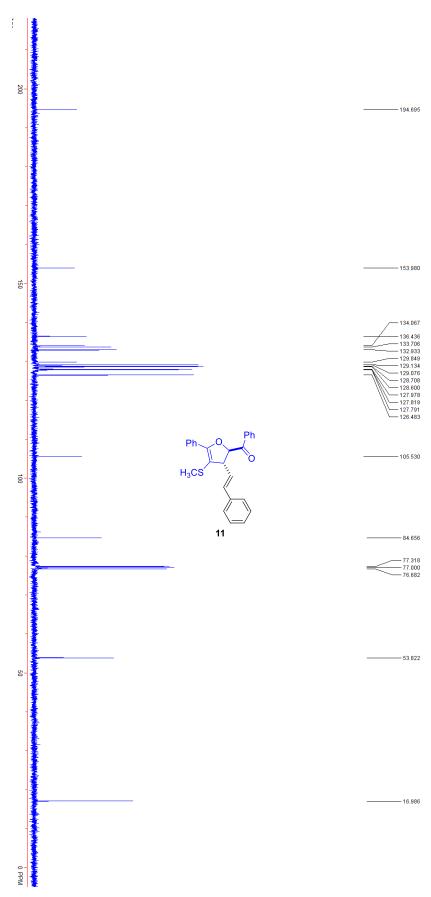


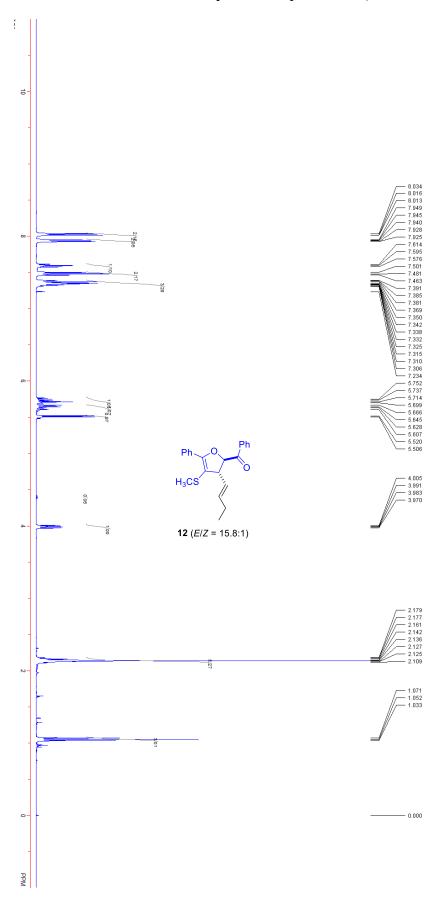

¹H NMR spectrum of product **9** (400 MHz, CDCl₃)

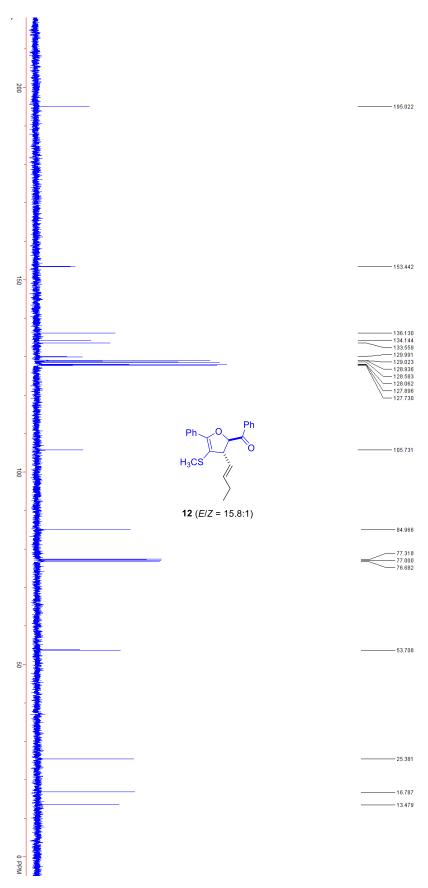


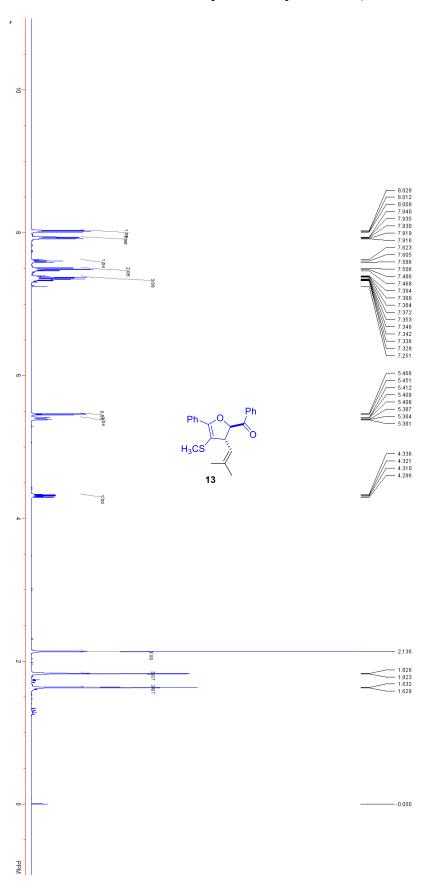

¹³C NMR spectrum of product **9** (100 MHz, CDCl₃)

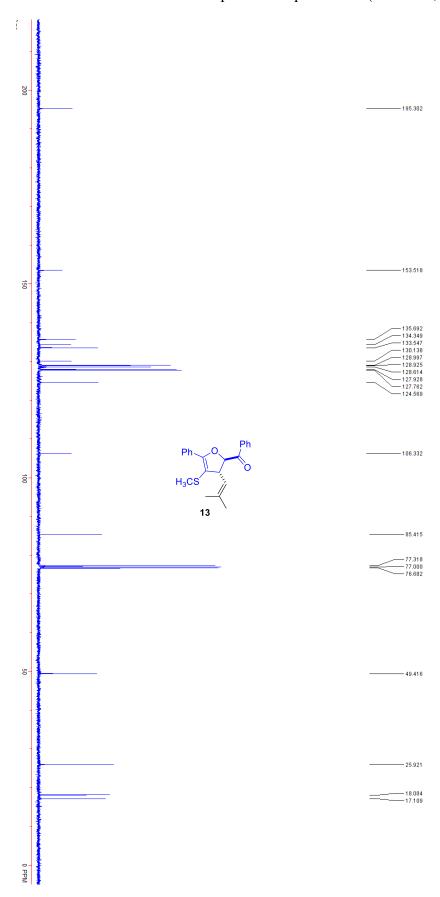

¹H NMR spectrum of product **10** (400 MHz, CDCl₃)

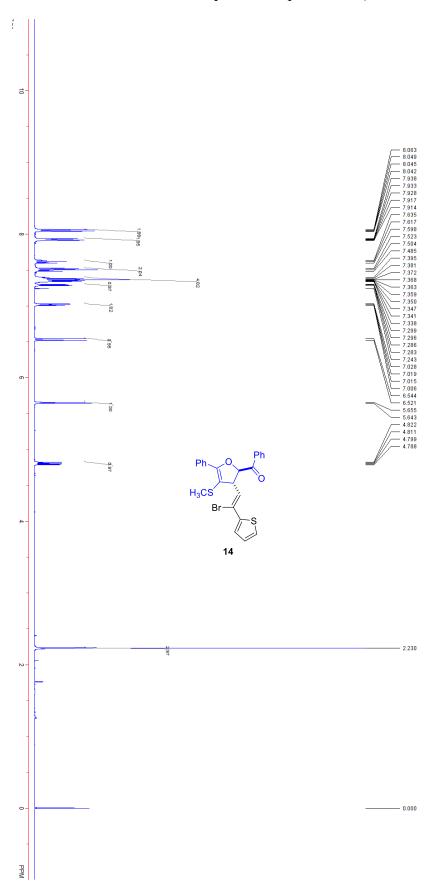



¹H NMR spectrum of product **11** (400 MHz, CDCl₃)

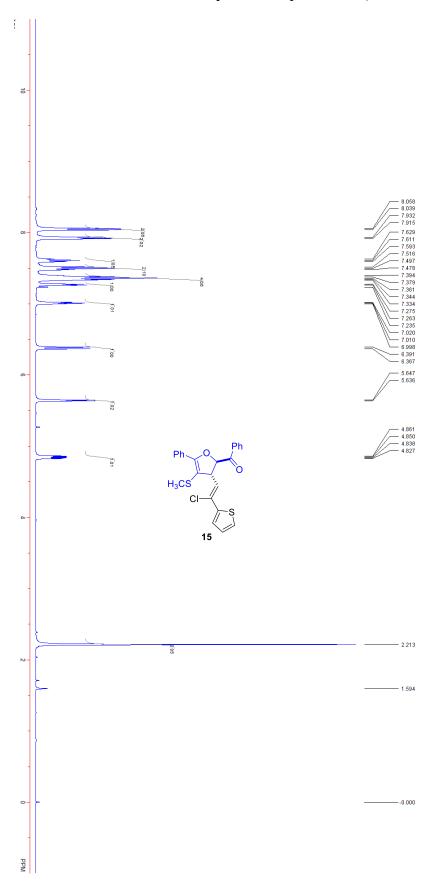

¹³C NMR spectrum of product **11** (100 MHz, CDCl₃)

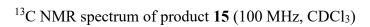

¹H NMR spectrum of product **12** (400 MHz, CDCl₃)

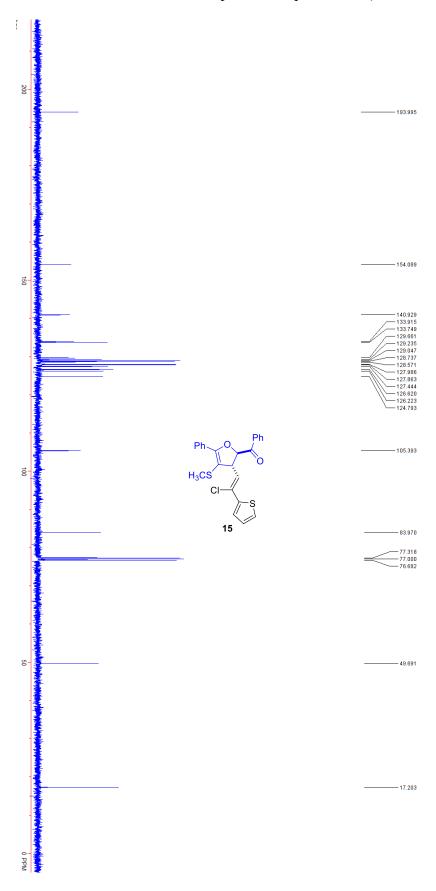

¹³C NMR spectrum of product **12** (100 MHz, CDCl₃)

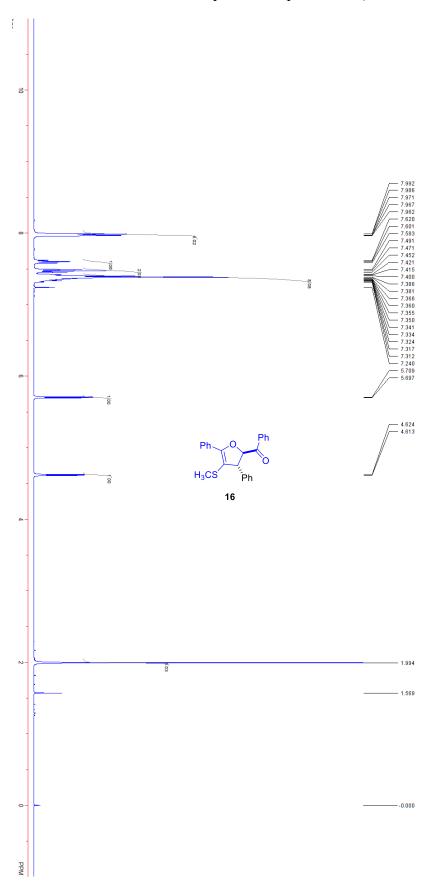

¹H NMR spectrum of product **13** (400 MHz, CDCl₃)

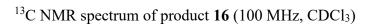
¹³C NMR spectrum of product **13** (100 MHz, CDCl₃)

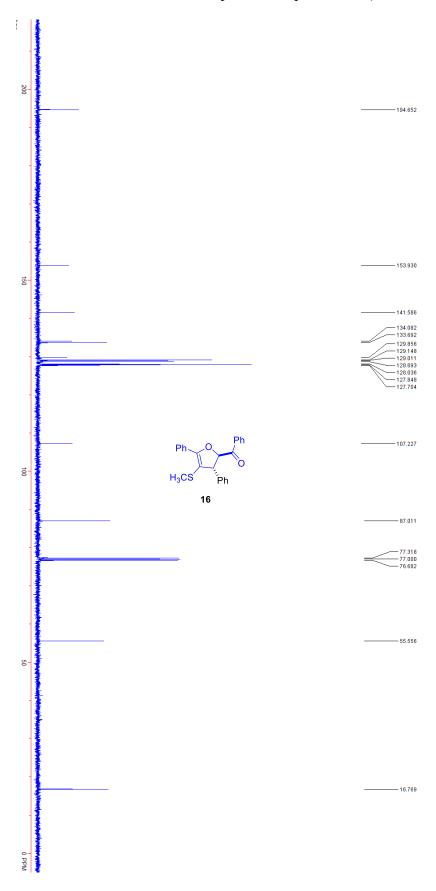

¹H NMR spectrum of product **14** (400 MHz, CDCl₃)

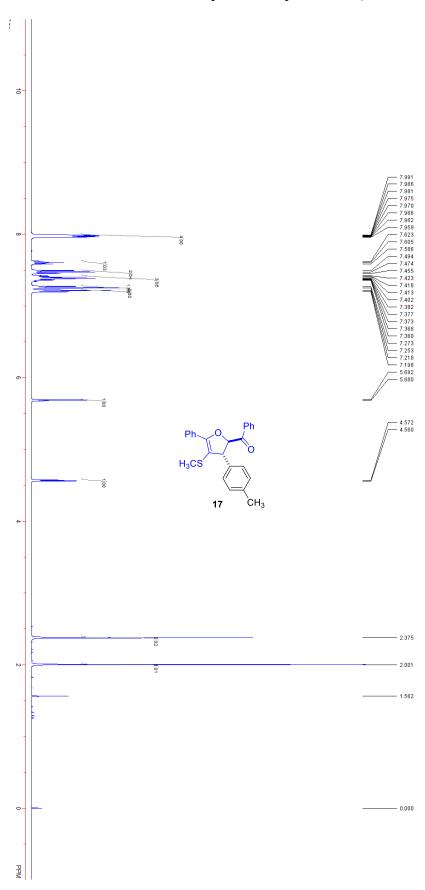


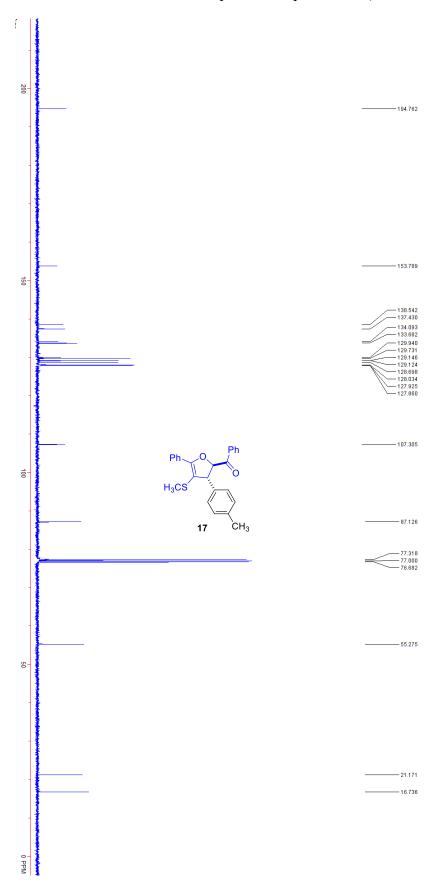

¹³C NMR spectrum of product **14** (100 MHz, CDCl₃)

