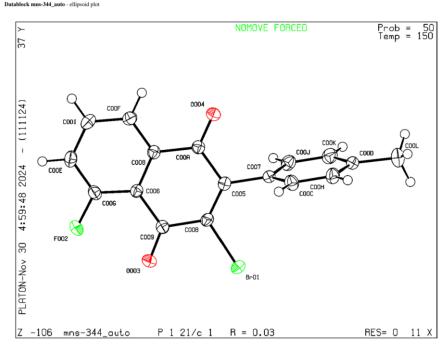
Supporting Information

Unlocking Reactivity Potential of *Gem*-dihaloolefins: Access to Halo-Functionalized 1,4-Naphthoquinones via Intramolecular Radical Oxidative Cyclization

Manvi Sharma^{a‡}, Deepika Thakur^{a‡}, Shivam A. Meena^a, Abhijit Nandy^b, Shibdas Banerjee^{b*} and Akhilesh K. Verma^{a*}

a averma@acbr.du.ac.in; *b*shibdas@iisertirupati.ac.in

^aDepartment of Chemistry, University of Delhi, Delhi 110007, India.


^bDepartment of Chemistry, IISER Tirupati, Tirupati -517507, India.

*These authors contributed equally

S. No		Page No.	
1	X-Ray Crystallographic Study of compound 3y	S2-S3	
2	Real time mass monitoring studies	S4-S10	
3	General procedure for the synthesis of starting material (1a-ag)	S10-S11	
4	General procedure for the synthesis of 1,4-naphthoquinone derivatives	S11-S24	
	products and their characterization (3a-3ag; 5a-e)		
5	Characterization of compounds (7, 9a-b)	S25-S26	
6	Post-Synthetic Applications (10-13)	S26-S30	
7	References	S30-S31	
8	Copies of ¹ H and ¹³ C NMR and HRMS	S31-S155	

1) X-Ray Crystallographic Studies

a) Crystal Structure of 3y

Figure SI. ORTEP structure of compound **3y** (ellipsoid contours of probability level are 50%)

The crystals of **3y** of suitable quality were obtained from CH₂Cl₂/*n*-hexane. The compound **3y** crystallized in Monoclinic crystal system with space group P21/c. The single-crystal X-ray data were collected on an Oxford XCalibur CCD diffractometer using graphite monochromated Mo Kα radiation. The structures was solved using SIR-92 and refined by full matrix least square technique on F² using the SHELXL-97¹⁻⁴ program within the WinGX v 1.80.05 software package. Atomic coordinates, bond lengths, bond angles, and thermal parameters for compounds **3y** has been deposited at the Cambridge Crystallographic Data Centre. CCDC deposit number for **3y** is **2424439**.

Table SI. Crystallographic data and structure refinement for compounds 3y

Identification code	MNS-344
Empirical formula	$C_{17}H_{10}BrFO_2$
Formula weight	345.16
Temperature	150 K
Wavelength	0.71073 Å

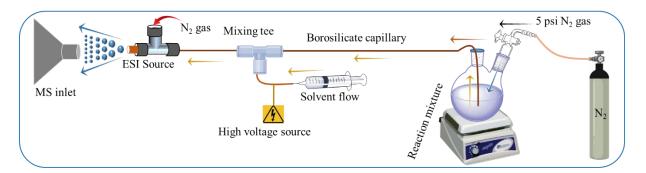
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 10.2785 (5) Å	$\alpha = 90$.	
	b = 14.3225 (6) Å	$\beta = 105.808 (5).$	
	c = 9.8230 (5) Å	$\gamma = 90.$	
Volume	1391.39 (12) Å ³		
Z	4		
Density (calculated)	1.648 g/cm ³		
Absorption coefficient	2.966 mm ⁻¹		
F(000)	688.0		
Index ranges	h = 12, k = 20, l = 13		
Reflections collected	0.0342 (2853)		
Completeness to theta = 31.051 °	79.6 %		
Final R indices [I>2 sigma(I)] ^{a,b}	R1 = 0.0342, wR2 = 0.0		

 $^{^{}a} R = \sum (\|Fo\| - \|Fc\|) / \sum \|Fo\|; {}^{b}Rw = \{\sum [w(Fo^{2} - Fc^{2})^{2}] / \sum [w(Fo^{2})^{2}]\}^{1/2}$

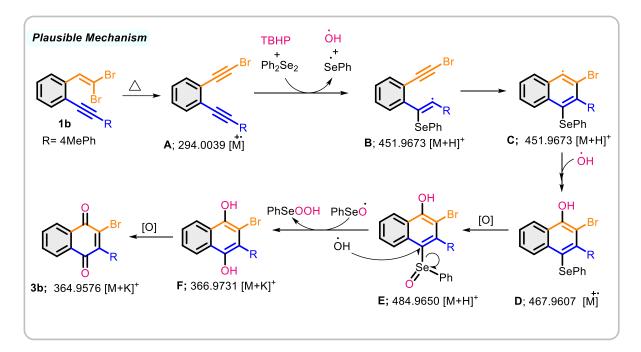
General Experimental Procedure General Method:

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded in CDCl₃/DMSO-*d*₆. Chemical shifts for protons and carbons are reported in ppm from tetramethylsilane and are referenced to the carbon resonance of the solvent. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet), coupling constants in Hertz and integration. High resolution mass spectra were recorded on electrospray mass spectrometer. Crystal structure analysis was accomplished on single needles X-ray diffractometer. The FT-IR analysis is carried out by Thermo Scientific Nicolet iS50 FT-IR using ATR method. TLC analysis was performed on commercially prepared 60 F254 silica gel plates and visualized by either UV irradiation or by staining with iodine. All purchased chemicals were used as received. All melting points are uncorrected.

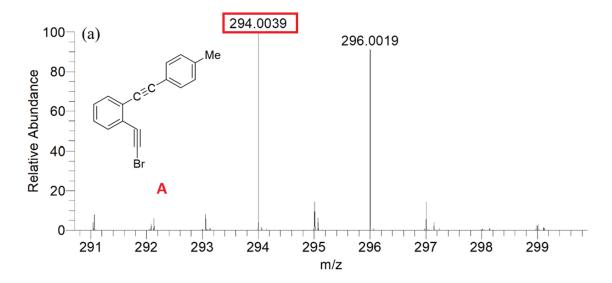
Reagents:

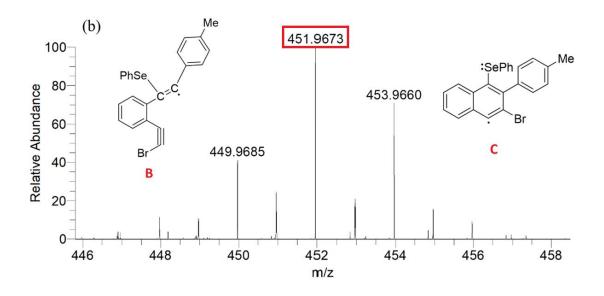

All reagents were used directly as obtained commercially unless otherwise noted. HPLC grade ACN, THF, DMF, DMSO, Toluene, dioxane, hexanes, ethyl acetate, and DCM were purchased from Merck Chemical Co. Pd(PPh₃)₂Cl₂, Alkynes, TBHP, DTBP, PIDA, K₂S₂O₈, diphenyl diselenide and 2-bromobenzaldehyde derivatives were purchased from Aldrich Chemical Co., Inc.

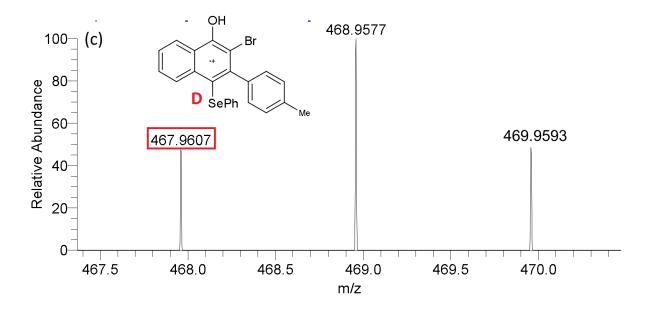
2. Real time mass monitoring studies:

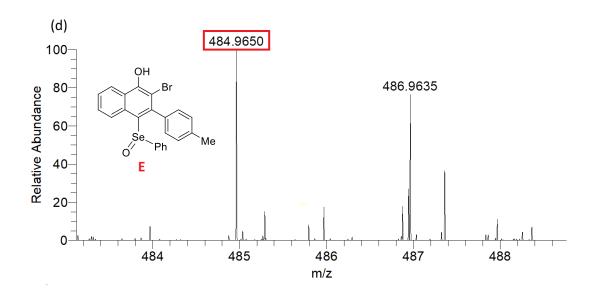

(2.1) Experimental Section

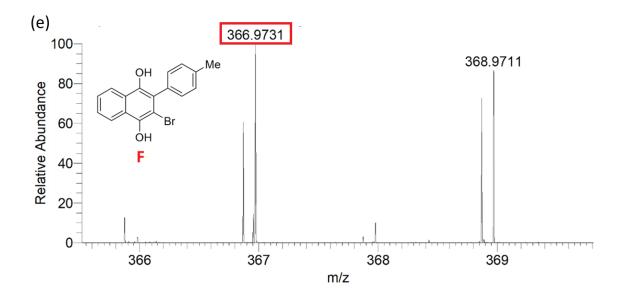
All chemicals were obtained from commercial sources. LC-MS grade solvents were obtained from Thermo Fisher Scientific.