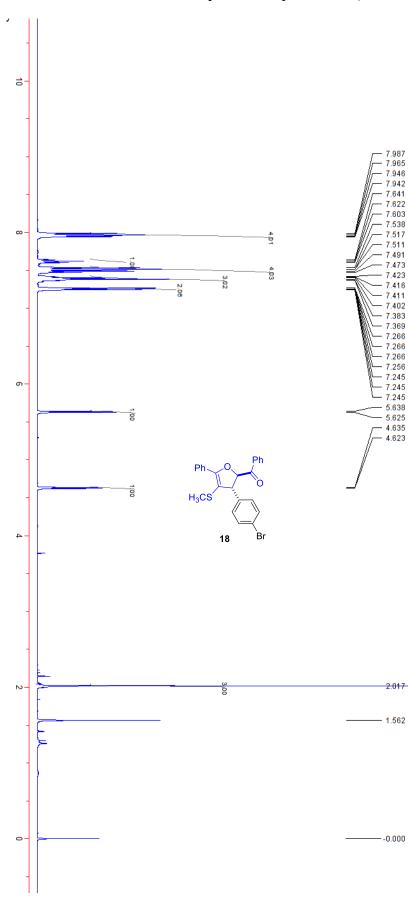

¹H NMR spectrum of product **15** (400 MHz, CDCl₃)



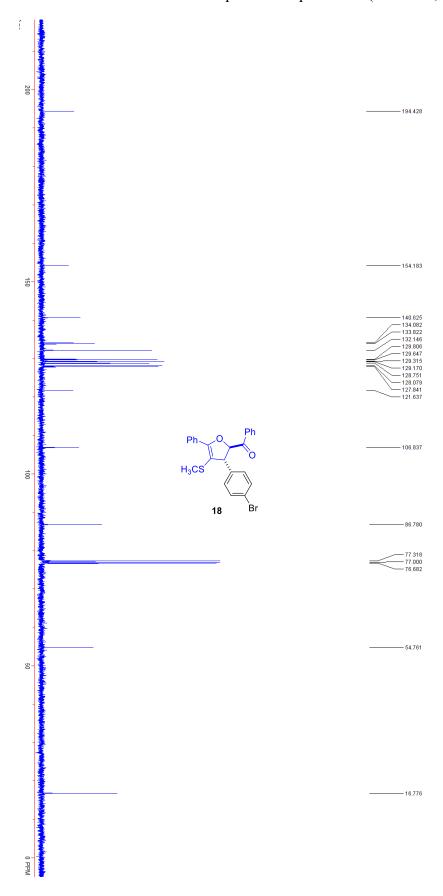


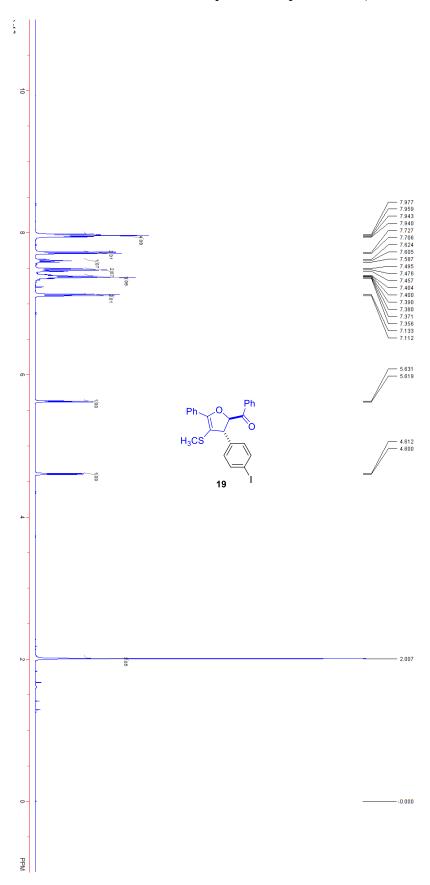

¹H NMR spectrum of product **16** (400 MHz, CDCl₃)

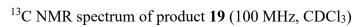


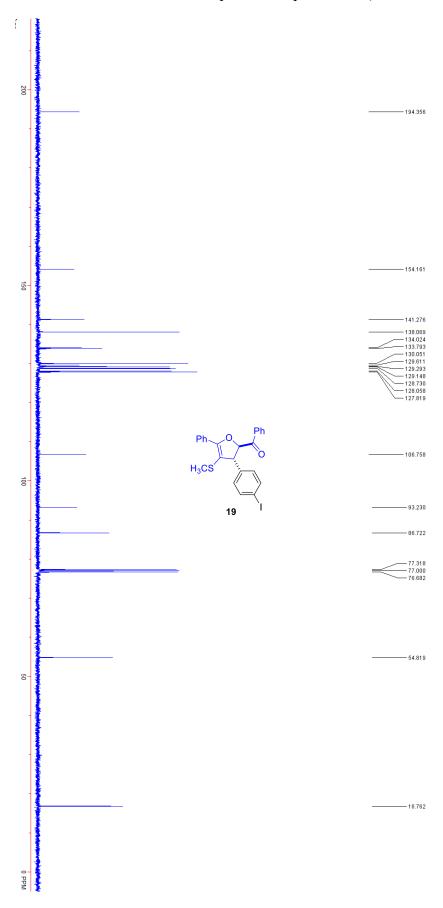


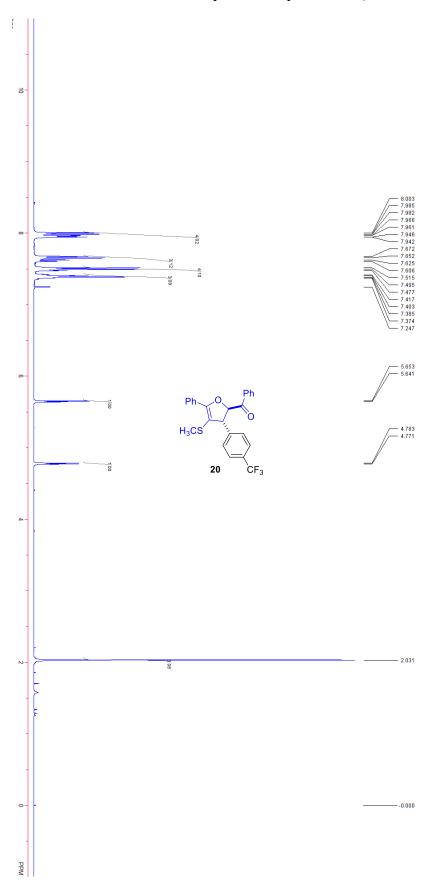
¹H NMR spectrum of product **17** (400 MHz, CDCl₃)

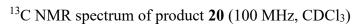


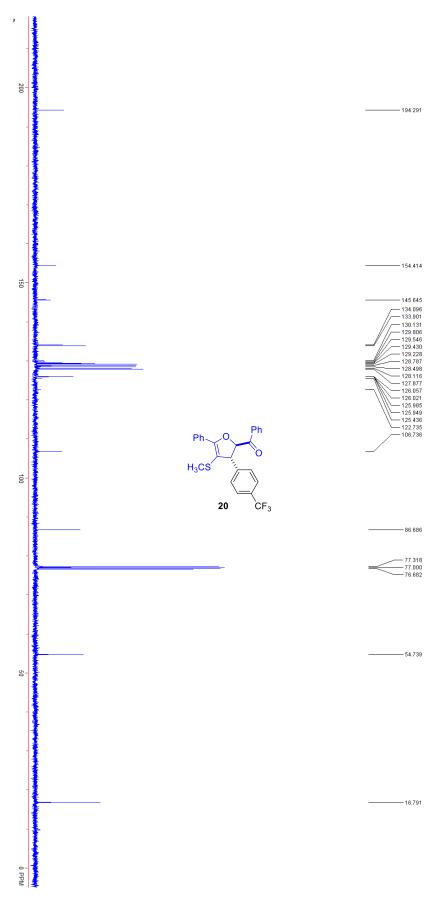


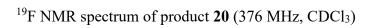


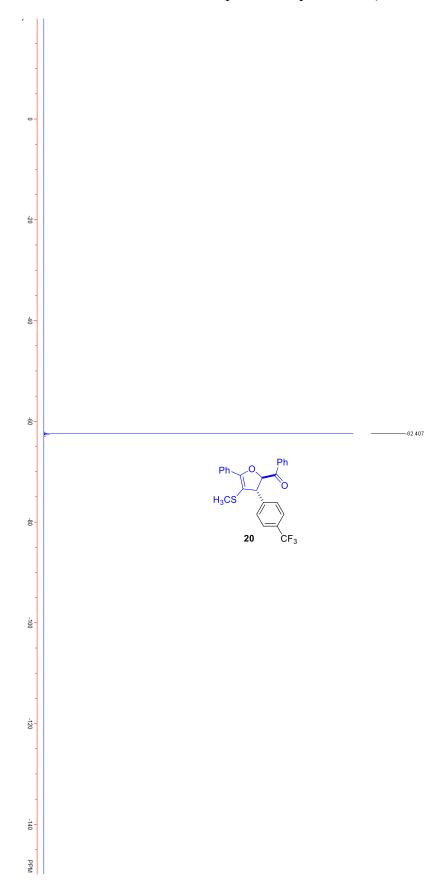

¹³C NMR spectrum of product18 (100 MHz, CDCl₃)

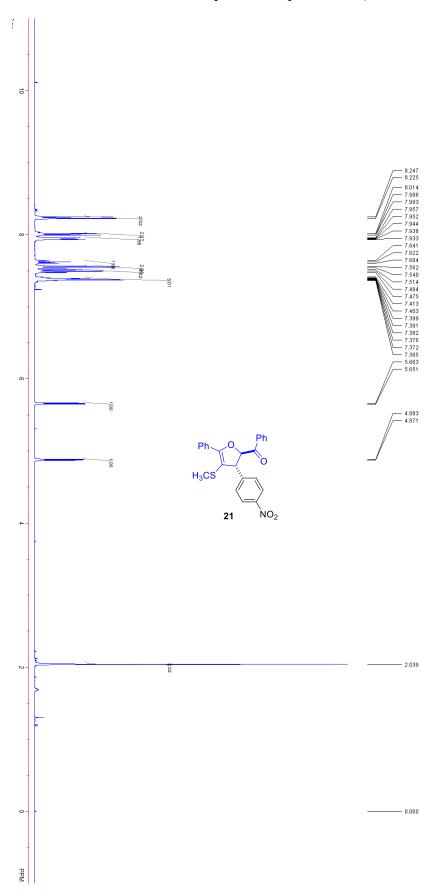

¹H NMR spectrum of product **19** (400 MHz, CDCl₃)

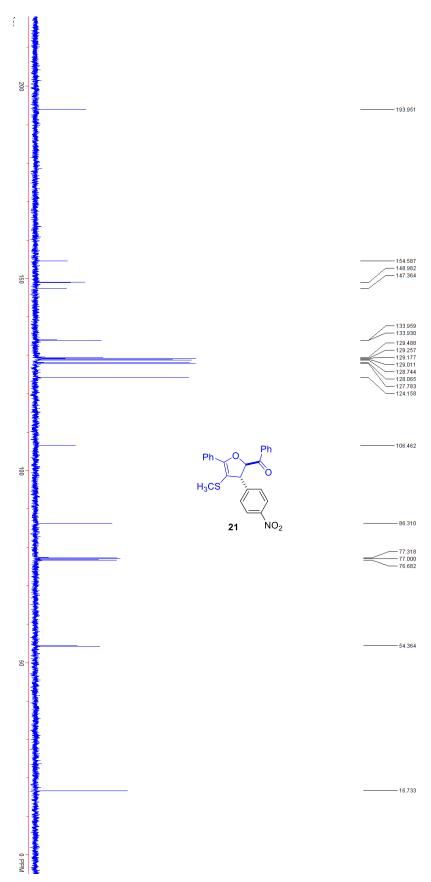


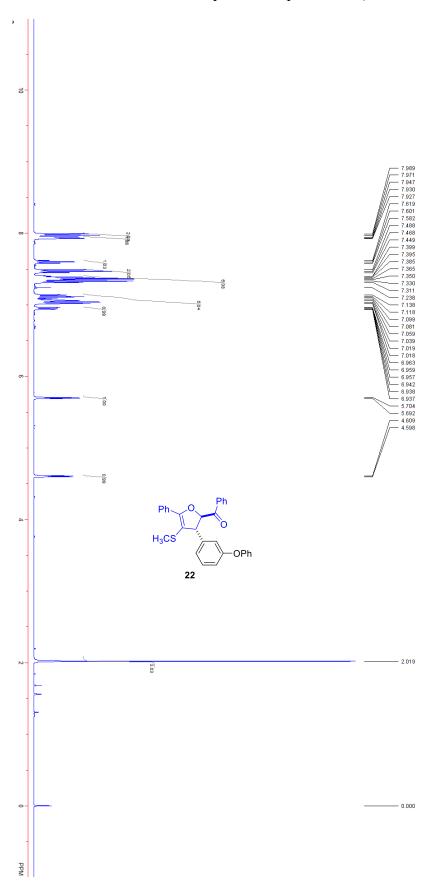


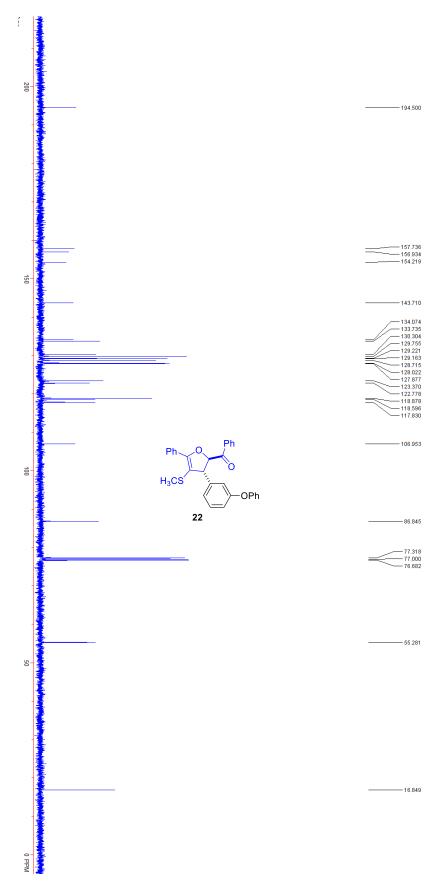


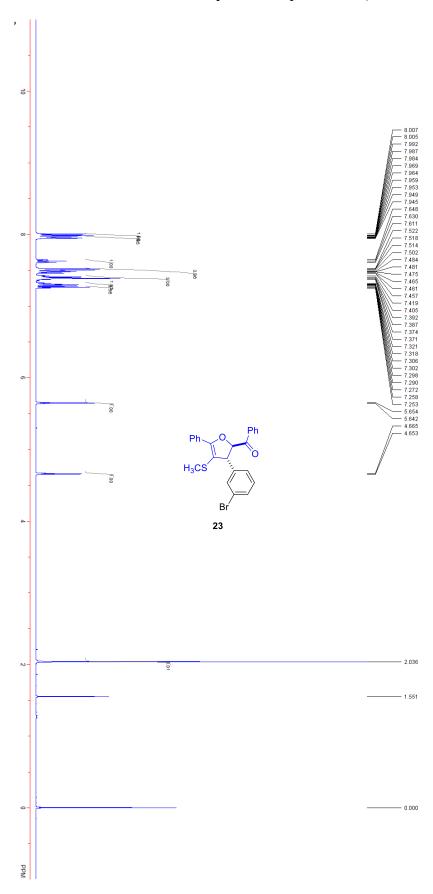

¹H NMR spectrum of product **20** (400 MHz, CDCl₃)