Online ESI-MS Study. The real-time detection of reactive intermediates was carried out using online electrospray ionization mass spectrometry (ESI-MS), employing a custom-built pressurized sample infusion system, originally developed by McIndoe and colleagues. The schematic of the experimental setup is illustrated in the top panel of Figure 1. In brief, the reaction was conducted in a Schlenk flask, where 1.0 equivalent of diphenyl selenide and 3 equivalents of tert-butyl hydroperoxide (TBHP) were added to 5 mL of acetonitrile (ACN) along with the starting material and heated at 120 °C. The reaction mixture was transferred from the flask by applying a 5 psi backpressure of nitrogen gas, which pushed the solution through a borosilicate capillary to a T-junction. There, it was combined with acetonitrile delivered at a flow rate of 30 µL/min using a Hamilton syringe pump. This mixture was simultaneously subjected to a +5 kV DC high voltage to facilitate electrospray ionization. The diluted reaction stream from the T-junction was directed into a custom-designed electrospray source, where it was nebulized and sprayed into a high-resolution mass spectrometer (Orbitrap Exploris 120, Thermo Fisher Scientific). The spray system consisted of an inner fused silica capillary (100 µm i.d., 360 µm o.d.) for liquid delivery and an outer stainless steel coaxial capillary (0.5 mm i.d., 1.6 mm o.d.) for sheath gas delivery (nitrogen at 110 psi). To optimize nebulization, the inner silica capillary extended 1 mm beyond the orifice of the outer capillary. The resulting stream of charged microdroplets was directed toward the MS inlet, heated to 300 °C, which facilitated rapid desolvation and ion generation. The distance between the spray tip and the MS inlet was maintained at 15 mm. For data acquisition, the maximum ion injection time was set at 500 ms with a single microscan, and the mass resolution was configured to 120,000. Further tuning of ion optics was performed to maximize ion current. Data were collected using XCalibur software (Thermo Fisher Scientific). High mass accuracy and isotopic pattern analysis confirmed the identity of all key intermediates detected during the experiment.




Figure S2. Custom-built online ESI-MS setup designed for real-time monitoring of reactants, intermediates, and products in positive ion mode throughout the course of the reaction.




Figure S3. The proposed reaction mechanism includes all intermediate species identified via online mass spectrometry. Theoretical m/z values are in close agreement with the experimentally observed values.

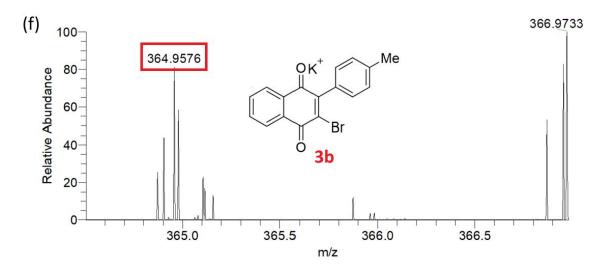


Figure S4. High-resolution ESI-MS spectra (a–f), acquired in positive ion mode during the reaction using the online mass spectrometric setup, are shown. The observed peaks correspond to various species generated over the course of the reaction (refer to Figure S3).

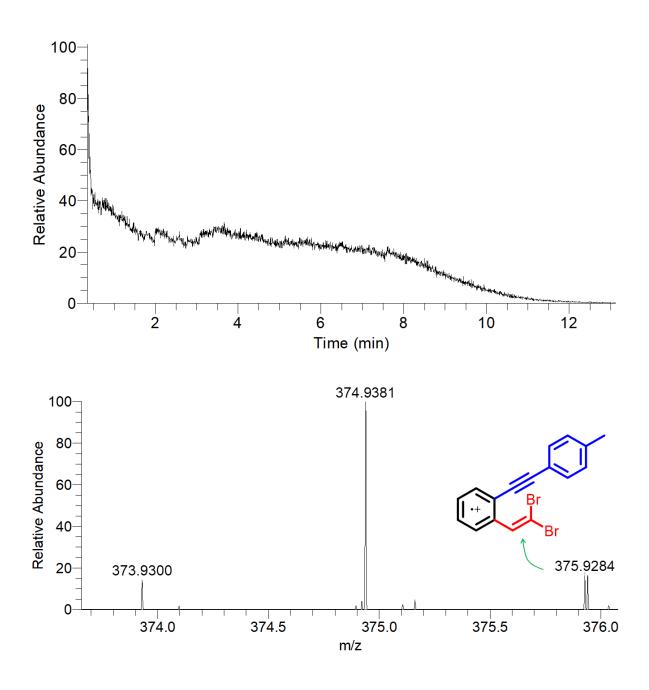


Figure S5. Graph showing consumption of the reactant 1b

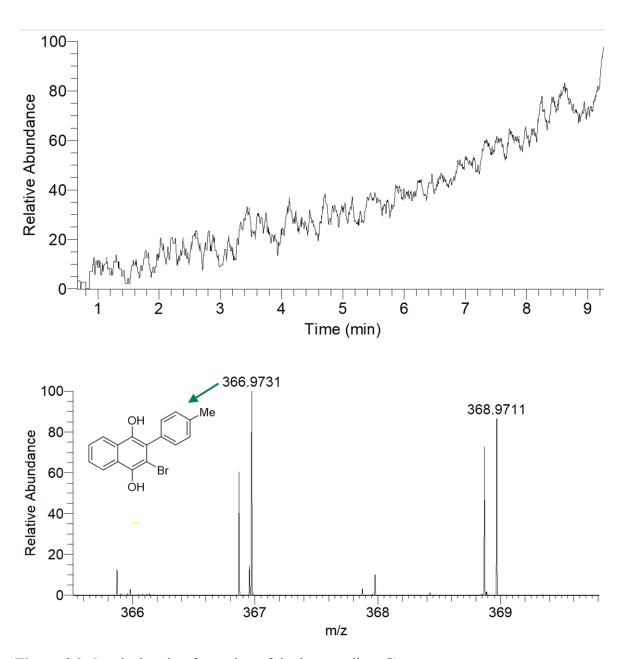
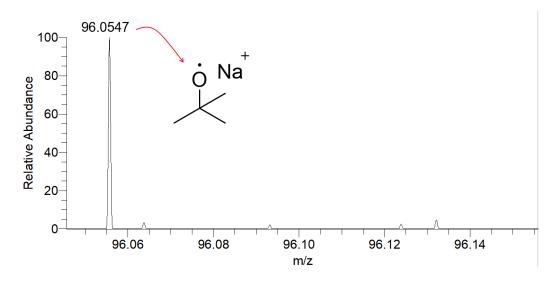
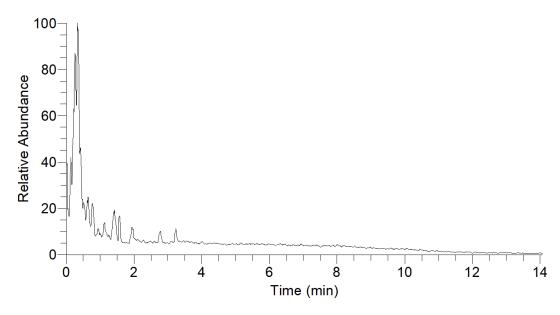




Figure S6. Graph showing formation of the intermediate G

Figure S7. (i) Detection of tert-butyl radical through online ESI-MS; (ii) Graph showing the consumption of *tert*-butyl radical

3. General Procedure for the Synthesis of 1-(2,2-dibromovinyl)-2-(alkynyl)benzene (1a-ag):

To an oven dried round bottom flask, substituted 2-bromobenzaldehyde **A** (1.0 mmol, 1.0 equiv), alkyne **B** (1.2 mmol, 1.2 equiv) and Pd(PPh₃)₂Cl₂ (5 mol%, 0.05 equiv) in 5.0 ml MeCN were added. The RB flask was then sealed and flushed with nitrogen. Then, Et₃N (3.0 mmol, 3.0 equiv) was added to the reaction mixture. Afterwards the reaction was stirred at 60 °C until TLC revealed complete conversion of the starting material. After completion of the reaction, the reaction mixture was allowed to cool. Then, organic layer was washed with aqueous saturated brine solution, and finally extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, concentrated under vacuum. The crude material obtained was purified by column chromatography on silica gel (100–200 mesh) (hexane: ethyl acetate; 98/02) to afford the corresponding product **C**.

To an oven dried round bottomed flask charged with PPh₃ (4.5 mmol, 4.5 equiv) and Et₃N (1.1 mmol, 1.1 equiv) in DCM (10 mL) followed by slow addition of CBr₄ (2.5 mmol, 2.5 equiv) at 0 °C, 2 alkynylbenzaldehyde (C) (1 mmol, 1.0 equiv) was added to the mixture. This mixture was stirred at room temperature for 3-5 h. Then the reaction was quenched with water (20 mL), and extracted with ethyl acetate (20 mL x 2). The combined organic layers were dried over Na₂SO₄, concentrated under vacuum, and purified by column chromatography using 100–200 mesh size silica gel (hexane) to afford the corresponding product **1a-ag**. The structure and purity of known compounds were confirmed by comparison of their physical and NMR-spectral data (¹H NMR, ¹³C NMR and HRMS) with those reported in the literature.