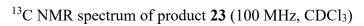


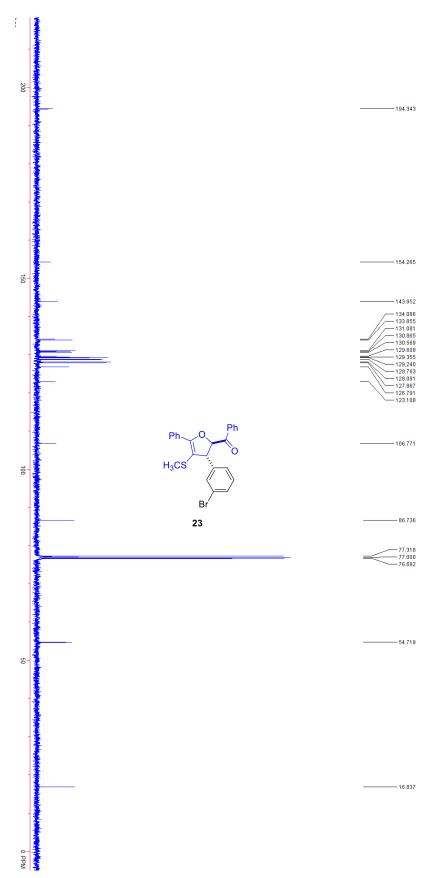


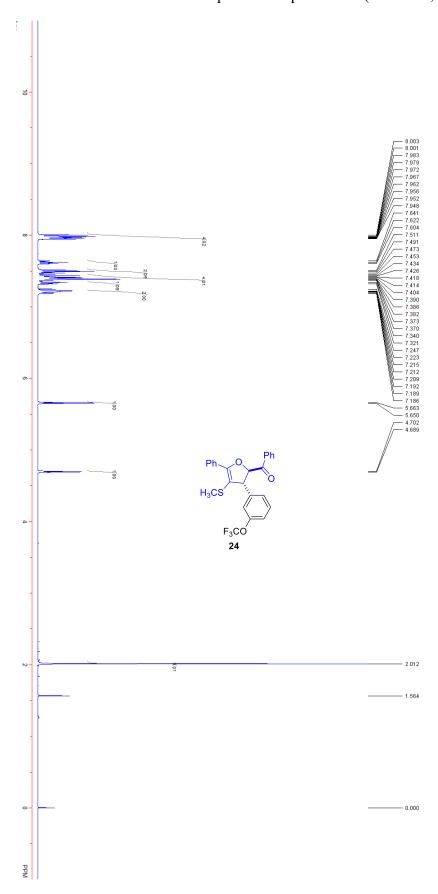

¹H NMR spectrum of product **21** (400 MHz, CDCl₃)

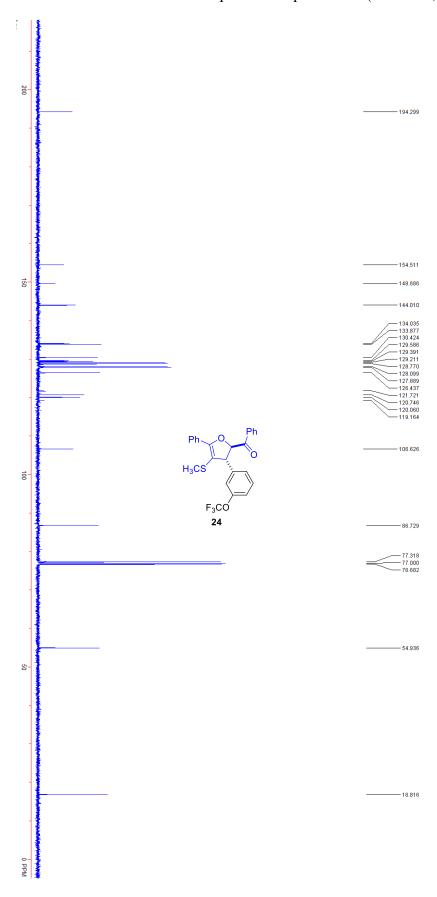

¹³C NMR spectrum of product **21** (100 MHz, CDCl₃)

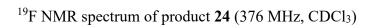

¹H NMR spectrum of product **22** (400 MHz, CDCl₃)

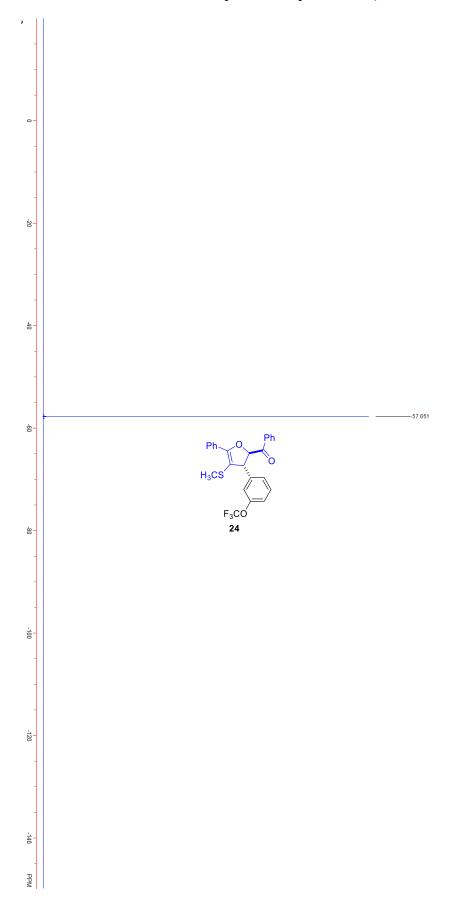


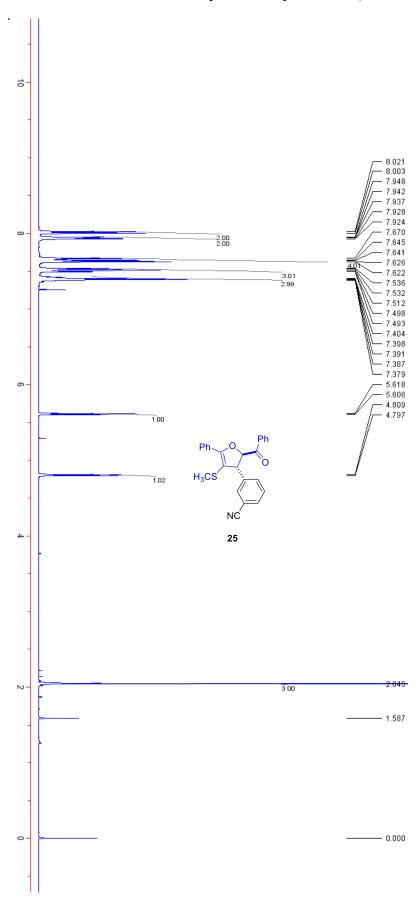

¹³C NMR spectrum of product **22** (100 MHz, CDCl₃)


¹H NMR spectrum of product **23** (400 MHz, CDCl₃)

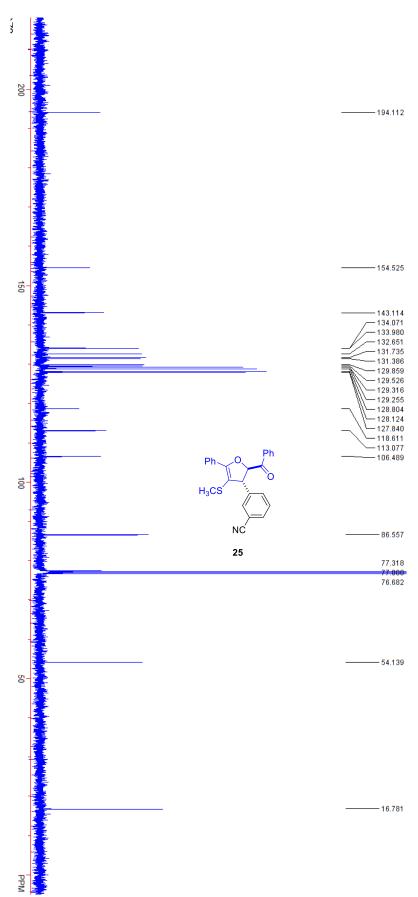


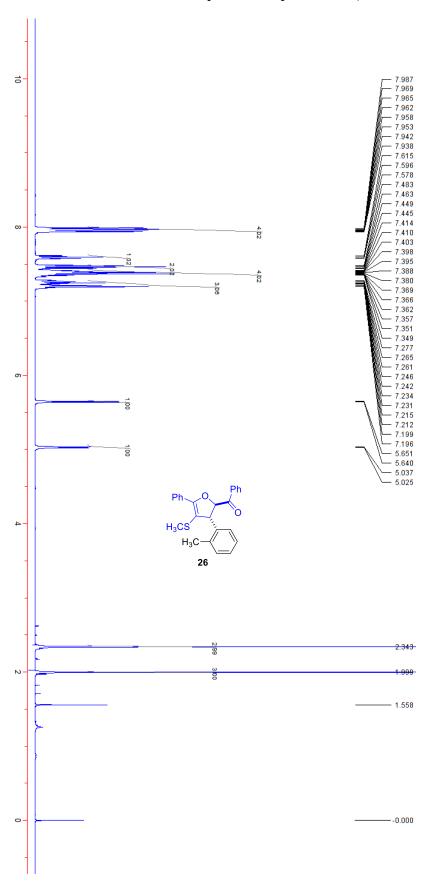


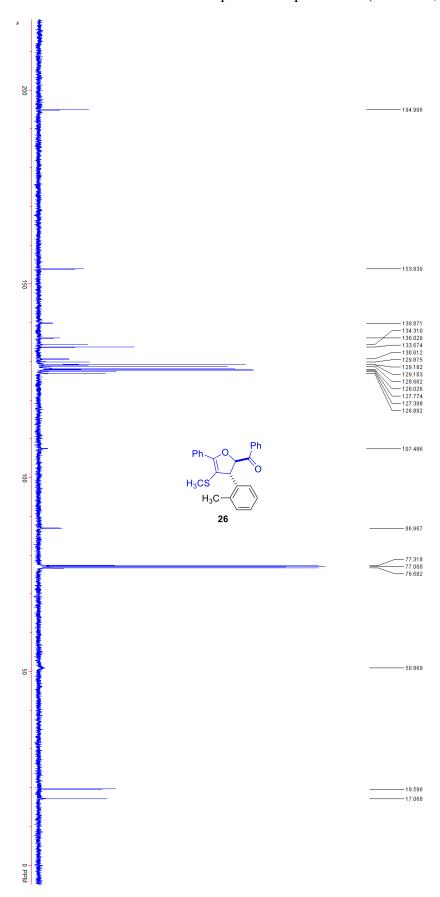

¹H NMR spectrum of product **24** (400 MHz, CDCl₃)

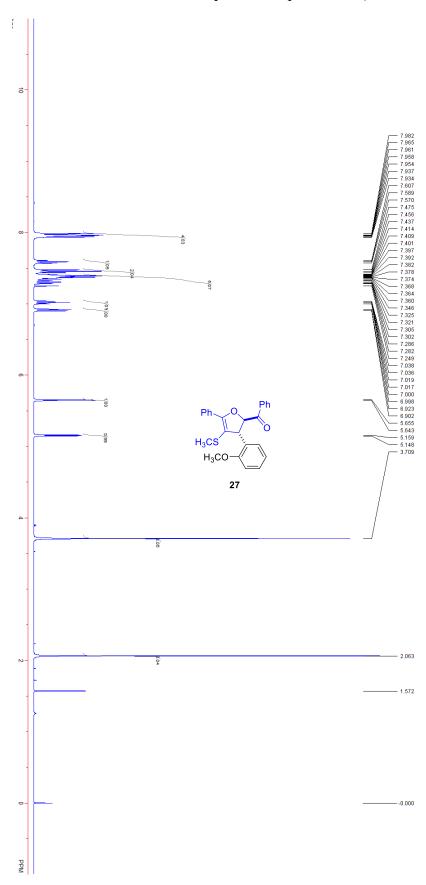


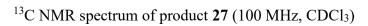
¹³C NMR spectrum of product **24** (100 MHz, CDCl₃)



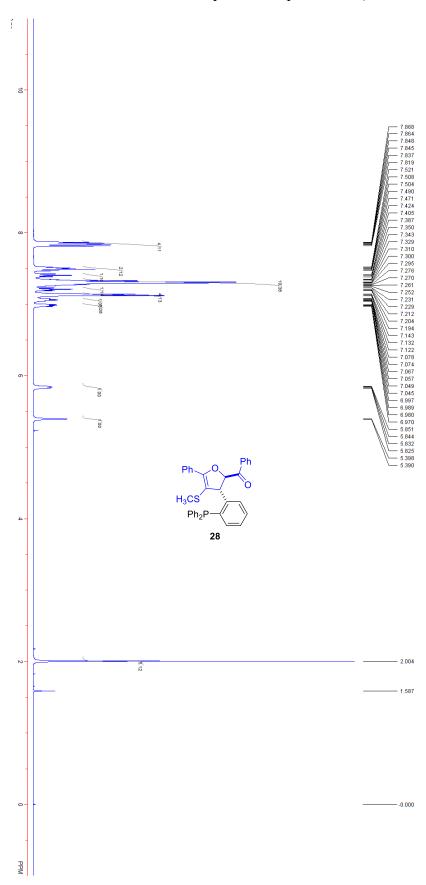


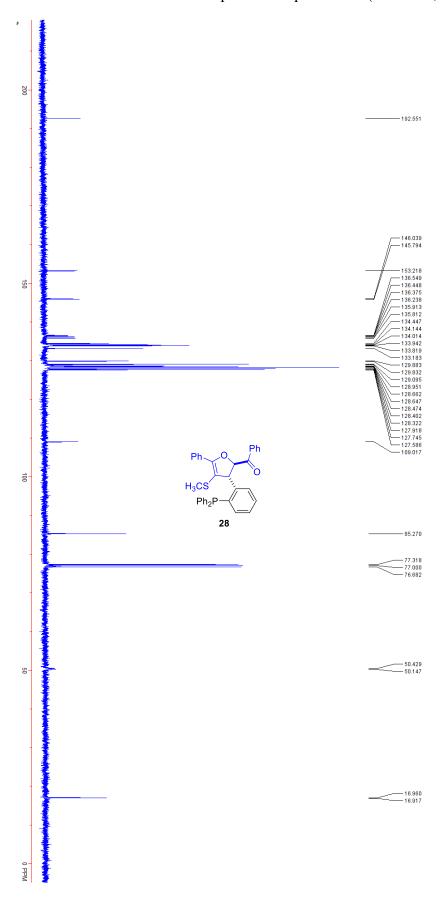

¹³C NMR spectrum of product **25** (100 MHz, CDCl₃)

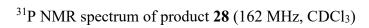

¹H NMR spectrum of product **26** (400 MHz, CDCl₃)

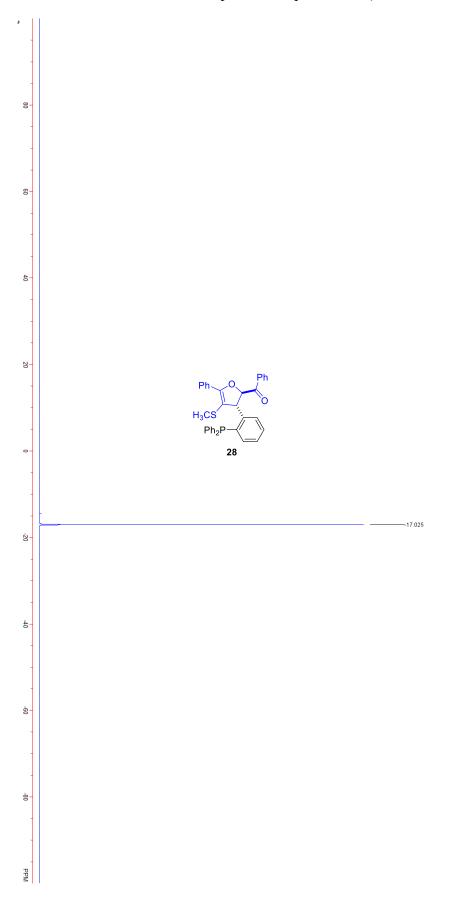


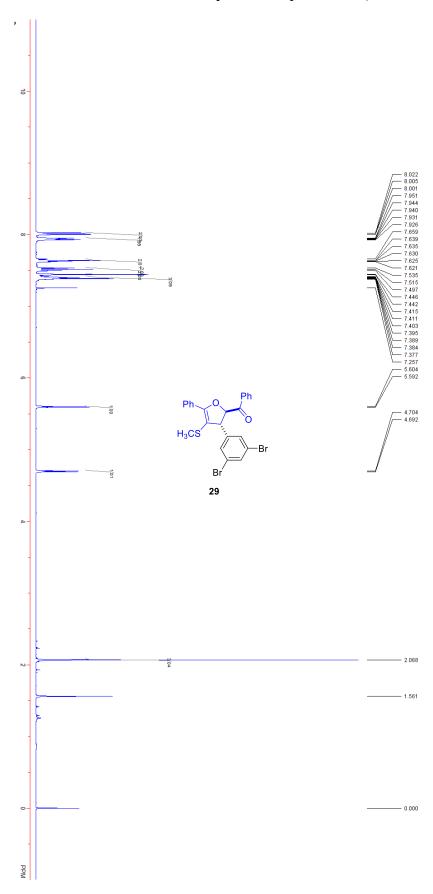
¹³C NMR spectrum of product **26** (100 MHz, CDCl₃)

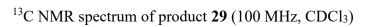

¹H NMR spectrum of product **27** (400 MHz, CDCl₃)

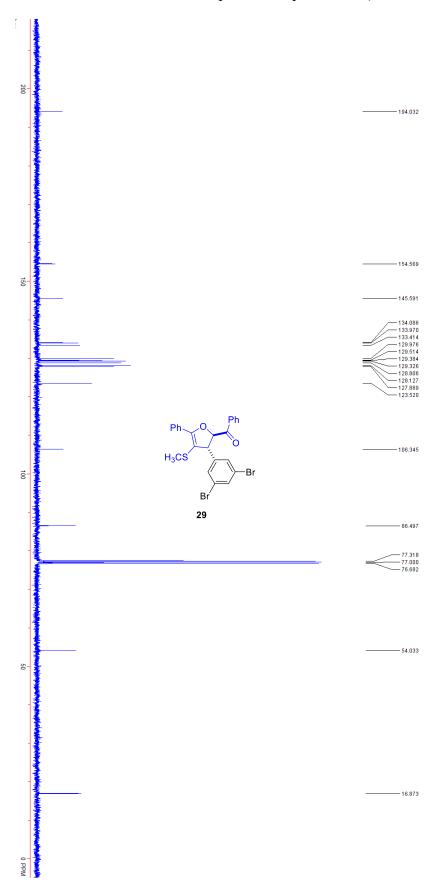


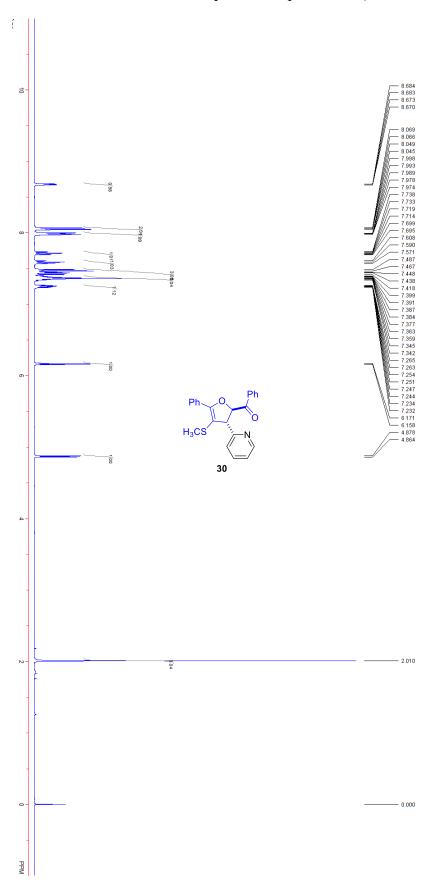


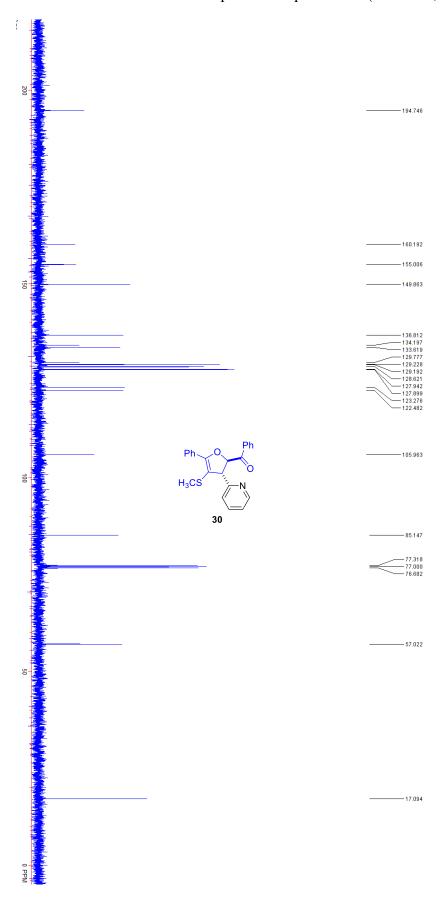

¹H NMR spectrum of product **28** (400 MHz, CDCl₃)

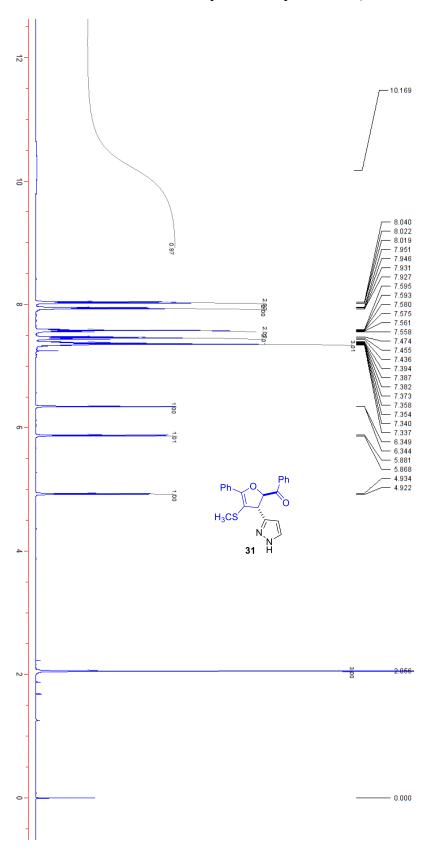


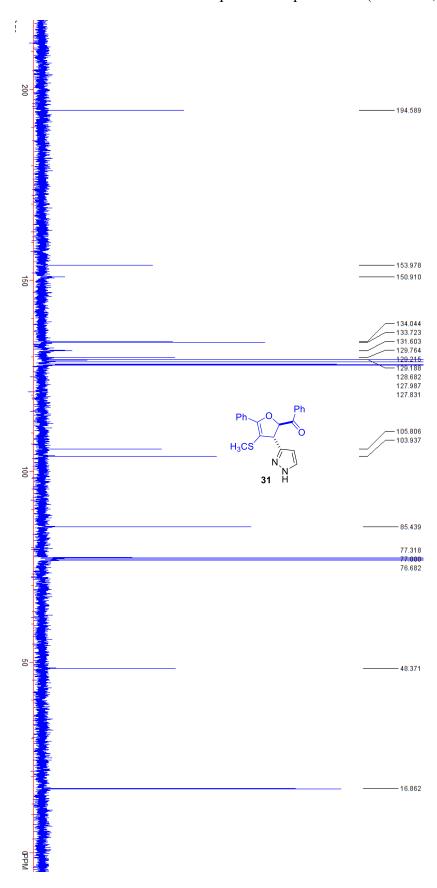

¹³C NMR spectrum of product **28** (100 MHz, CDCl₃)

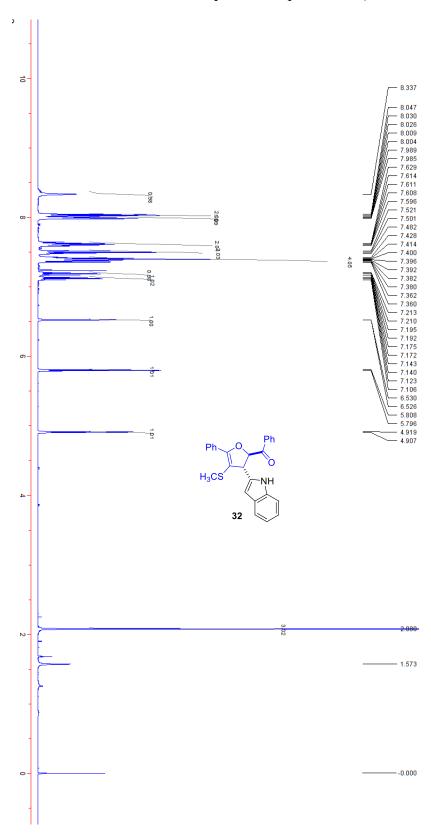


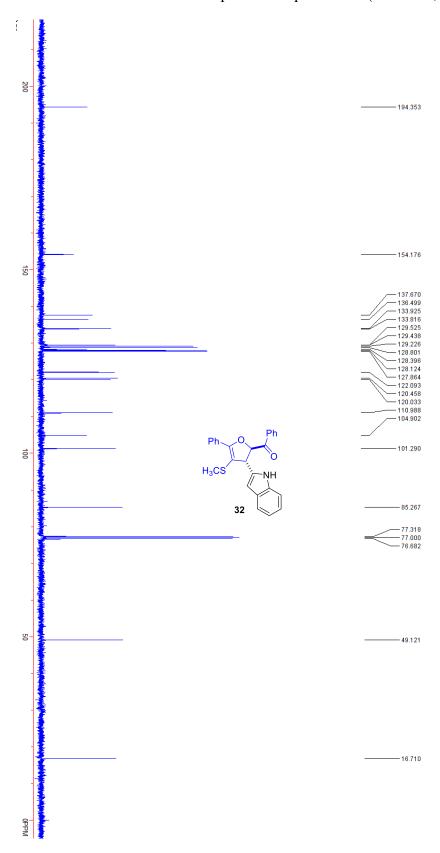


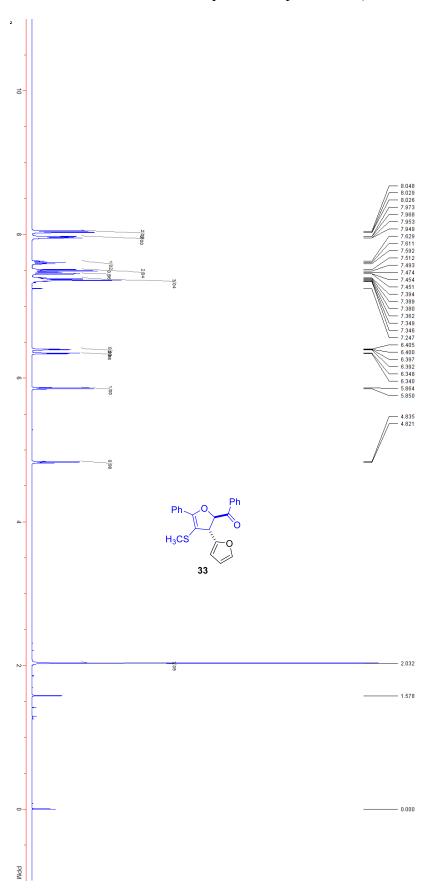


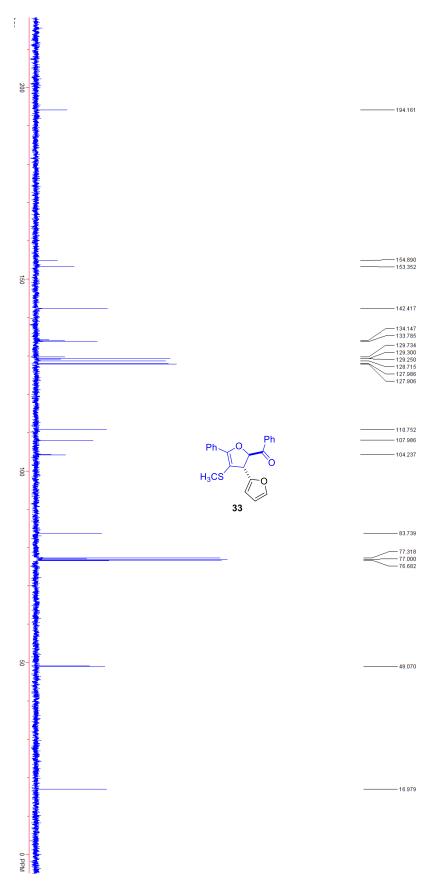

¹H NMR spectrum of product **30** (400 MHz, CDCl₃)

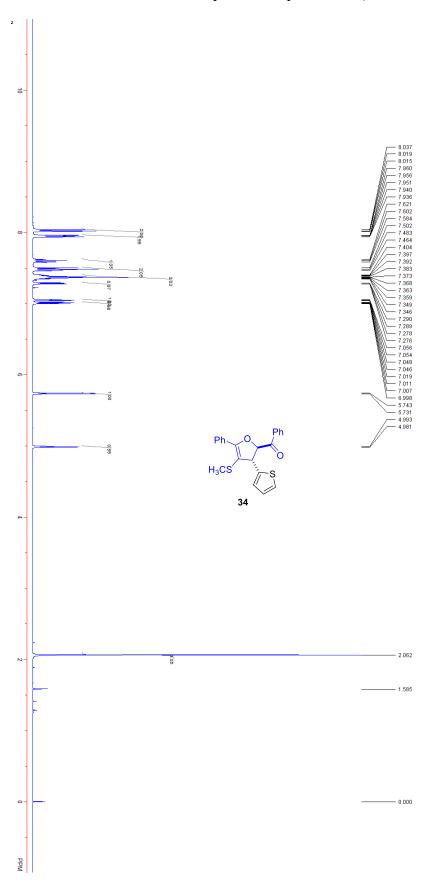

¹³C NMR spectrum of product **30** (100 MHz, CDCl₃)

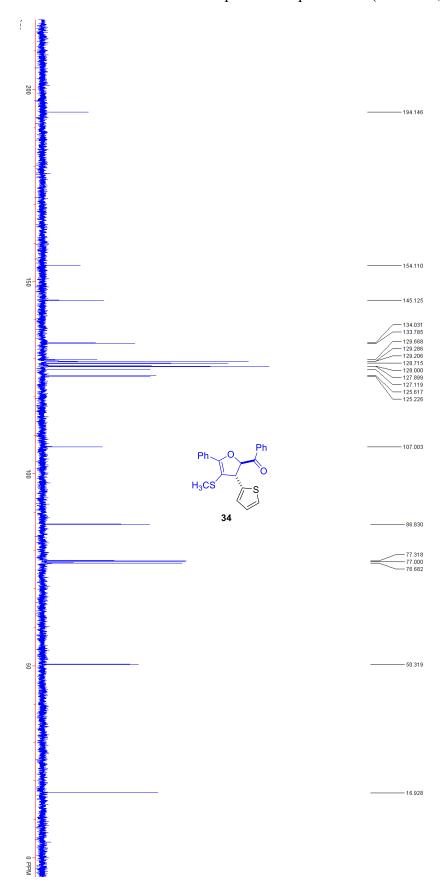

¹H NMR spectrum of product **31** (400 MHz, CDCl₃)