3. General Procedure for the Synthesis of 2-bromo-3-arylnaphthalene-1,4-dione (3a-3ag):

To an oven dried sealed tube, 1-(2,2-dibromovinyl)-2-(alkynyl)benzene derivatives (1a-ag, 0.278 mmol, 1.0 equiv), diphenyl selenide (0.278 mmol, 1.0 equiv) in MeCN was added. Then, 3.0 equiv (0.834 mmol; 0.01 M) of TBHP (2) was added to the reaction mixture. The reaction mixture was then stirred at 120 °C for 3 h in an oil bath. The reaction was monitored using thin layer chromatography. After completion of the reaction, the reaction mixture was allowed to cool. Then, organic layer was washed with aqueous saturated brine solution and finally extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, concentrated under vacuum. The crude material obtained was purified by column chromatography on silica gel (100–200 mesh) (hexane: ethyl acetate; 98/02) to afford the corresponding product 3a-ag.

2-Bromo-3-phenylnaphthalene-1,4-dione (3a). The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3a** orange solid (74.35 mg, 86%); mp 88-90 °C; IR (ATR, neat) v (cm⁻¹): 1664 (s, C=O); 1 H-NMR (400 MHz, CDCl₃) δ 8.16-8.11 (m, 1H), 8.08-8.03 (m, 1H), 7.73-7.67 (m, 2H), 7.45-7.38 (m, 3H), 7.29-7.25 (m, 2H); 13 C-NMR (100

MHz, CDCl₃) δ 181.6, 178.2, 149.9, 139.2, 134.5, 134.2, 134.1, 131.7, 131.2, 129.4, 129.2, 128.2, 127.6, 127.4; HRMS (ESI) [M+H]⁺ Calcd for [C₁₆H₁₀BrO₂]⁺ 312.9864, found 312.9861.

2-Bromo-3-(*p***-tolyl)naphthalene-1,4-dione (3b)** The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3b** as a orange solid (80.36 mg, 89%); mp 92-94 °C; IR (ATR, neat) v (cm⁻¹): 1658 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.04-7.98 (m, 1H), 7.98-7.92 (m, 1H), 7.62-7.56 (m, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 2.29 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.3, 177.9, 149.5, 139.2, 138.5, 134.1, 133.8, 131.3, 130.9, 130.8, 129.0, 128.6, 128.3, 127.2, 127.1, 21.3; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₂BrO₂]⁺ 327.0021, found 327.0035.

2-Bromo-3-(4-methoxyphenyl)naphthalene-1,4-dione (3c) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3c** as a orange solid (87.14 mg, 92%); mp 98-100 °C; IR (ATR, neat) v (cm⁻¹): 1666 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.15-8.11 (m, 1H), 8.08-8.03 (m, 1H), 7.72-7.66 (m, 2H), 7.24 (dt, J = 9.3, 2.4 Hz, 2H), 6.93 (dt, J = 9.3, 2.4 Hz, 2H), 3.79 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.8, 178.3, 160.4, 149.3, 138.5, 134.3, 134.0, 131.6, 131.2, 131.2, 130.9, 127.5, 127.4, 126.1, 113.5, 55.4; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₂BrO₃]⁺ 342.9970, found 342.9982.

2-Bromo-3-(4-butylphenyl)naphthalene-1,4-dione (3d) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3d** as a orange solid (92.74 mg, 91%); mp 96-98 °C; IR (ATR, neat) ν (cm⁻¹): 1662 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.12-8.06 (m, 1H), 8.04-7.99 (m, 1H), 7.69-7.62 (m, 2H), 7.21-7.14 (m, 4H), 2.59 (t, J = 7.8 Hz, 2H), 1.60-1.53 (m, 2H), 1.35-1.25 (m, 2H), 0.86 (t, J = 7.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.6, 178.2, 149.8, 144.4, 138.8, 134.3, 134.0, 131.6, 131.3, 131.2, 129.3, 128.1, 127.5, 127.4, 35.6, 33.3, 22.5, 14.0; HRMS (ESI) [M+H]⁺ Calcd for [C₂₀H₁₈BrO₂]⁺ 369.0490, found 369.0492.

2-Bromo-3-(4-(*tert***-butyl)phenyl)naphthalene-1,4-dione (3e)** The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3e** as a orange solid (94.78 mg, 93%); mp 94-96 °C; IR (ATR, neat) v (cm⁻¹): 1668 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.15-8.09 (m, 1H), 8.07-8.02 (m, 1H), 7.71-7.65 (m, 2H), 7.42 (dt, J = 8.7, 2.0 Hz, 2H), 7.20 (dt, J = 8.6, 2.0 Hz, 2H), 1.29 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.6, 178.2, 152.4, 149.6, 138.7, 134.3, 134.0, 131.5, 131.1, 130.9, 129.0, 127.4, 127.3, 124.9, 34.8, 31.2; HRMS (ESI) [M+H]⁺ Calcd for [C₂₀H₁₈BrO₂]⁺ 369.0490, found 369.0497.

2-Bromo-3-(4-fluorophenyl)naphthalene-1,4-dione (3f) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3f** as a yellow solid (74.94 mg, 82%); mp 104-106 °C; IR (ATR, neat) v (cm⁻¹): 1670 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.18-8.13 (m, 1H), 8.10-8.05 (m, 1H), 7.75-7.69 (m, 2H), 7.27 (ddd, J= 11.8, 5.1, 3.0 Hz, 2H), 7.14-7.08 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) 181.5, 178.1, 163.2 (d, J_{C-F} = 250.7 Hz, 1C), 148.8, 139.4, 134.5, 134.2, 131.5, 131.4, 131.1, 129.9 (d, J_{C-F} = 3.6 Hz, 1C), 127.6, 127.4, 115.4 (d,

 $J_{\text{C-F}} = 21.8 \text{ Hz}, 1\text{C}$; ¹⁹F NMR (376 MHz, CDCl₃) $\delta - 110.83$ (s); HRMS (ESI) [M+H]⁺ Calcd for [C₁₆H₉BrFO₂]⁺ 330.9770, found 330.9785.

2-Bromo-3-(4-chlorophenyl)naphthalene-1,4-dione (3g) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3g** as a yellow solid (80.58 mg, 84%); mp 108-110 °C; IR (ATR, neat) ν (cm⁻¹): 1666 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.15-8.10 (m, 1H), 8.07-8.02 (m, 1H), 7.73-7.67 (m, 2H), 7.40-7.36 (m, 2H), 7.21-7.18 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.4, 178.1, 148.8, 139.5, 135.7, 134.6, 134.3, 132.4, 131.6, 131.2, 130.9, 128.6, 127.8, 127.6; HRMS (ESI) [M+H]⁺ Calcd for [C₁₆H₉BrClO₂]⁺ 346.9474, found 346.9472.

2-Bromo-3-(4-bromophenyl)naphthalene-1,4-dione (3h) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3h** as a yellow solid (89.81 mg, 83%); mp 108-110 °C; IR (ATR, neat) v (cm⁻¹): 1662 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.15-8.13 (m, 1H), 8.07-8.04 (m, 1H), 7.72-7.69 (m, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.5 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.2, 177.9, 148.7, 139.3, 134.5, 134.2, 132.7, 131.4, 131.0, 130.9, 127.6, 127.4, 123.8; HRMS (ESI) [M+H]⁺ Calcd for [C₁₆H₉Br₂O₂]⁺ 390.8969, found 390.8973.

2-Bromo-3-(4-(trifluoromethyl)phenyl)naphthalene-1,4-dione (3i) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3i** as a yellow solid (75.74 mg, 72%); mp 142-144 °C; IR (ATR, neat) v (cm⁻¹): 1672 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.20-8.15 (m, 1H), 8.11-8.06 (m, 1H), 7.77-7.72 (m, 2H), 7.69 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.2, 177.8, 148.5, 139.7, 137.5, 134.6, 134.3, 131.4, 131.0, 129.6, 127.7, 127.5, 125.2, 123.8 (q, J_{C-F} = 272.9 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.62 (s, CF₃); HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₉BrF₃O₂]⁺ 380.9738, found 380.9735.

2-Bromo-3-(4-(trifluoromethoxy)phenyl)naphthalene-1,4-dione (**3j**) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3j** as a orange solid (76.73 mg, 70%); mp 148–150 °C; IR (ATR, neat) v (cm⁻¹): 1664 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.14-8.09 (m, 1H), 8.06-8.01 (m, 1H), 7.73-7.67 (m, 2H), 7.30 (dt, J = 9.0, 2.3 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.3, 177.9, 149.8, 148.5, 139.6, 134.5, 134.2, 132.4, 131.5, 131.1, 127.6, 127.4, 120.5 (q, J_{C-F} = 258.9 Hz, 1C), 120.4; ¹⁹F NMR (376 MHz, CDCl₃) δ –57.52 (s, CF₃); HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₉BrF₃O₃] + 396.9687, found 396.9693.

2-Bromo-3-(*m***-tolyl)naphthalene-1,4-dione (3m)** The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3m** as a orange solid (76.75 mg, 85%); mp 92-94 °C; IR (ATR, neat) v (cm⁻¹): 1658 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.17-8.12 (m, 1H), 8.09-8.04 (m, 1H), 7.74-7.68 (m, 2H), 7.33-7.28 (m, 1H), 7.21 (d, J = 7.7 Hz, 1H), 7.05-7.04 (m, 2H), 2.35 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.6, 178.2, 150.0, 139.0,

137.8, 134.4, 134.0, 131.5, 131.1, 130.1, 129.5, 128.0, 127.5, 127.3, 126.1, 21.5; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₂BrO₂]⁺ 327.0021, found 327.0035.