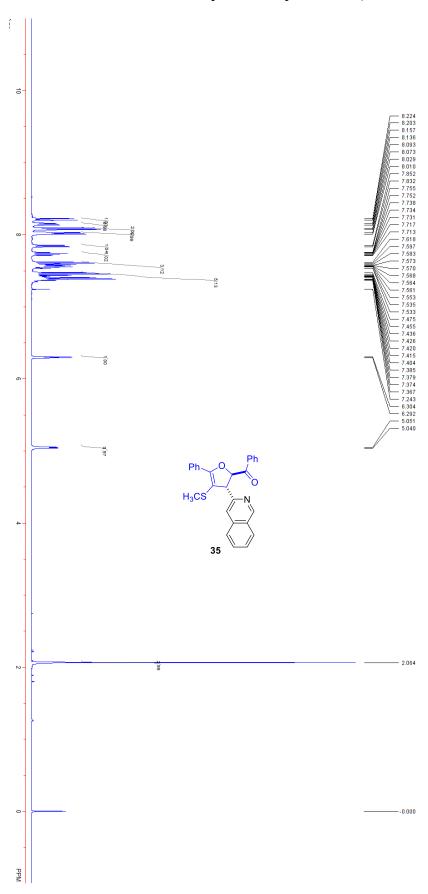

¹³C NMR spectrum of product **31** (100 MHz, CDCl₃)

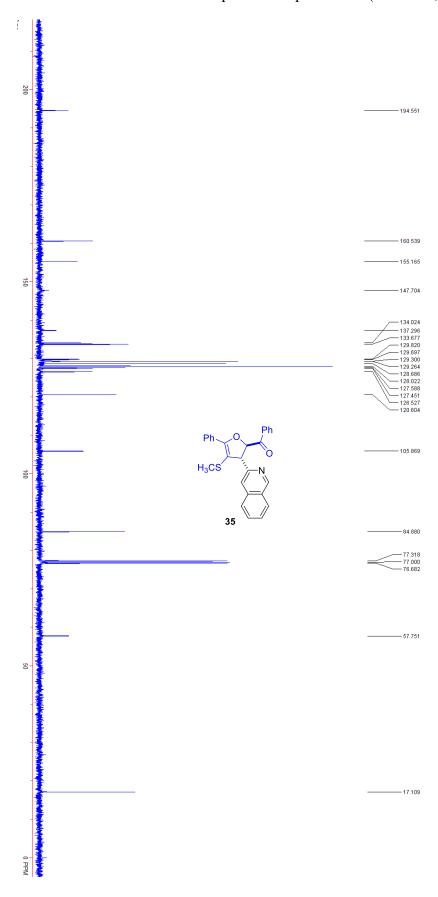

¹H NMR spectrum of product **32** (400 MHz, CDCl₃)

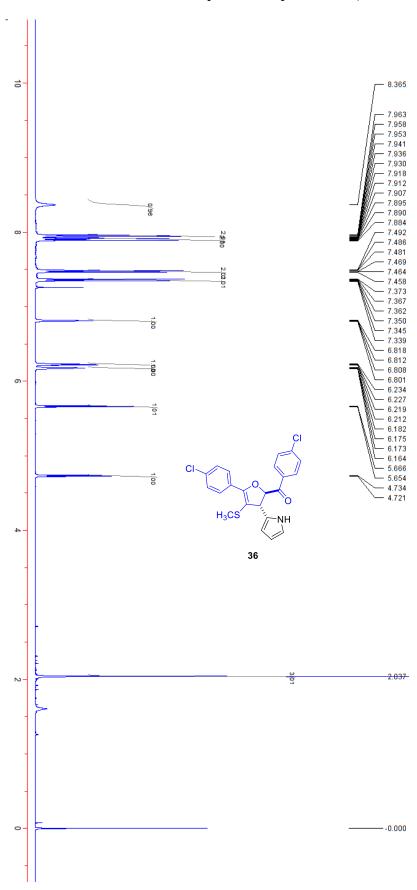

¹³C NMR spectrum of product **32** (100 MHz, CDCl₃)

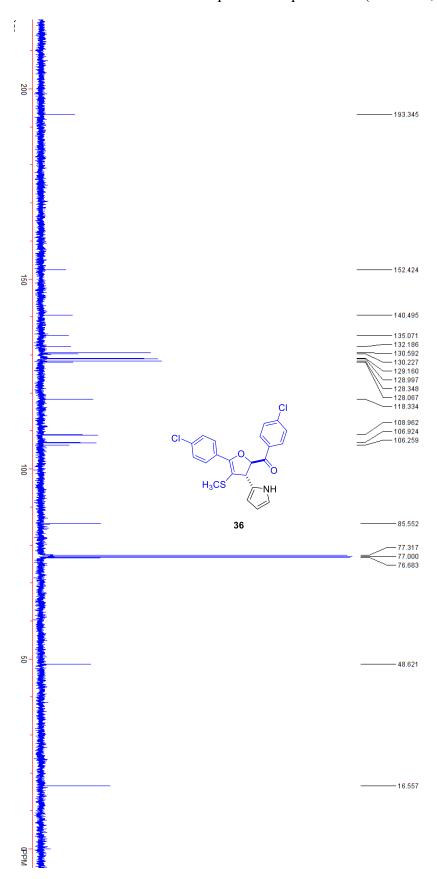

¹H NMR spectrum of product **33** (400 MHz, CDCl₃)

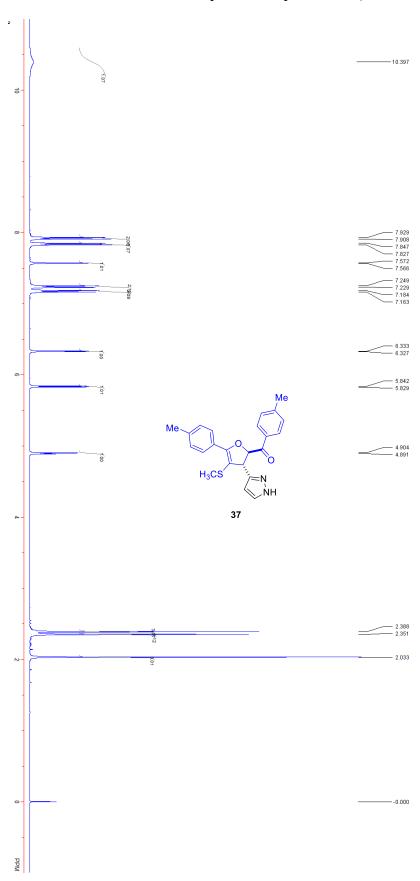

¹³C NMR spectrum of product **33** (100 MHz, CDCl₃)

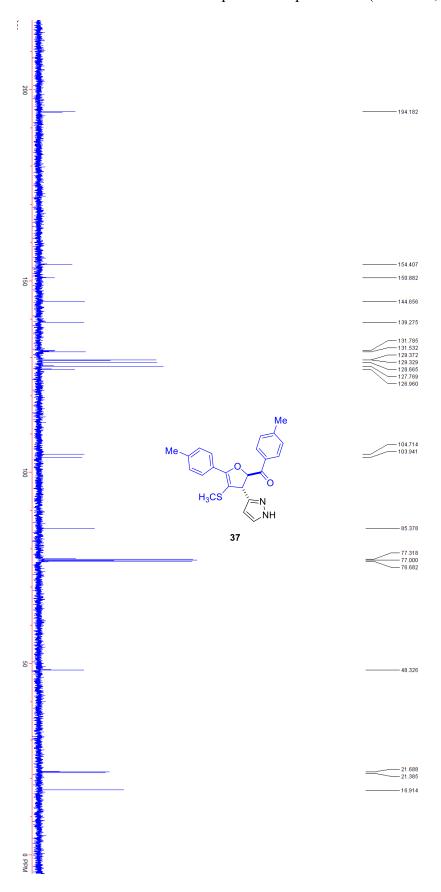

¹H NMR spectrum of product **34** (400 MHz, CDCl₃)

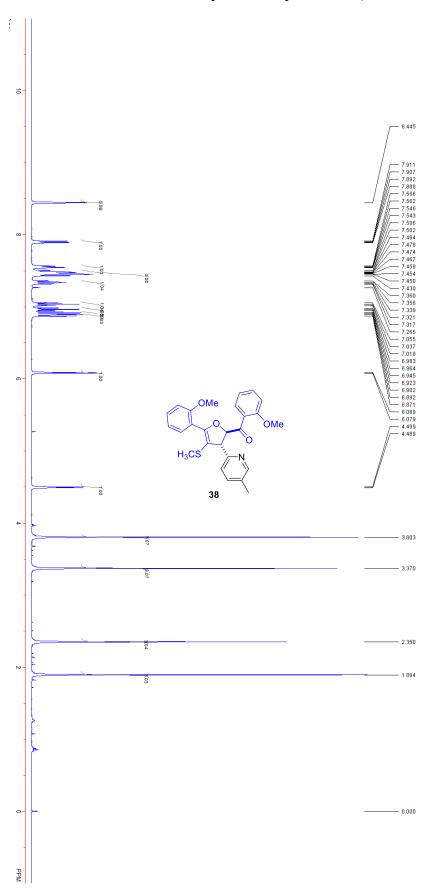

¹³C NMR spectrum of product **34** (100 MHz, CDCl₃)

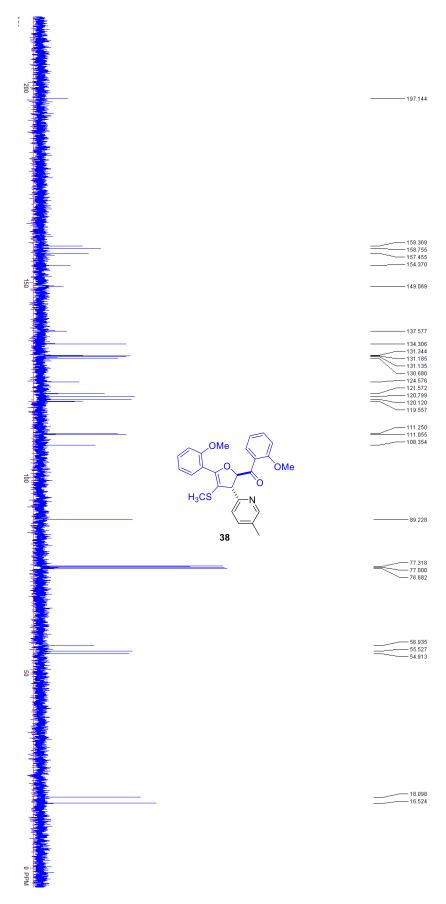

¹H NMR spectrum of product **35** (400 MHz, CDCl₃)

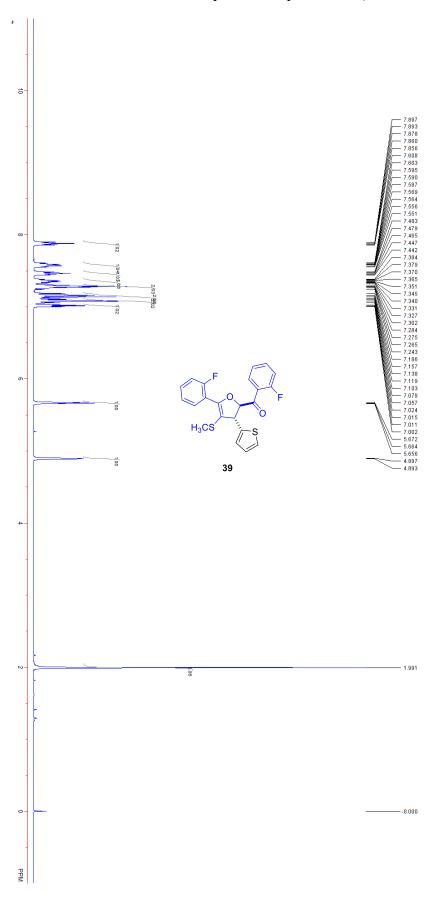

¹³C NMR spectrum of product **35** (100 MHz, CDCl₃)


¹H NMR spectrum of product **36** (400 MHz, CDCl₃)

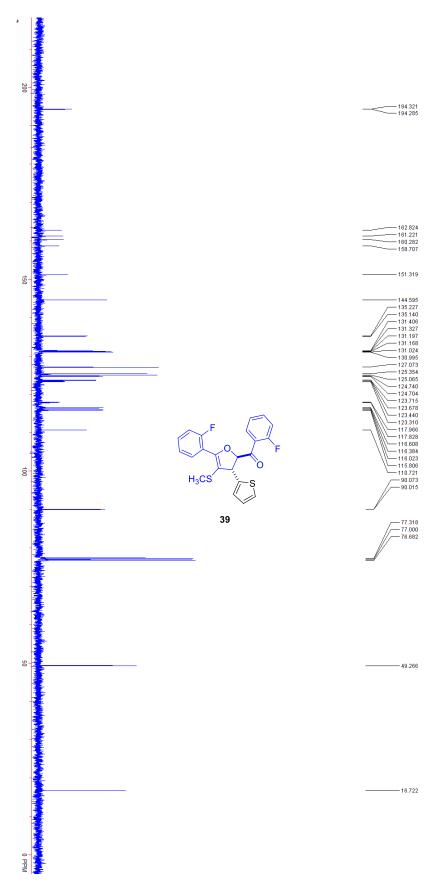

¹³C NMR spectrum of product **36** (100 MHz, CDCl₃)

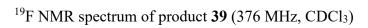

¹H NMR spectrum of product **37** (400 MHz, CDCl₃)

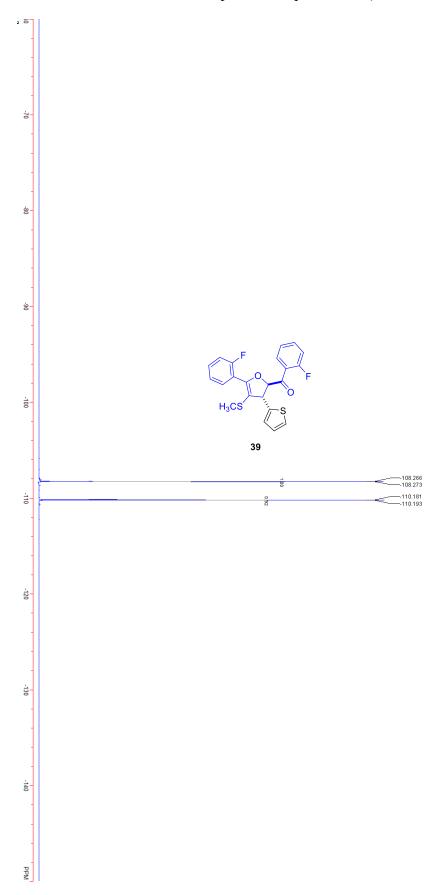

¹³C NMR spectrum of product **37** (100 MHz, CDCl₃)