2-Bromo-3-(3-methoxyphenyl)naphthalene-1,4-dione (3n). The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3n** as a orange solid (80.50 mg, 85%); mp 98-100 °C; IR (ATR, neat) v (cm⁻¹): 1667 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.19-8.13 (m, 1H), 8.10-8.05 (m, 1H), 7.75-7.69 (m, 2H), 7.34 (t, J = 8.0 Hz, 1H), 6.94 (dd, J = 8.3, 2.3 Hz, 1H), 6.82 (d, J = 7.6 Hz, 1H), 6.78-6.77 (m, 1H), 3.77 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.4, 178.2, 159.2, 149.7, 139.2, 135.3, 134.4, 134.1, 131.6, 129.3, 127.5, 127.4, 121.3, 114.9, 114.7, 55.3; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₂BrO₃]⁺ 342.9970, found 342.9982.

2-Bromo-3-(3-fluorophenyl)naphthalene-1,4-dione (3o) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3o** as a yellow solid (71.29 mg, 78%); mp 102-104 °C; IR (ATR, neat) ν (cm⁻¹): 1670 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.19-8.14 (m, 1H), 8.11-8.05 (m, 1H), 7.77-7.70 (m, 2H), 7.40 (td, J = 8.0, 5.8 Hz, 1H), 7.10 (tdd, J = 8.5, 2.6, 0.9 Hz, 1H), 7.05-7.02 (m, 1H), 6.98 (ddd, J = 9.3, 2.5, 1.6 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.2, 178.0, 162.3 (d, J_{C-F} = 247.8 Hz, 1C), 148.6, 139.6, 135.9, 135.8, 134.5, 134.2, 131.2 (d, J_{C-F} = 39.7 Hz, 1C), 129.8 (d, J_{C-F} = 2.9 Hz, 1C), 127.6, 127.4, 124.9 (d, J_{C-F} = 2.9 Hz, 1C), 116.5 (d, J_{C-F} = 11.6 Hz, 1C), 116.3 (d, J_{C-F} = 8.7 Hz, 1C); ¹⁹F NMR (376 MHz, CDCl₃) δ -112.73 (s); HRMS (ESI) [M+H]⁺ Calcd for [C₁₆H₉BrFO₂]⁺ 330.9770, found 330.9785.

2-Bromo-3-(3-bromophenyl)naphthalene-1,4-dione (3p) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3p** as a yellow solid (81.15 mg, 75%); mp 106-108 °C; IR (ATR, neat) v (cm⁻¹): 1662 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.19-8.14 (m, 1H), 8.10-8.05 (m, 1H), 7.77-7.70 (m, 2H), 7.54 (dq, J = 8.0, 1.0 Hz, 1H), 7.41 (t, J = 1.7 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.19 (dt, J = 7.6, 1.3 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.2, 177.9, 148.3, 139.6, 135.8, 134.6, 134.2, 132.3, 132.0, 131.4, 131.0, 129.7, 127.8, 127.7, 127.4, 122.0; HRMS (ESI) [M+H]⁺ Calcd for [C₁₆H₉Br₂O₂]⁺ 390.8969, found 390.8973.

2-Bromo-3-(4-butylphenyl)naphthalene-1,4-dione (3q) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3q** as a orange solid (96.69 mg, 90%); mp 114-116 °C; IR (ATR, neat) v (cm⁻¹): 1662 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.12-8.07 (m, 1H), 8.05-8.00 (m, 1H), 7.68-7.62 (m, 2H), 7.59 (d, J = 8.2 Hz, 2H), 7.54-7.52 (m, 2H), 7.29-7.38 (m, 4H), 7.23-7.29 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.5, 178.0, 149.3, 142.0, 140.2, 138.9, 134.3, 134.0, 132.7, 131.4, 131.0, 129.8, 128.8, 127.7, 127.4, 127.3, 127.1, 126.6; HRMS (ESI) [M+H]⁺ Calcd for [C₂₂H₁₄BrO₂]⁺ 389.0177, found 389.0171.

3-Bromo-[2,2'-binaphthalene]-1,4-dione (3r) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3r** as a red solid (85.21 mg, 85%); mp 116-118 °C; IR (ATR, neat) v (cm⁻¹): 1664 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.17-8.11 (m, 1H), 8.10-8.09 (m, 1H), 7.88-7.82 (m, 3H), 7.77-7.71 (m, 3H), 7.49-7.48 (m, 2H), 7.35 (dd, J = 5.6, 1.6 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.7, 178.2, 149.7, 139.3, 134.4, 134.1, 133.4, 132.6, 131.5, 131.4, 131.1, 129.2, 128.5, 127.8, 127.7, 127.6, 127.4, 127.1, 126.5, 126.3; HRMS (ESI) [M+H]⁺ Calcd for [C₂₀H₁₂BrO₂]⁺ 363.0021, found 363.0025.

2-Bromo-3-(phenanthren-9-yl)naphthalene-1,4-dione (3s) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3s** as a red solid (99.23 mg, 87%); mp 120-122 °C; IR (ATR, neat) v (cm⁻¹): 1662 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.69 (q, J = 8.5 Hz, 2H), 8.25-8.21 (m, 1H), 8.11-8.08 (m, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.76-7.71 (m, 2H), 7.67-7.54 (m, 5H), 7.47 (t, J = 7.5 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.5, 178.0, 150.1, 141.3, 134.5, 134.2, 131.7, 131.3, 131.2, 130.8, 130.7, 130.4, 129.1, 128.8, 127.7, 127.6, 127.5, 127.0, 127.0, 125.3, 123.3, 122.7; HRMS (ESI) [M+H]⁺ Calcd for [C₂₄H₁₄BrO₂]⁺ 413.0177, found 413.0184.

2-Bromo-3-(2-bromo-4-methoxyphenyl)naphthalene-1,4-dione (3t) The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford **3t** as a orange solid (83.87 mg, 72%); mp 128-130 °C; IR (ATR, neat) v (cm⁻¹): 1666 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.21-8.15 (m, 1H), 8.12-8.08 (m, 1H), 7.77-7.71 (m, 2H), 7.50 (d, J = 8.9 Hz, 1H), 6.82 (dd, J = 8.9, 3.0 Hz, 1H), 6.68 (d, J = 3.0 Hz, 1H), 3.75 (s, 3H); ¹³C-NMR (100 MHz,

CDCl₃) δ 180.4, 177.9, 158.8, 149.9, 140.3, 136.7, 134.5, 134.2, 133.5, 131.5, 131.1, 127.7, 127.5, 116.5, 115.2, 112.1, 55.6; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₁Br₂O₃]⁺ 420.9075, found 420.9072.

2-Bromo-3-(thiophen-2-yl)naphthalene-1,4-dione (3u) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3u** as a orange solid (57.26 mg, 65%); mp 90-92 °C; IR (ATR, neat) v (cm⁻¹): 1666 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.22-8.16 (m, 1H), 8.16-8.11 (m, 1H), 7.80-7.74 (m, 2H), 7.68 (q, J = 1.4 Hz, 1H), 7.42 (dd, J = 5.0, 3.0 Hz, 1H), 7.30 (dd, J = 5.0, 1.3 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.4, 178.2, 144.7, 138.1, 134.3, 134.1, 132.9, 131.6, 131.0, 129.3, 129.1, 127.5, 127.4, 124.6; HRMS (ESI) [M+H]⁺ Calcd for [C₁₄H₈BrO₂S]⁺ 318.9428, found 318.9441.

2-Isopropyl-5-methylcyclohexyl 4-(3-bromo-1,4-dioxo-1,4-dihydronaphthalen-2-yl)

benzoate (3v) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3v** as a yellow solid (92.97 mg, 68%); mp 90-92 °C; IR (ATR, neat) v (cm⁻¹): 1707 (s, C=O ester), 1672 (s, C=O ketone); 1 H-NMR (400 MHz, CDCl₃) δ 8.19-8.15 (m, 1H), 8.11-8.06 (m, 3H), 7.76-7.71 (m, 2H), 7.33 (dd, J = 6.7, 1.7 Hz, 2H), 4.90 (td, J = 10.9, 4.4 Hz, 1H), 2.10-2.06 (m, 1H), 1.97-1.88 (m, 1H), 1.69-1.65 (m, 2H), 1.55-1.47 (m, 3H), 1.13-1.00 (m, 2H), 0.87 (dd, J = 6.8, 3.0 Hz, 7H), 0.75 (s, 1H), 0.73 (s, 1H); 13 C-NMR (100 MHz, CDCl₃) δ 181.1, 177.7, 165.3, 149.0, 139.3, 138.2, 134.4, 134.1, 131.5, 131.4, 131.0, 129.3, 129.1, 127.5, 127.3, 113.6, , 75.1, 47.2, 40.9, 34.2, 31.4, 26.4, 23.5, 22.0, 20.7, 16.4; HRMS (ESI) [M+H] $^{+}$ Calcd for [C₂₇H₂₈BrO₄] $^{+}$ 495.1171, found 495.1165.

3-Bromo-6-methyl-2-(p-tolyl)naphthalene-1,4-dione (3w) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford 3w as a yellow solid (84.75 mg, 90%); mp 92-94 °C; IR (ATR, neat) v (cm⁻¹): 1658 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 7.90 (t, J = 8.1 Hz, 2H), 7.46 (dd, J = 7.8, 0.9 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.16-7.13 (m, 2H), 2.42 (s, 3H), 2.33 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.3, 178.4, 149.6, 145.2, 139.3, 138.4, 134.9, 131.1, 130.9, 129.2, 129.1, 129.0, 128.7, 127.7, 127.4, 21.8, 21.4; HRMS (ESI) [M+H]⁺ Calcd for [C₁₈H₁₄BrO₂]⁺ 341.0177, found 341.0185.