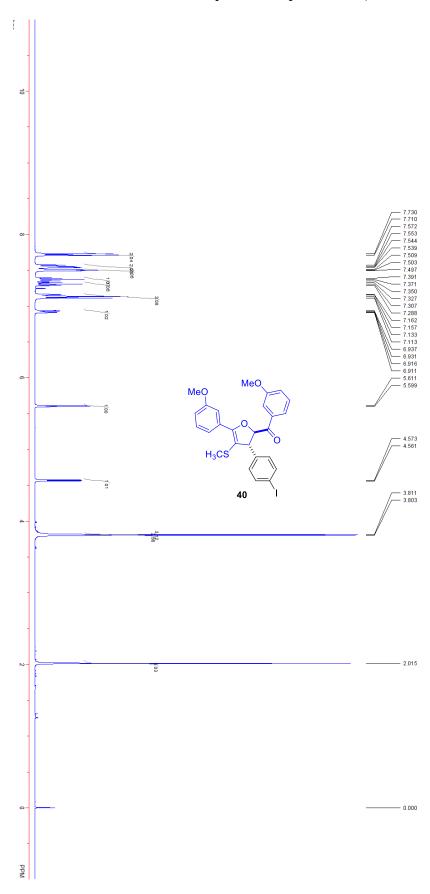


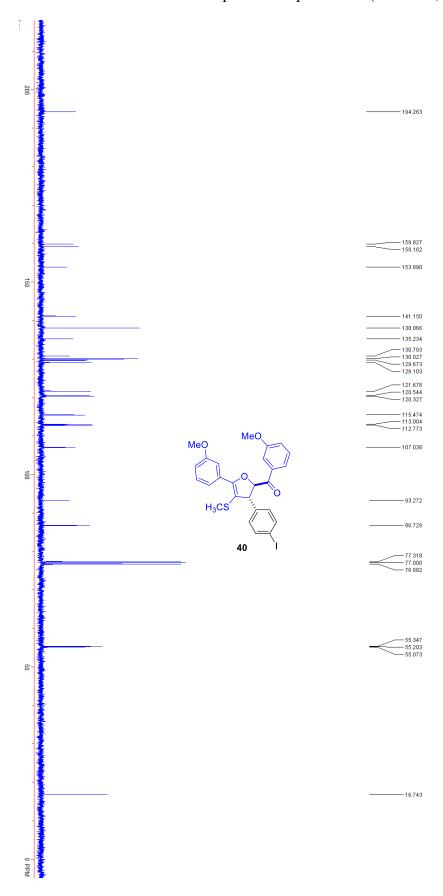
¹H NMR spectrum of product **38** (400 MHz, CDCl₃)

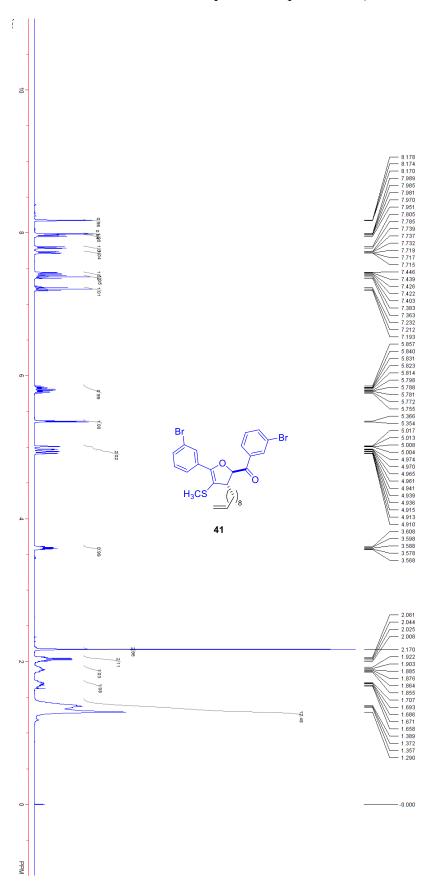



¹³C NMR spectrum of product **38** (100 MHz, CDCl₃)

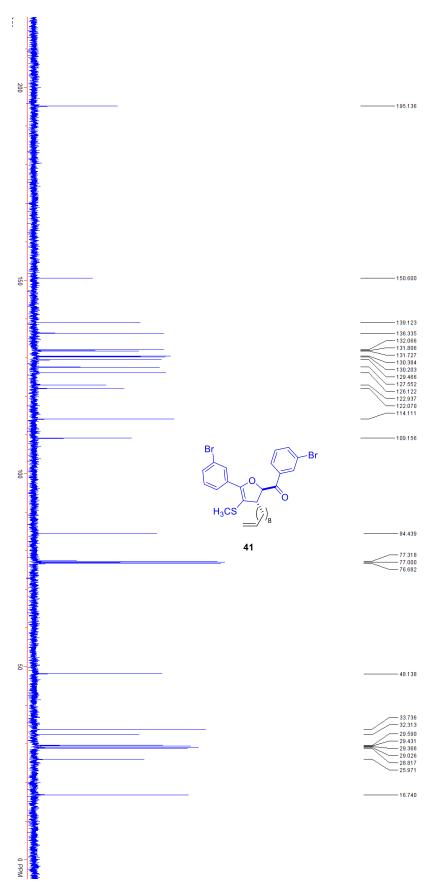


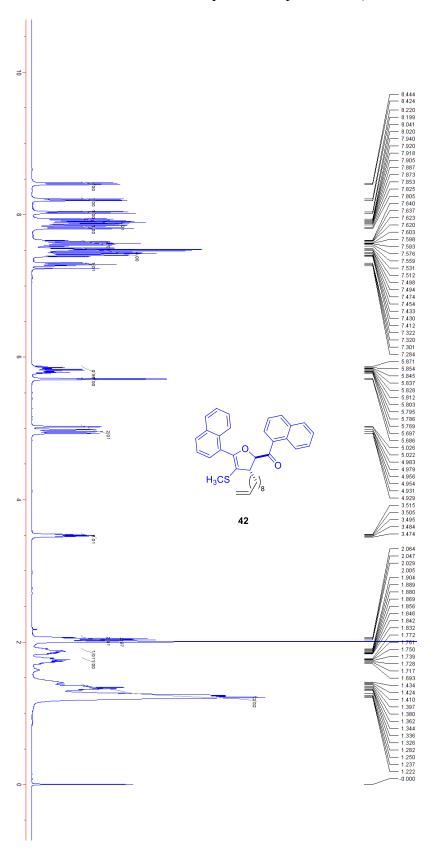

¹³C NMR spectrum of product **39** (100 MHz, CDCl₃)

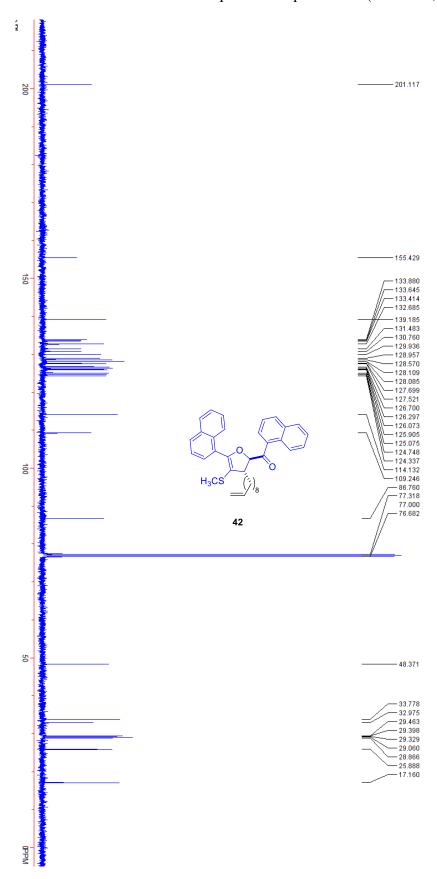


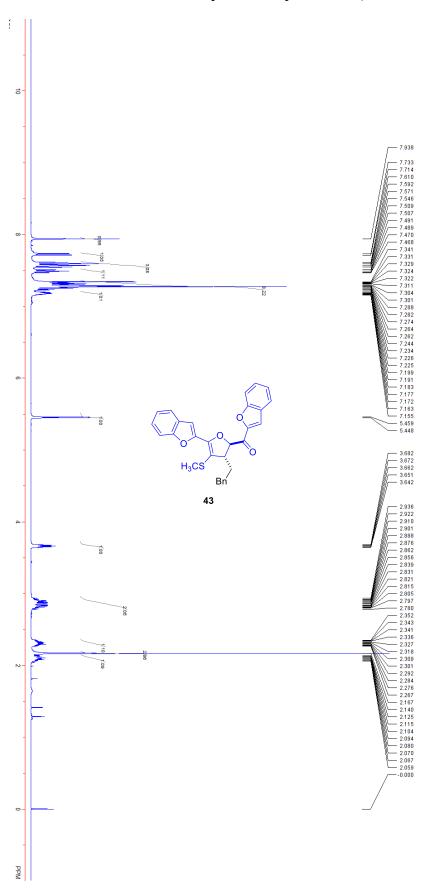


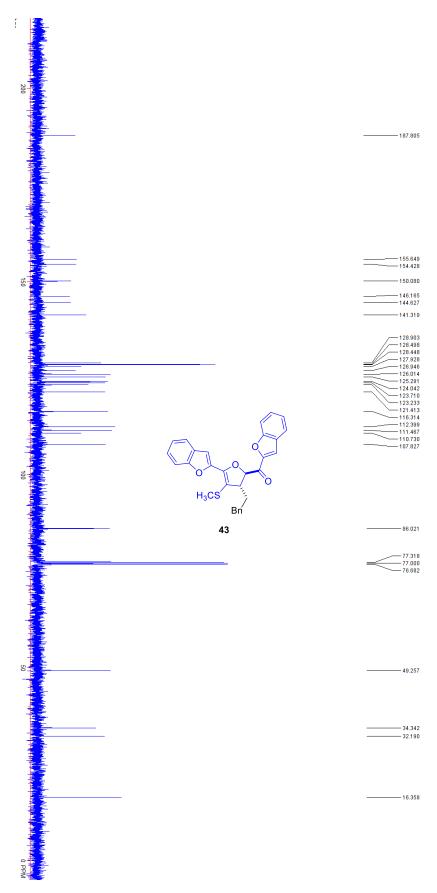
¹H NMR spectrum of product **40** (400 MHz, CDCl₃)

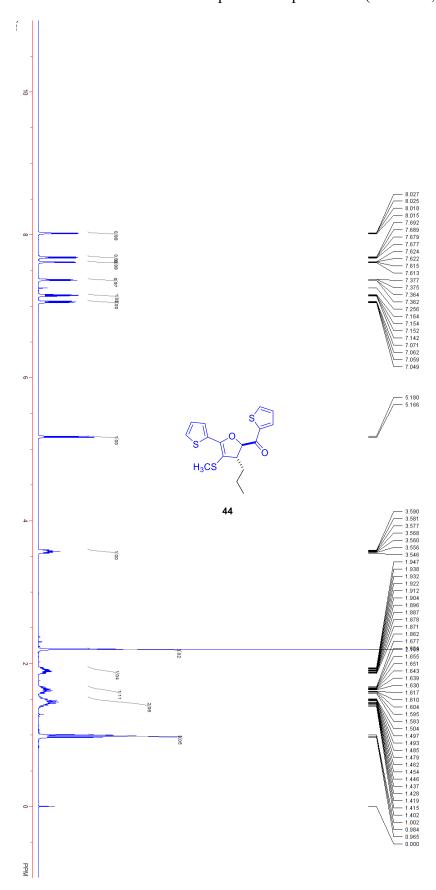


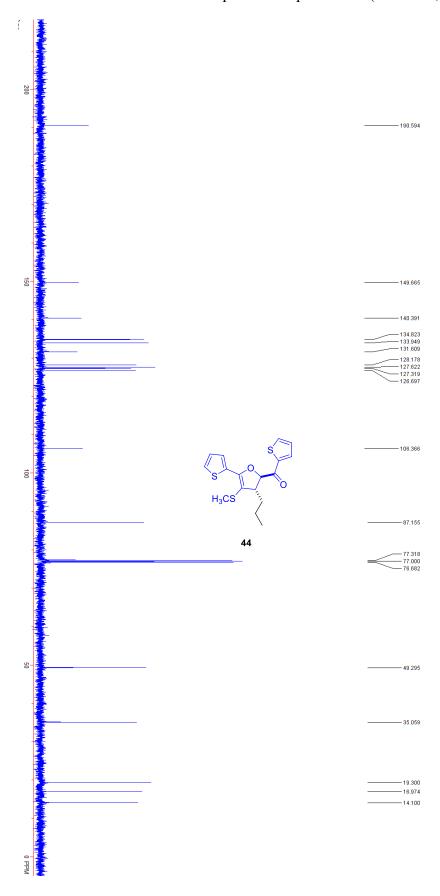

¹³C NMR spectrum of product **40** (100 MHz, CDCl₃)

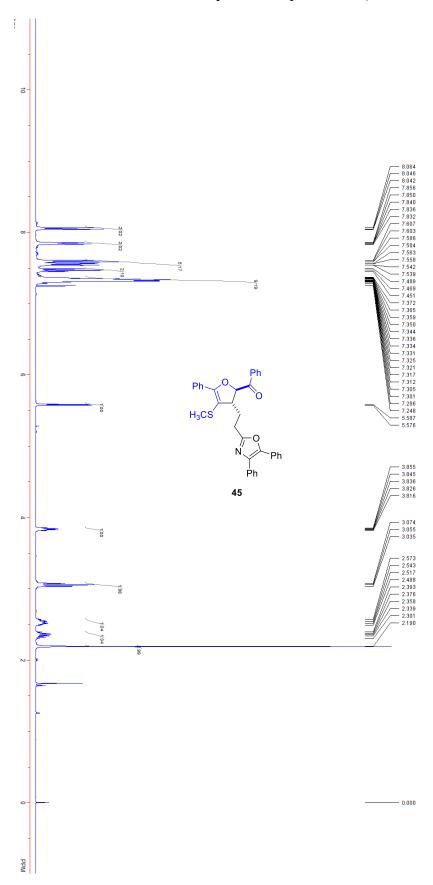


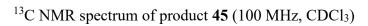

¹³C NMR spectrum of product **41** (100 MHz, CDCl₃)

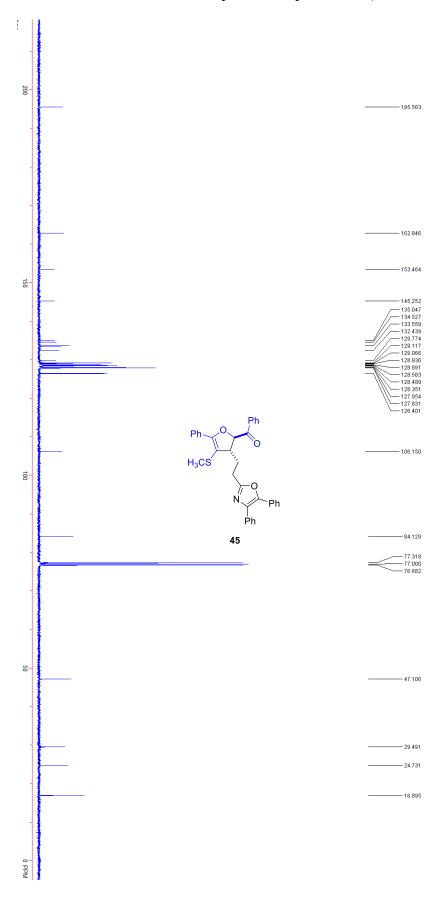



¹³C NMR spectrum of product **42** (100 MHz, CDCl₃)