3-Bromo-6-methyl-2-(*p***-tolyl)naphthalene-1,4-dione (3x)** The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3x** as a orange solid (83.81 mg, 89%); mp 92-94°C; IR (ATR, neat) v (cm⁻¹): 1656 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 7.8 Hz, 1H), 7.80 (s, 1H), 7.44 (dd, J = 8.0, 1.0 Hz, 1H), 7.20 (d, J = 7.8 Hz, 2H), 7.15-7.12 (m, 2H), 2.40 (s, 3H), 2.33 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.7, 177.8, 149.4, 145.5, 139.2, 138.8, 134.6, 131.3, 131.1, 129.1, 128.7, 128.7, 127.5, 127.5, 21.8, 21.4; HRMS (ESI) [M+H]⁺ Calcd for [C₁₈H₁₄BrO₂]⁺ 341.0177, found 341.0196.

2-Bromo-6,7-dimethoxy-3-(p-tolyl)naphthalene-1,4-dione (3y) The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford 3y as a orange solid (99.39 mg, 93%); mp 104-106 °C; IR (ATR, neat) v (cm⁻¹): 1656 (s, C=O); ¹H-NMR (400 MHz,

CDCl₃) δ 7.49 (s, 1H), 7.41 (s, 1H), 7.22-7.19 (m, 2H), 7.15 (d, J = 8.2 Hz, 2H), 3.95 (s, 3H), 3.92 (s, 3H), 2.35 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 181.0, 177.5, 153.7, 153.4, 149.1, 139.3, 138.0, 131.2, 129.2, 128.7, 126.2, 125.7, 108.7, 108.4, 56.5, 56.5, 21.4; HRMS (ESI) [M+H]⁺ Calcd for [C₁₉H₁₆BrO₄]⁺ 387.0232, found 387.0235.

2-Bromo-6-fluoro-3-(*p***-tolyl)naphthalene-1,4-dione (3z)** The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3z** as a yellow solid (79.07 mg, 83%); mp 104-106 °C; IR (ATR, neat) ν (cm⁻¹): 1660 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.15 (dd, J = 8.6, 5.2 Hz, 1H), 7.67 (dd, J = 8.5, 2.6 Hz, 1H), 7.35-7.31 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.13 (dd, J = 6.4, 1.7 Hz, 2H), 2.34 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 180.5, 176.9, 166.2 (d, J_{C-F} = 260.4 Hz, 1C), 149.8, 139.6, 139.0, 134.2, 134.1,130.7 (d, J_{C-F} = 7.8 Hz, 1C), 129.1, 128.8, 127.6, 121.3, 121.1, 114.0 (d, J_{C-F} = 24.1 Hz, 1C), 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -100.46 (s); HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₁BrFO₂]⁺ 344.9926, found 344.9924.

3-Bromo-5-fluoro-2-(*p*-tolyl)naphthalene-1,4-dione (3aa) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford 3aa as a yellow solid (80.98 mg, 85%); mp 106-108 °C; IR (ATR, neat) ν (cm⁻¹): 1662 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 7.90 (dd, J = 7.7, 1.0 Hz, 1H), 7.66 (td, J = 8.0, 4.6 Hz, 1H), 7.38 (ddd, J = 10.6, 8.4, 1.1 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.13 (dd, J = 6.3, 1.8 Hz, 2H), 2.34 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 180.6, 175.6, 160.9 (d, J_{C-F} = 271.9 Hz, 1C), 148.8, 139.7, 135.8, 135.7 (d, J_{C-F} = 271.1 Hz, 1C), 133.2, 130.7, 129.0, 128.8, 123.7, 123.7, 122.9, 122.7, 118.7 (d, J_{C-F} = 4.8 Hz, 1C), 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.19 (s); HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₁BrFO₂]⁺ 344.9926, found 344.9924.

3-Bromo-6-chloro-2-(*p***-tolyl)naphthalene-1,4-dione (3ab)** The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **3ab** as a yellow solid (77.85 mg, 78%); mp 108-110 °C; IR (ATR, neat) ν (cm⁻¹): 1660 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 2.0 Hz, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.63 (dd, J = 8.3, 2.3 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 2.34 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 180.6, 177.3, 149.9, 141.0, 139.7, 138.3, 134.3, 132.1, 130.7, 129.7, 129.1, 129.0, 128.8, 127.3, 21.5; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₁BrClO₂]⁺ 360.9631, found 360.9635.

$$O_2N$$
 Br
 Me

3-Bromo-6-nitro-2-(*p***-tolyl)naphthalene-1,4-dione (3ac)** The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford **3ac** as a yellow solid (61.63 mg, 60%); mp 116-118 °C; IR (ATR, neat) ν (cm⁻¹): 1664 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.94 (d, J = 2.2 Hz, 1H), 8.52 (dd, J = 8.5, 2.3 Hz, 1H), 8.28 (d, J = 8.5 Hz, 1H), 7.25 (d, J = 7.8 Hz, 2H), 7.19-7.16 (m, 2H), 2.37 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 180.1, 176.5, 151.0, 150.3, 140.1, 139.3, 135.0, 132.1, 130.3, 129.3, 129.1, 128.9, 128.3, 122.7, 21.5; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₁BrNO₄]⁺ 371.9871, found 371.9879.

6-Bromo-7-(p-tolyl)naphtho[2,3-d][1,3]dioxole-5,8-dione (3ad) The crude product was purified by column chromatography (hexane/EtOAc = 90/10) to afford **3ad** as a orange solid (88.10 mg, 86%); mp 106-108 °C; IR (ATR, neat) v (cm⁻¹): 1658 (s, C=O); ¹H-NMR (400

MHz, CDCl₃) δ 7.47 (s, 1H), 7.39 (s, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.14 (dd, J = 6.4, 1.9 Hz, 2H), 6.08 (s, 2H), 2.35 (s, 3H); 13 C-NMR (100 MHz, CDCl₃) δ 180.6, 177.1, 152.7, 152.4, 149.0, 139.4, 138.0, 131.0, 129.2, 128.7, 128.6, 128.0, 106.7, 106.5, 102.8, 21.5; HRMS (ESI) [M+H]⁺ Calcd for [C₁₈H₁₂BrO₄]⁺ 370.9919, found 370.9918.

2-Bromo-3-(*p***-tolyl)acridine-1,4-dione (3ae)** The crude product was purified by column chromatography (hexane/EtOAc = 85/15) to afford **3ae** as a yellow solid (67.85 mg, 65%); mp 148-150 °C; IR (ATR, neat) v (cm⁻¹): 1668 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 9.03 (s, 1H), 8.38 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.92-7.88 (m, 1H), 7.72 (t, J = 7.5 Hz, 1H), 7.27-7.22 (m, 3H), 7.19 (s, 1H), 2.38 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 179.8, 177.7, 151.7, 150.0, 146.0, 139.9, 139.8, 138.0, 133.6, 131.6, 130.9, 130.2, 129.6, 129.3, 128.9, 128.7, 124.7, 21.6; HRMS (ESI) [M+H]⁺ Calcd for [C₂₀H₁₃BrNO₂]⁺ 378.0130, found 378.0129.

2-Chloro-3-phenylnaphthalene-1,4-dione (5a). The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **5a** as a yellow solid (74.99 mg, 75%); mp 94-96 °C; IR (ATR, neat) v (cm⁻¹): 1668 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.16-8.12 (m, 1H), 8.10-8.05 (m, 1H), 7.74-7.69 (m, 2H), 7.44-7.37 (m, 3H), 7.30-7.26 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 182.1, 178.2, 145.9, 143.1, 134.4, 134.1, 131.8, 131.6, 131.3, 129.5, 129.4, 128.1, 127.3, 127.2; HRMS (ESI) [M+H]⁺ Calcd for [C₁₆H₁₀ClO₂]⁺ 269.0369, found 269.0376.

2-Chloro-3-(*p***-tolyl)naphthalene-1,4-dione (5b).** The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **5b** as a yellow solid (80.52 mg, 78%); mp 94-96 °C; IR (ATR, neat) ν (cm⁻¹): 1660 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.17-8.13 (m, 1H), 8.11-8.06 (m, 1H), 7.74-7.69 (m, 2H), 7.25-7.18 (m, 4H), 2.36 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 182.2, 178.3, 146.0, 142.8, 139.7, 134.4, 134.0, 131.7, 131.4, 129.6, 128.8, 127.3, 127.2, 21.5; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₂ClO₂]⁺ 283.0526, found 283.0526.

2-Chloro-3-(4-methoxyphenyl)naphthalene-1,4-dione (5c). The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **5c** as an orange solid (86.98 mg, 80%); mp 96-98 °C; IR (ATR, neat) ν (cm⁻¹): 1660 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.18-8.13 (m, 1H), 8.11-8.07 (m, 1H), 7.74-7.70 (m, 2H), 7.30-7.26 (m, 2H), 6.98-6.92 (m, 2H), 3.81 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 182.4, 178.4, 160.5, 145.5, 142.4, 134.3, 134.0, 131.8, 131.6, 131.4, 127.3, 127.1, 123.8, 113.5, 55.3; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₂ClO₃]⁺ 299.0475, found 299.0487.