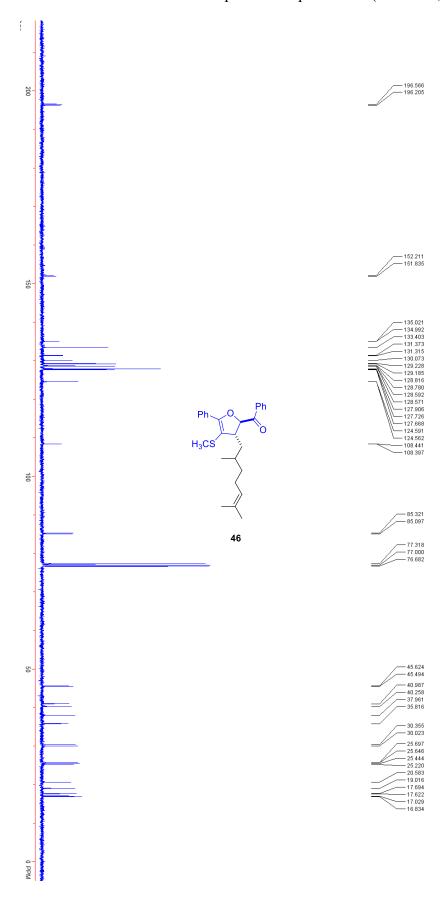


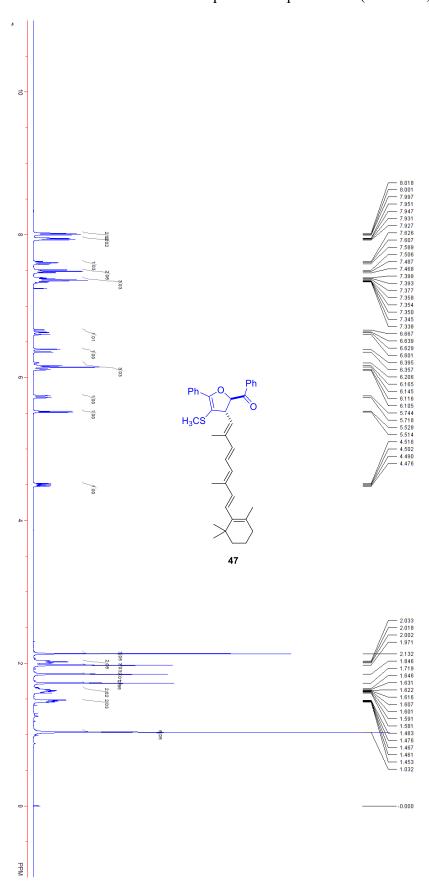

¹³C NMR spectrum of product **43** (100 MHz, CDCl₃)

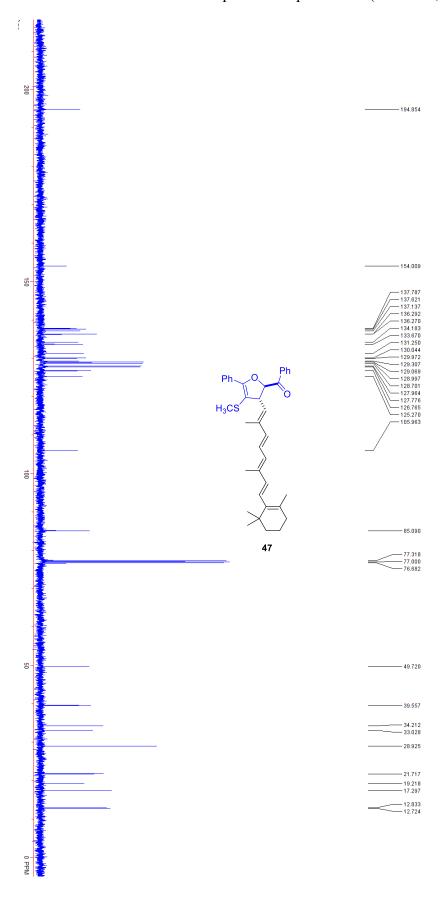


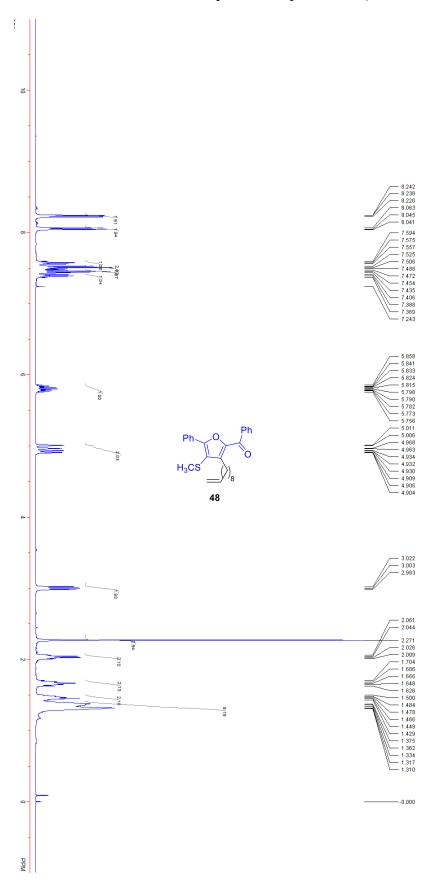


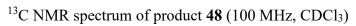

¹³C NMR spectrum of product 44 (100 MHz, CDCl₃)

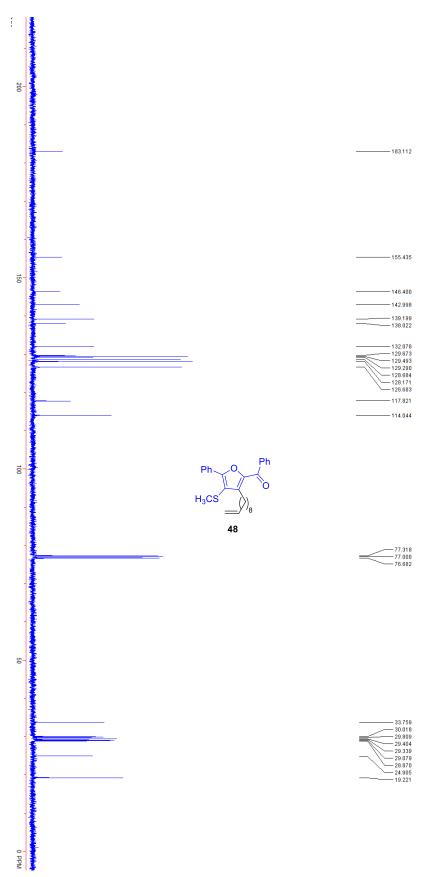




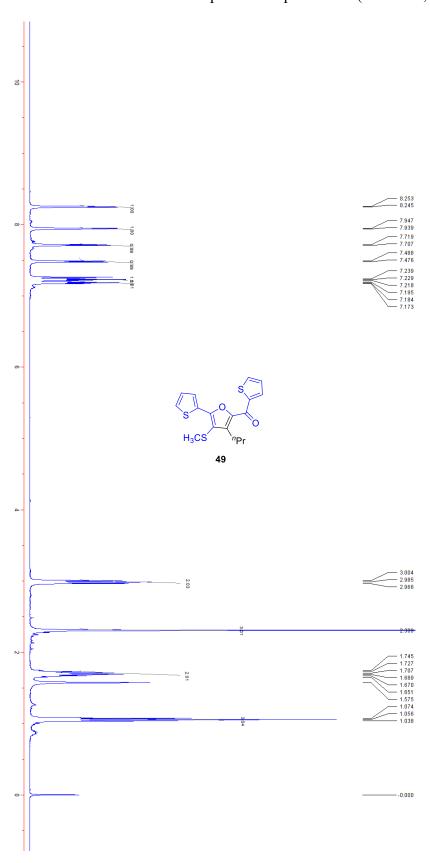


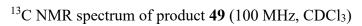

13 C NMR spectrum of product **46** (100 MHz, CDCl₃)

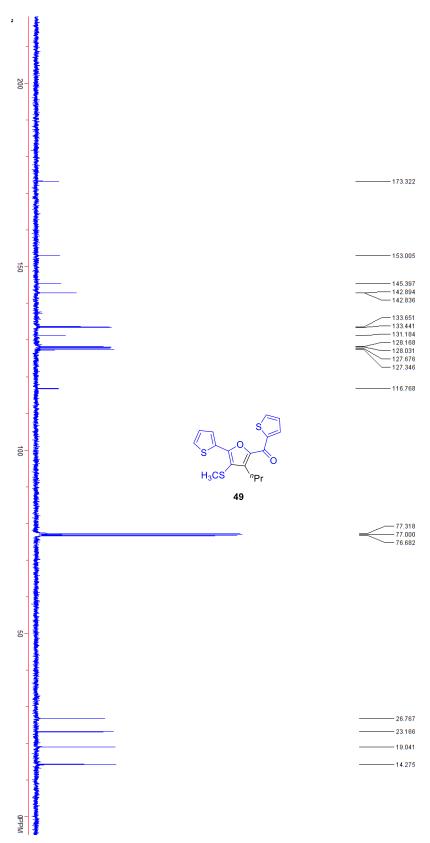


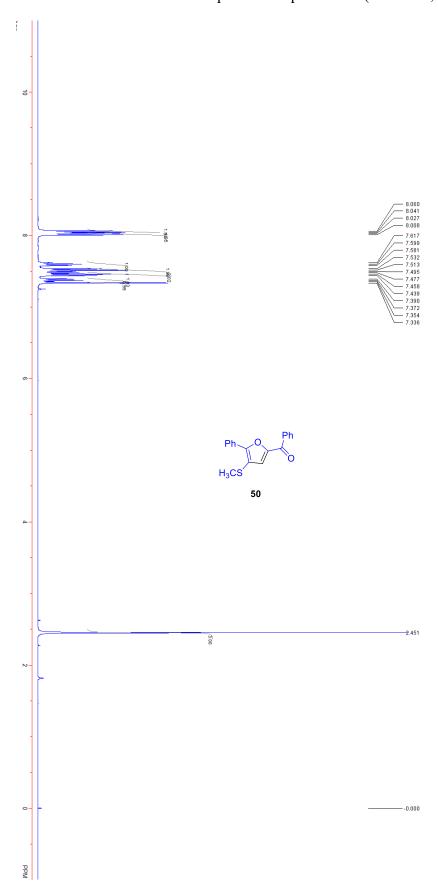


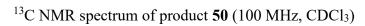
¹³C NMR spectrum of product 47 (100 MHz, CDCl₃)

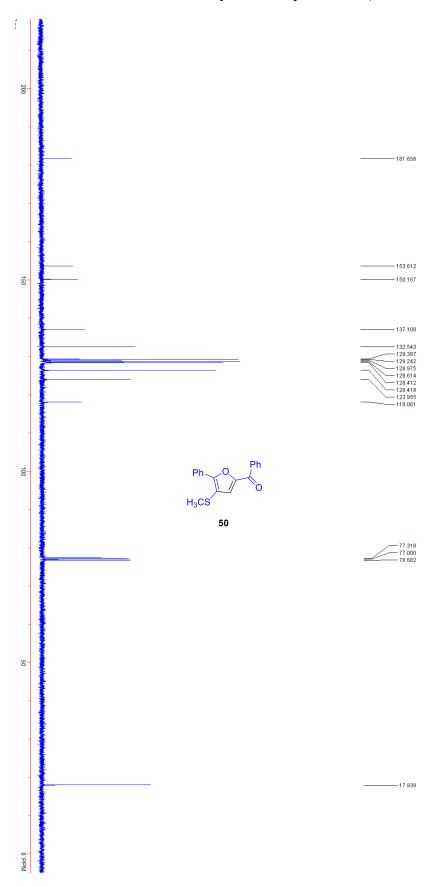


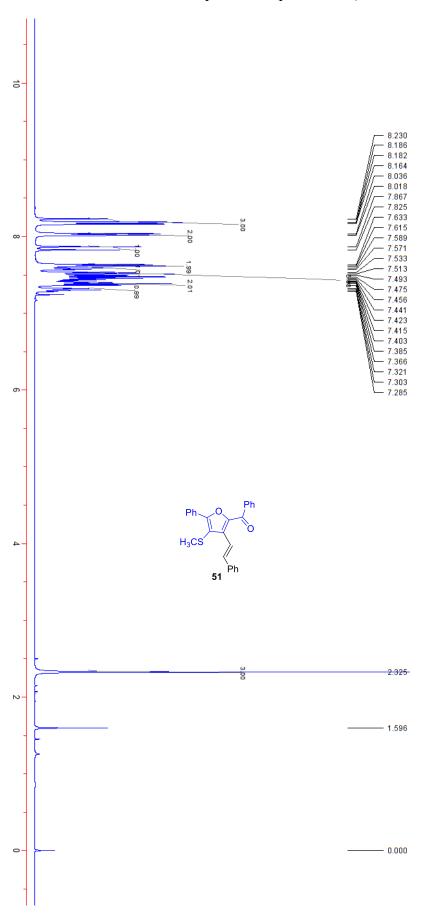


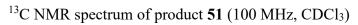


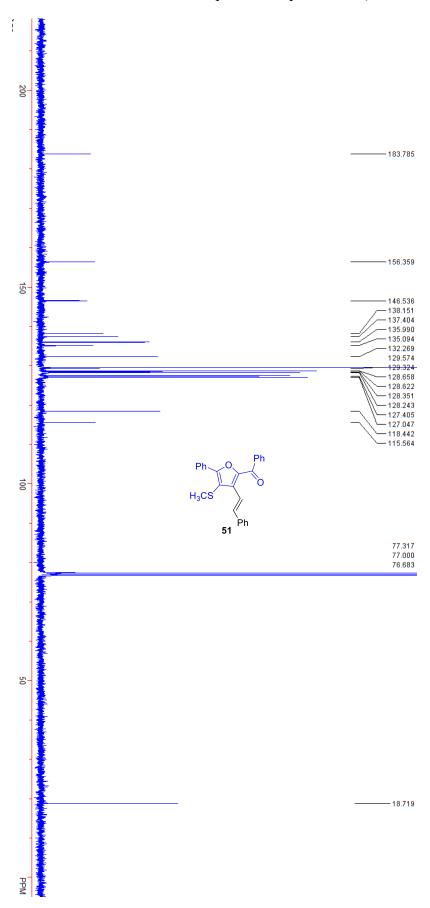

¹H NMR spectrum of product **49** (400 MHz, CDCl₃)

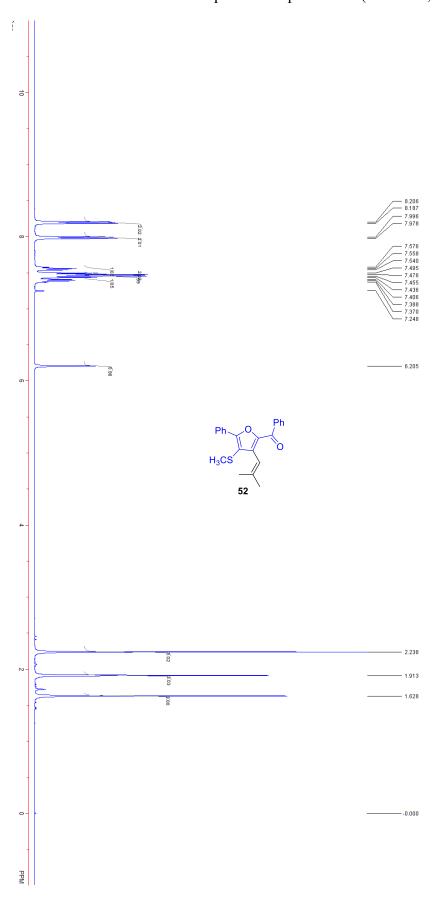


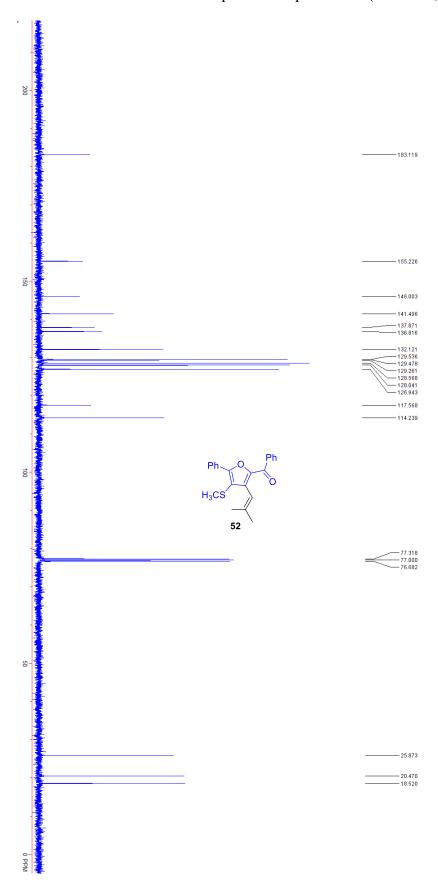


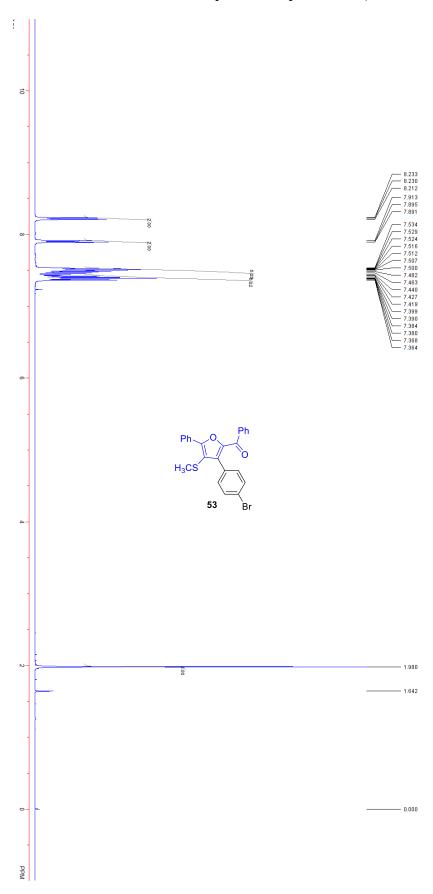

¹H NMR spectrum of product **50** (400 MHz, CDCl₃)

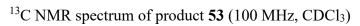


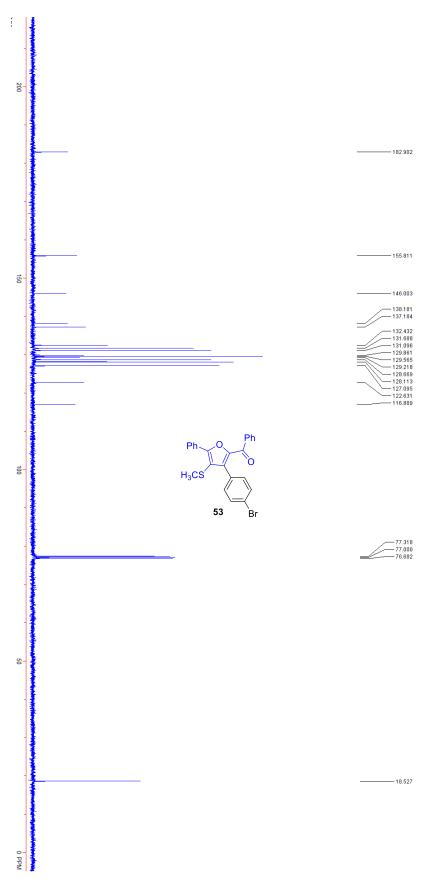


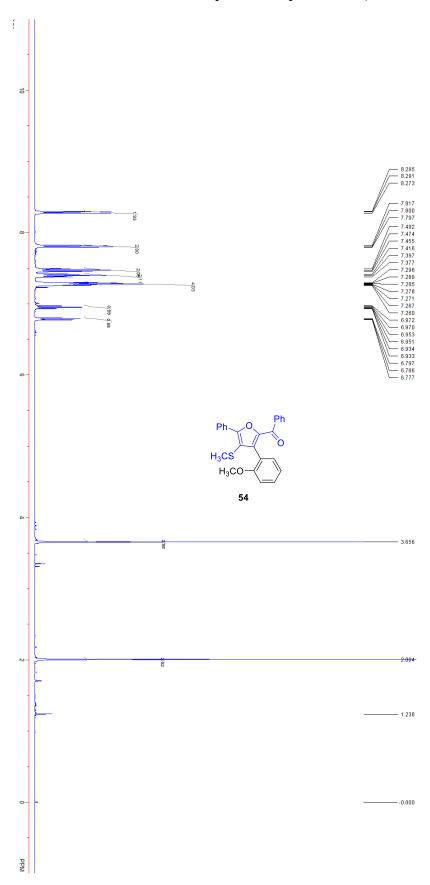

¹H NMR spectrum of product **51** (400 MHz, CDCl₃)

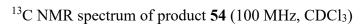


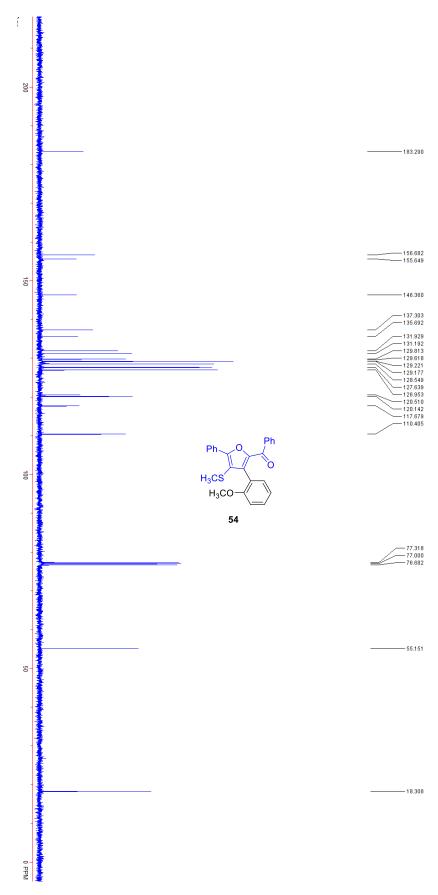

¹H NMR spectrum of product **52** (400 MHz, CDCl₃)

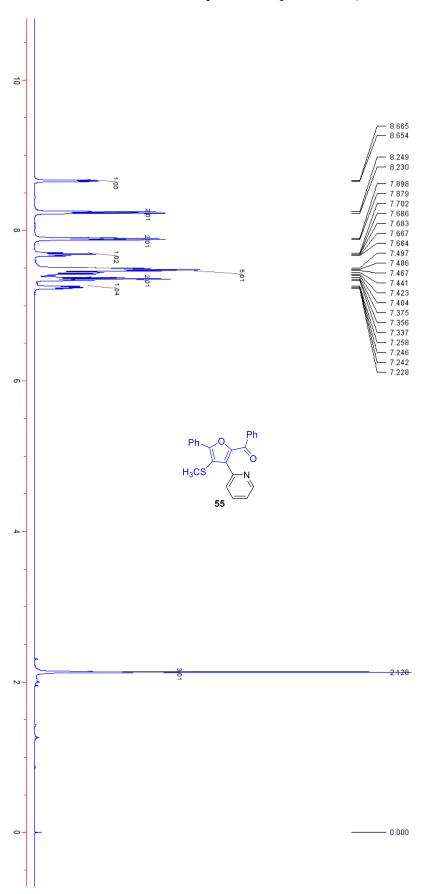


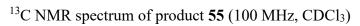

¹³C NMR spectrum of product **52** (100 MHz, CDCl₃)

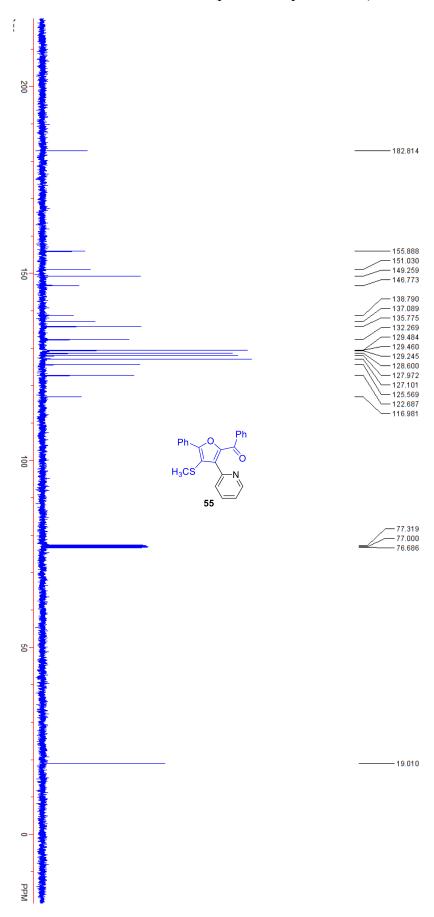

¹H NMR spectrum of product **53** (400 MHz, CDCl₃)

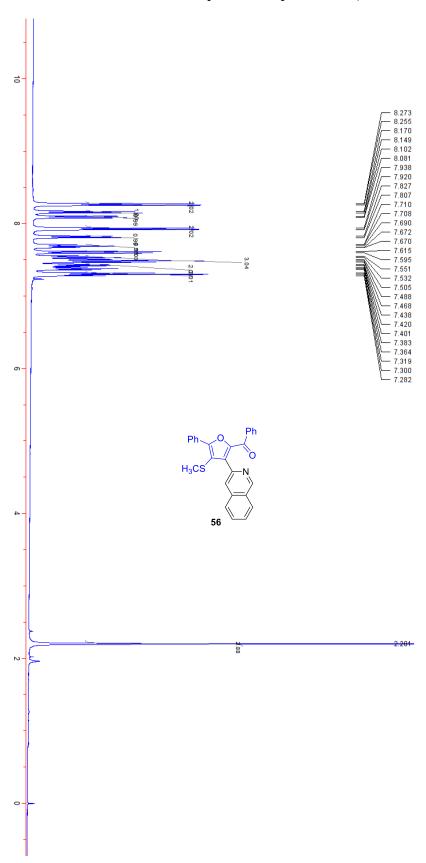


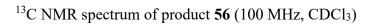


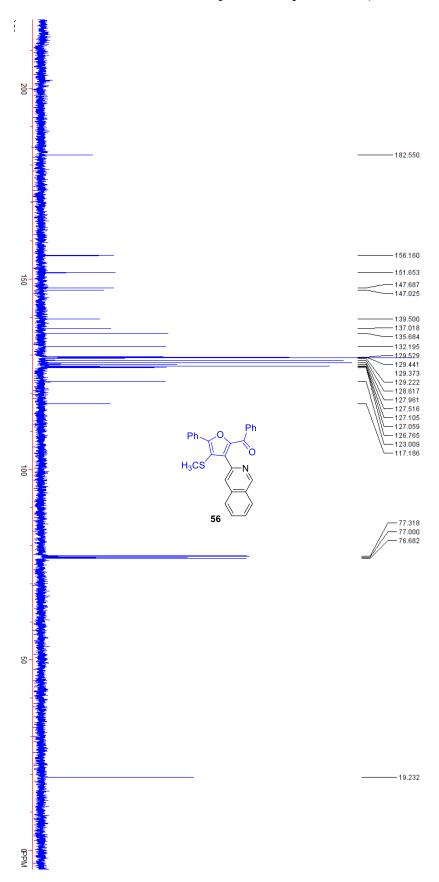

¹H NMR spectrum of product **54** (400 MHz, CDCl₃)

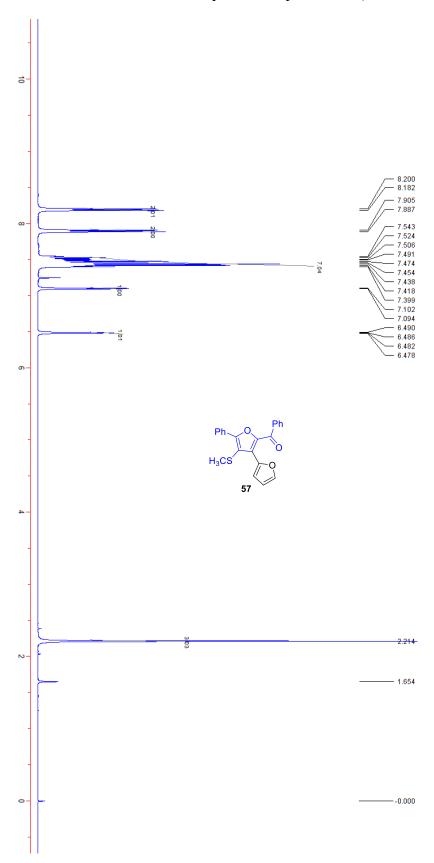


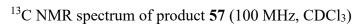


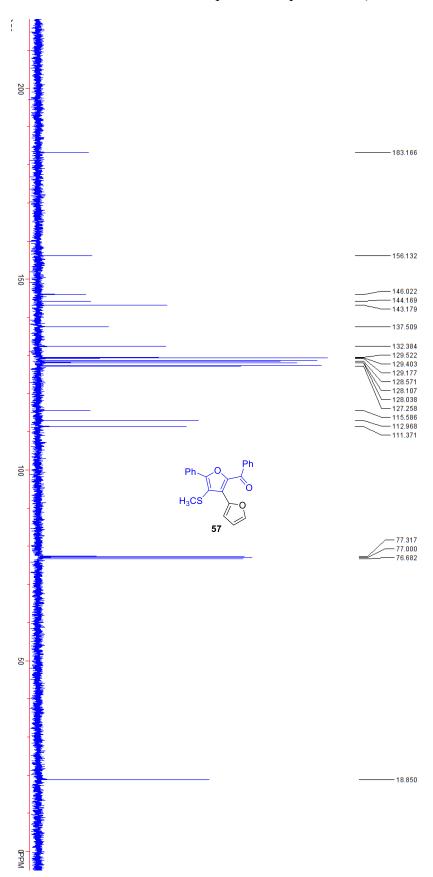

¹H NMR spectrum of product **55** (400 MHz, CDCl₃)

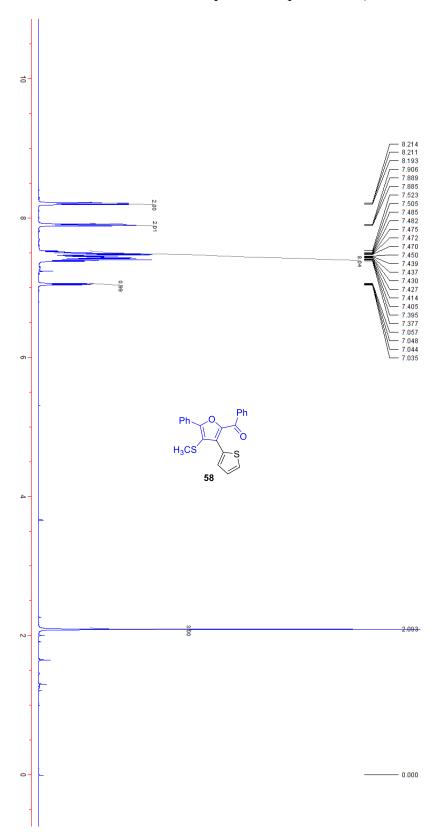


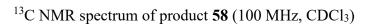


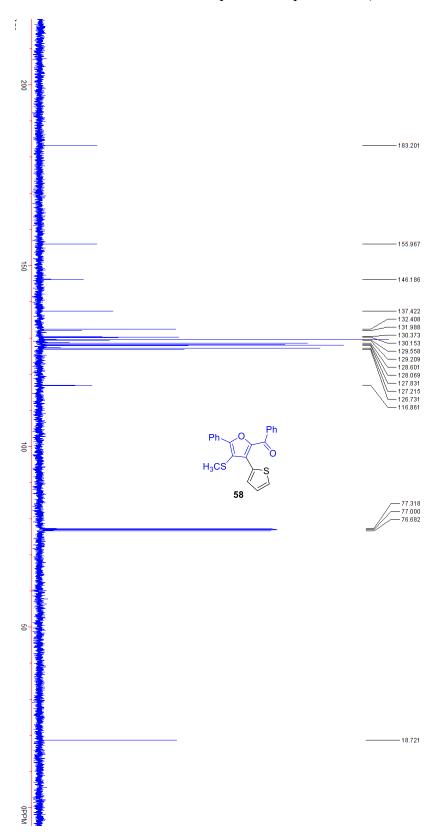

¹H NMR spectrum of product **56** (400 MHz, CDCl₃)






¹H NMR spectrum of product **57** (400 MHz, CDCl₃)





¹H NMR spectrum of product **58** (400 MHz, CDCl₃)