2-Chloro-3-(4-chlorophenyl)naphthalene-1,4-dione (5d). The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **5d** as a yellow solid (77.13 mg, 70%); mp 94-96 °C; IR (ATR, neat) v (cm⁻¹): 1670 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.16-8.12 (m, 1H), 8.09-8.05 (m, 1H), 7.75-7.69 (m, 2H), 7.41-7.38 (m, 2H), 7.25-7.21 (m,

2H); 13 C-NMR (100 MHz, CDCl₃) δ 181.8, 177.9, 144.8, 143.3, 135.6, 134.5, 134.2, 131.5, 131.2, 131.1, 130.0, 128.4, 127.3, 127.3; HRMS (ESI) [M+H]⁺ Calcd for [C₁₆H₉Cl₂O₂]⁺ 302.9980, found 302.9981.

2-chloro-3-(thiophen-2-yl)naphthalene-1,4-dione (5e). The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford **5e** as an orange solid (68.45 mg, 68%); mp 94-96 °C; IR (ATR, neat) v (cm⁻¹): 1666 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.15-8.11 (m, 1H), 8.10-8.08 (m, 1H), 7.74-7.69 (m, 2H), 7.68 (dd, J = 2.8, 1.2 Hz, 1H), 7.35 (dd, J = 5.0, 3.0 Hz, 1H), 7.28 (dd, J = 5.1, 1.1 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃) 182.0, 178.2, 141.9, 140.7, 134.4, 134.1, 131.7, 131.2, 130.9, 130.1, 129.3, 127.3, 127.1, 124.5; HRMS (ESI) [M+H]⁺ Calcd for [C₁₄H₈ClO₂S]⁺ 274.9934, found 274.9940.

3.1. Gram Scale Synthesis of 3b:

To an oven dried sealed tube, 1-(2,2-dibromovinyl)-2-(*p*-tolyl)benzene (**1b**, 2.76 mmol, 1.0 equiv), diphenyl selenide (2.76 mmol, 1.0 equiv) in MeCN was added. Then, 3.0 equiv (8.28 mmol; 0.01 M) of TBHP (**2**) was added to the reaction mixture. The reaction mixture was then stirred at 120 °C for 3 h in an oil bath. The reaction was monitored using thin layer chromatography. After completion of the reaction, the reaction mixture was allowed to cool. Then, organic layer was washed with aqueous saturated brine solution and finally extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, concentrated under vacuum. The crude material obtained was purified by column chromatography on silica gel (100–200 mesh) (hexane: ethyl acetate; 98/02) to afford the corresponding product **3b** in 85% yield (0.77 g).

4. General Procedure for the Synthesis of 2-(3-(Phenylselanyl)-2-(*p*-tolyl)-1*H*-inden-1-ylidene)malononitrile (7):

To an oven dried sealed tube, 2-(2-(*p*-tolylethynyl)benzylidene)malononitrile (**6**, 0.373 mmol, 1.0 equiv), diphenyl selenide (0.373 mmol, 1.0 equiv) in 2.0 ml MeCN was added. Then, 3.0 equiv (1.119 mmol; 0.01 M) of TBHP (**2**) was added to the reaction mixture. The reaction mixture was then stirred at 120 °C for 1 h in an oil bath. The reaction was monitored using thin layer chromatography. After completion of the reaction, the reaction mixture was allowed to cool. Then, organic layer was washed with aqueous saturated brine solution and finally extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, concentrated under vacuum. The crude material obtained was purified by column chromatography on silica gel (100–200 mesh) (hexane: ethyl acetate; 98/02) to afford the corresponding product **7**.

2-(3-(Phenylselanyl)-2-(*p***-tolyl)-1***H***-inden-1-ylidene)malononitrile (7).** The crude product was purified by column chromatography (hexane/EtOAc = 98/2) to afford **7** as a deep red solid (126.23 mg, 80%); IR (ATR, neat) v (cm⁻¹): 2223 (s, CN), 2213 (s, CN); ¹H-NMR (400 MHz, CDCl₃) δ 8.16-8.12 (m, 1H), 7.38-7.36 (m, 2H), 7.28-7.23 (m, 1H), 7.20-7.10 (m, 6H), 7.08-7.05 (m, 2H), 6.63-6.59 (m, 1H), 2.34 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 160.5, 150.3, 141.0, 138.6, 133.4, 131.8, 128.9, 128.5, 127.8, 127.7, 127.6, 125.4, 123.5, 122.1, 113.1, 110.5, 21.7; HRMS (ESI) [M+H]⁺ Calcd for [C₂₅H₁₇N₂Se]⁺ 425.0557, found 425.0567.

5. General Procedure for the Synthesis of 9a and 9b:

To an oven dried sealed tube, ethyl (*E*)-2-cyano-3-(2-(*p*-tolylethynyl)phenyl)acrylate ($\bf 8$, 0.317 mmol, 1.0 equiv), diphenyl selenide (0.317 mmol, 1.0 equiv) in 2.0 ml MeCN was added. Then, 3.0 equiv (0.951 mmol; 0.01M) of TBHP ($\bf 2$) was added to the reaction mixture. The reaction mixture was then stirred at 120 °C for 1 h in an oil bath. The reaction was monitored using thin layer chromatography. After completion of the reaction, the reaction mixture was allowed to cool. Then, organic layer was washed with aqueous saturated brine solution and finally extracted with EtOAc ($\bf 3 \times 10$ mL). The combined organic layers were dried over Na₂SO₄, concentrated under vacuum. The crude material obtained was purified by column chromatography on silica gel ($\bf 100-200$ mesh) (hexane: ethyl acetate; 98/02) to afford the corresponding product $\bf 9a-b$.

Ethyl (*Z*)-2-cyano-2-(3-(phenylselanyl)-2-(*p*-tolyl)-1H-inden-1-ylidene)acetate (9a). The crude product was purified by column chromatography (hexane/EtOAc = 98/2) to afford 9a as a deep red solid (74.76 mg, 50%); IR (ATR, neat) v (cm⁻¹): 2210 (s, CN), 1724 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.6 Hz, 1H), 7.31-7.28 (m, 2H), 7.18-7.03 (m, 9H), 6.72 (d, *J* = 7.0 Hz, 1H), 3.42 (q, *J* = 7.2 Hz, 2H), 2.29 (s, 3H), 1.00 (t, *J* = 7.1 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 161.6, 153.6, 145.3, 142.2, 141.6, 138.0, 133.8, 132.9, 131.4, 131.3, 129.5, 129.3, 128.7, 128.1, 128.0, 127.8, 123.7, 122.8, 116.1, 100.0, 62.7, 21.3, 13.5; HRMS (ESI) [M+H]⁺ Calcd for [C₂₇H₂₂NO₂Se]⁺ 472.0816, found 472.0803.

3-(Phenylselanyl)-2-(p-tolyl)-1H-inden-1-one (9b). The crude product was purified by column chromatography (hexane/EtOAc = 98/2) to afford **9b** as an orange liquid (23.93 mg, 40%); IR (ATR, neat) v (cm⁻¹): 1670 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 7.56-7.54 (m, 1H), 7.40-7.37 (m, 2H), 7.35-7.29 (m, 2H), 7.20-7.05 (m, 7H), 6.62-6.58 (m, 1H), 2.29 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 193.2, 150.0, 144.4, 138.5, 138.4, 133.5, 133.3, 132.7, 130.7,

130.4, 129.7, 129.6, 129.3, 128.7, 128.6, 128.0, 127.5, 122.5, 121.9, 21.4; HRMS (ESI) [M+H]⁺ Calcd for [C₂₂H₁₇OSe]⁺ 377.0445, found 377.0443.

6. General Procedure for Synthetic Applications of Product 3b.

(6a) Suzuki Coupling Reaction:

In an oven dried 25 mL round bottom flask, **3b** (0.266 mmol, 1.0 mmol) was taken, to this phenyl boronic acid (0.319 mmol, 1.2 equiv), Pd(PPh₃)₄ (2 mol%, 0.02 equiv) and K₂CO₃ (0.798 mmol, 3.0 equiv) was added in 2 mL of toluene. The reaction mixture was then purged with nitrogen and stirred at 80 °C for 2 h. Progress of reaction was monitored with TLC. After the consumption of starting material, the reaction mixture was washed with brine, extracted with ethyl acetate, and evaporated. The residue was purified by column chromatography (hexane/ethyl acetate) (95/5) to afford the corresponding coupled product **10**.

2-Phenyl-3-(*p*-tolyl)naphthalene-1,4-dione (10) The crude product was purified by column chromatography (hexane/EtOAc = 95/5) to afford 10 as a orange solid (81.12 mg, 94%); mp 134-136 °C; IR (ATR, neat) v (cm⁻¹): 1654 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.13-8.08 (m, 2H), 7.72-7.68 (m, 2H), 7.18-7.14 (m, 3H), 7.04-7.00 (m, 2H), 6.95 (d, J = 8.0 Hz, 2H), 6.89 (dd, J = 6.4, 1.9 Hz, 2H), 2.21 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 184.9, 184.8, 145.7, 145.4, 138.2, 133.7, 133.4, 132.1, 132.1, 130.5, 130.1, 128.4, 128.1, 127.6, 126.6, 126.5, 21.3; HRMS (ESI) [M+H]⁺ Calcd for [C₂₃H₁₇O₂]⁺ 325.1229, found 325.1235.

(6b) Buchwald Coupling Reaction:

In an oven dried 25 mL round bottom flask, **3b** (0.266 mmol, 1.0 mmol) was taken, to this benzocaine (0.319 mmol, 1.2 equiv), CuI (10 mol%, 0.1 equiv) and K₃PO₄ (0.798 mmol, 3.0 equiv) was added in 2 mL of DMF. The reaction mixture was then purged with nitrogen and stirred at 100 °C for 2 h. Progress of reaction was monitored with TLC. After the consumption of starting material, the reaction mixture was washed with brine, extracted with ethyl acetate, and evaporated. The residue was purified by column chromatography (hexane/ethyl acetate) (95/5) to afford the corresponding coupled product **11**.

Ethyl 4-((1,4-dioxo-3-(*p*-tolyl)-1,4-dihydronaphthalen-2-yl)amino)benzoate (11) The product was obtained as a red solid (94.12 mg, 86%); mp 96-98 °C; IR (ATR, neat) v (cm⁻¹): 3311 (s, N-H), 1704 (s, C=O ester), 1664 (s, C=O ketone); ¹H-NMR (400 MHz, DMSO- d_6) δ 9.12 (s, 1H), 8.08 (dd, J = 19.0, 7.2 Hz, 2H), 7.87 (dt, J = 22.7, 7.1 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 6.97-6.79 (m, 6H), 4.22 (q, J = 7.1 Hz, 2H), 2.12 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C-NMR (100 MHz, DMSO- d_6) δ 182.6, 182.1, 165.3, 143.6, 141.3, 136.4, 134.7, 133.1, 132.5, 130.5, 130.1, 128.6, 127.7, 126.0, 125.8, 122.7, 121.5, 120.5, 60.2, 20.7, 14.2; HRMS (ESI) [M+Na]⁺ Calcd for [C₂₆H₂₁NNaO₄]⁺ 434.1368, found 434.1381.

(6c) Sonogashira Coupling Reaction:

In an oven dried 25 mL round bottom flask, **3b** (0.266 mmol, 1.0 equiv) was taken, to this Pd(PPh₃)₂Cl₂ (5 mol%, 0.05 equiv) and phenylacetylene (0.319 mmol, 1.2 equiv) in 3.0 Ml MeCN was added. The reaction mixture was then purged with nitrogen and to this Et₃N (0.798 mmol, 3.0 equiv) was added. The reaction mixture was then stirred at 60 °C for 2 h. Progress of reaction was monitored with TLC. After the consumption of starting material, the reaction mixture was quenched with brine, extracted with ethyl acetate, and evaporated. The residue was purified by column chromatography (hexane/ethyl acetate) (95/5) to afford the corresponding coupled product **12**.

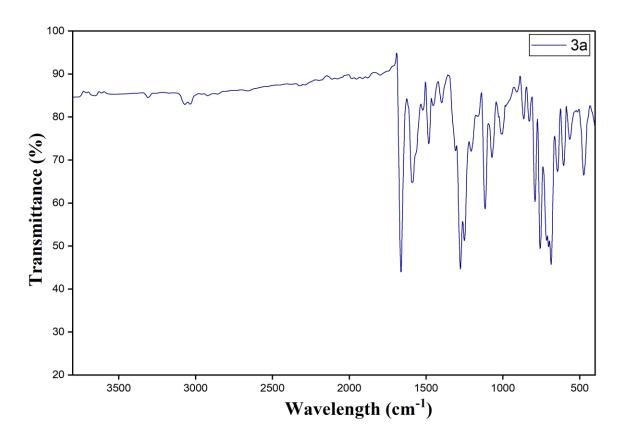
2-(Phenylethynyl)-3-(p-tolyl)naphthalene-1,4-dione (12) The product was obtained as a yellow liquid (88.04 mg, 95%); IR (ATR, neat) v (cm⁻¹): 2213 (s, C \equiv C), 1666 (s, C \equiv O); ¹H-NMR (400 MHz, CDCl₃) δ 8.09-8.02 (m, 2H), 7.67-7.62 (m, 2H), 7.43 (dd, J = 6.5, 1.7 Hz, 2H), 7.31-7.28 (m, 2H), 7.27-7.18 (m, 5H), 2.35 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 183.5, 181.8, 148.2, 139.7, 134.0, 133.6, 132.2, 132.1, 131.7, 130.5, 129.9, 129.8, 129.5, 128.3, 126.8, 126.5, 122.1, 105.8, 84.5, 21.5; HRMS (ESI) [M+H]⁺ Calcd for [C₂₅H₁₇O₂]⁺ 349.1229, found 349.1225.

(6d) Functional group interconversion:

In an oven dried 25 mL round bottom flask, **3b** (0.266 mmol, 1.0 equiv) was taken, to this Pd(OAc)₂ (5 mol%, 0.05 equiv), NaOAc (0.532 mmol, 2.0 equiv) in 3.0 mL DMF was added. The reaction mixture was then stirred at 100 °C for 12 h. Progress of reaction was monitored with TLC. After the consumption of starting material, the reaction mixture was quenched with brine, extracted with ethyl acetate, and evaporated. The residue was purified by column chromatography (hexane/ethyl acetate) (90/10) to afford the corresponding coupled products **13**.

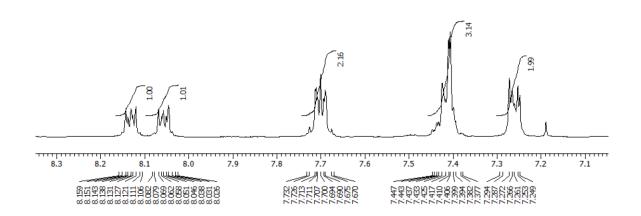
2-hydroxy-3-(*p***-tolyl)naphthalene-1,4-dione (13)** The product was obtained as a yellow solid (52.72 mg, 75%); mp 146-148 °C; IR (ATR, neat) v (cm⁻¹): 3350 (br, O-H), 1647 (s, C=O); ¹H-NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 7.6, 0.9 Hz, 1H), 8.07 (dd, J = 7.5, 1.0 Hz, 1H), 7.73 (td, J = 7.5, 1.3 Hz, 1H), 7.66 (td, J = 7.5, 1.3 Hz, 1H), 7.51 (s, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 7.8 Hz, 2H), 2.33 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 183.8, 181.8, 152.0, 138.7, 135.2, 133.1, 132.8, 130.5, 129.3, 128.7, 127.2, 126.9, 126.1, 122.2, 21.4; HRMS (ESI) [M+H]⁺ Calcd for [C₁₇H₁₃O₃]⁺ 265.0865, found 265.0871.

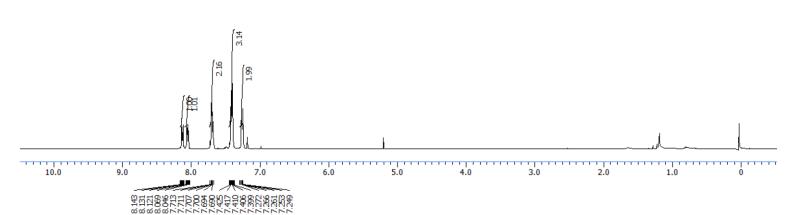
7. References:


- 1. Claus; V.; Monilari, L.; Büllmann, S.; Thusek, J.; Rudolph, M.; Rominger, F.; Hashmi; S. K. Gold Catalyzed Cyclisation by 1,4-Dioxidation. *Chem. Eur. J.* **2019**, *25*, 9385 9389.
- 2. Ye, X.; Yang, X.; Wu, J. Rapid access to 1-methyleneindenes via palladium-catalyzed tandem reactions of 1-(2,2-dibromovinyl)-2-alkynylbenzenes with arylboronic acids. *Chem. Commun.* **2010**, *46*, 2950–2952.
- 3. Wurm, T.; Bucher, J.; Duckworth, S. B.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K., On the Gold Catalyzed Generation of Vinyl Cations from 1,5-Diynes. *Angew. Chem.* **2017**, *56*, 3364-3368.
- 4. Rivera-Fuentes, P.; Rekowski, M. v. W.; Schweizer, W. B.; Gisselbrecht, J.-P.; Boudon, C.; Diederich, F., Cascade Carbopalladation Reaction between Alkynes and *gem*-Dibromoolefins: Facile Access to Monoannelated Pentalenes. *Org. Lett.* **2012**, *14*, 4066-4069.

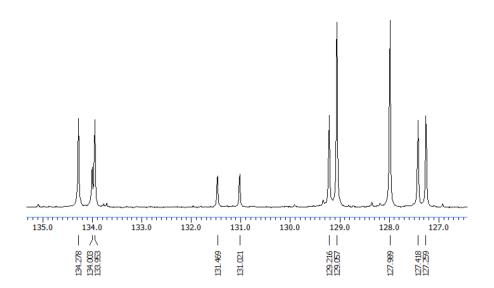
5. London, G.; von Wantoch Rekowski, M.; Dumele, O.; Schweizer, W. B.; Gisselbrecht, J.-P.; Boudon, C.; Diederich, F., Pentalenes with Novel Topologies: Exploiting the Cascade Carbopalladation Reaction Between Alkynes and *gem*-Dibromoolefins. *Chem. Sci.* **2014**, *5*, 965-972.

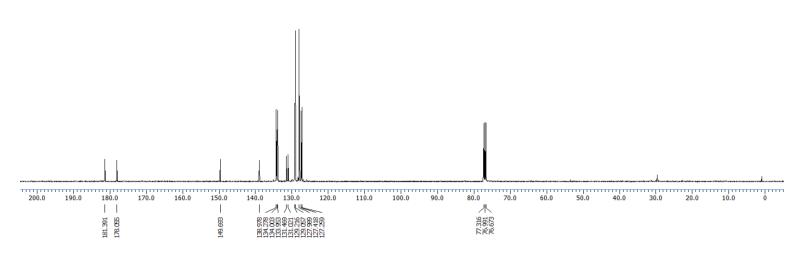
Copies of FT-IR, ¹H NMR, ¹³C{¹H} NMR and HRMS

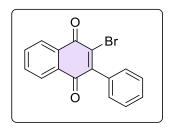

IR Spectra


2-bromo-3-phenylnaphthalene-1,4-dione (3a)

¹H NMR (400 MHz, CDCl₃)

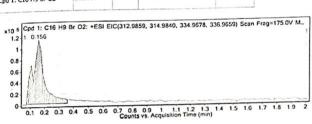

2-bromo-3-phenylnaphthalene-1,4-dione (3a)

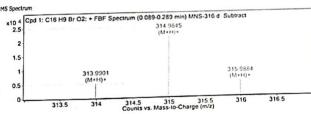


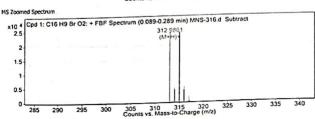


¹³C{¹H} NMR (100 MHz, CDCl₃)

2-bromo-3-phenylnaphthalene-1,4-dione (3a)

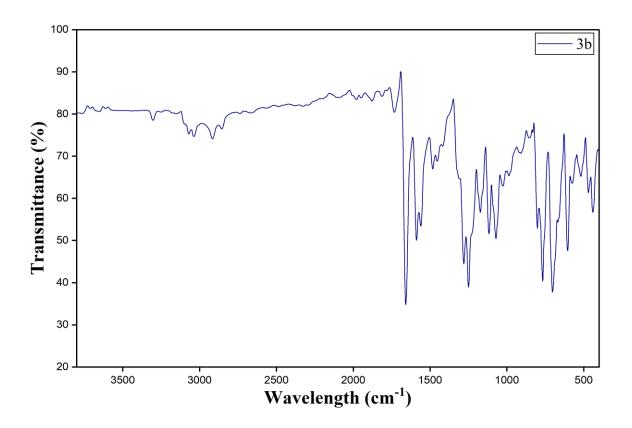

2-bromo-3-phenylnaphthalene-1,4-dione (3a)


Qualitative Compound Report

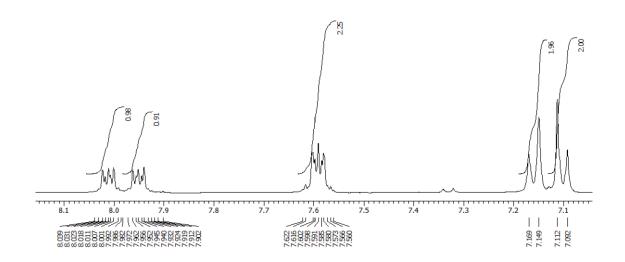


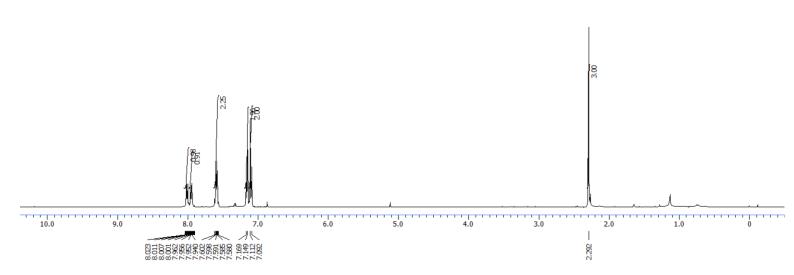
Compound Table						Diff		no recoults
	PT	Mass	Abund	Formula		(ppm)	MFG Formula	C16 H9 Br O2
Compound Label Cod 1: C16 H9 Br O2	0.156	311.9789	22859	C16 H9 Br O2	311.9786	1.01	C16 H9 Br O2	Clothy

Compound Label	m/z	RT	Algorithm	Mass
Cpd 1: C16 H9 Br O2	312.9861	0.156	Find By Formula	311.9789

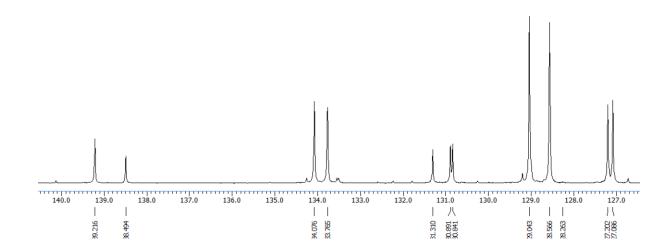


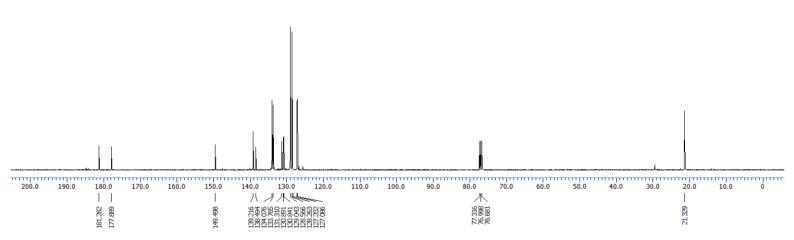
m/z	2	Abund	Formula	Ion
312.9861	1	22859.24	C16H10BrO2	(M+H)+
313.9901	1		C16H10BrO2	(M+H)+
314.9845	ī	22504.3	C16H10BrO2	(M+H)+
315,9384	1		C16H10BrO2	(M+H)+
316.9849	1		C16H10BrO2	(M+H)+


--- End Of Report ---


IR Spectra

2-bromo-3-(p-tolyl)naphthalene-1,4-dione (3b)

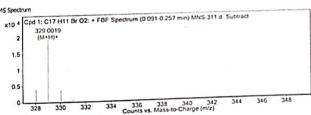

2-bromo-3-(p-tolyl)naphthalene-1,4-dione (3b)

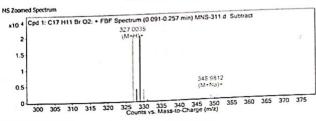


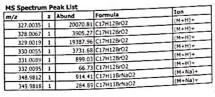
¹³C{¹H} NMR (100 MHz, CDCl₃)

2-bromo-3-(p-tolyl)naphthalene-1,4-dione (3b)

2-bromo-3-(p-tolyl)naphthalene-1,4-dione (3b)

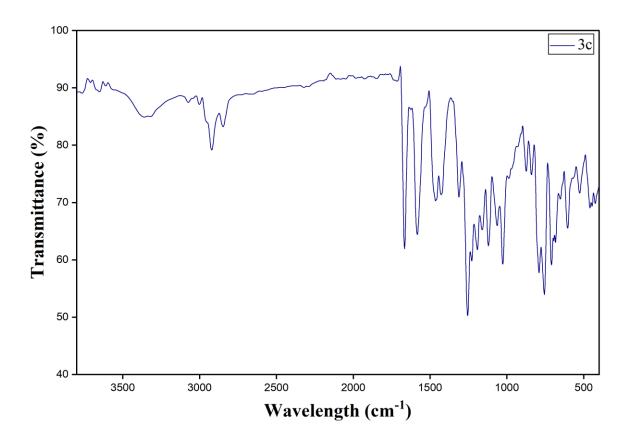

Qualitative Compound Report

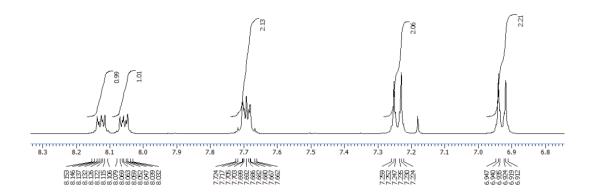

MNS-311 P1-B1 MNS-311.d Sample Instrument 1 MS Scan.m Sample Name Data File Position User Name Acquired Time Sample Type
Instrument Name
Acq Method
IRM Calibration Status 11-06-2024 13:23:20 Default.m DA Method Sample Group Acquisition SW Version

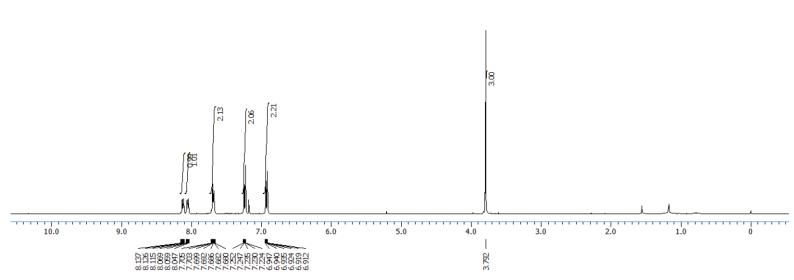

RT 0.157

npound Table						piff		
	DT Mass		Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula	
Compound Label	N1	Mass	Abund		325.9942		C17 H11 Br O2	C17 H11 Br O2
Cpd 1: C17 H11 Br O2	0.157	325.9963	20071	C17 H11 Br O2	323.5712	0.2.1		

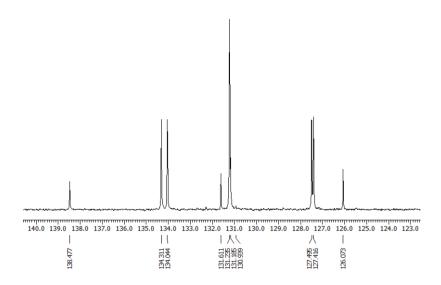
Algorithm Find By Formula Compound Label Cpd 1: C17 H11 Br O2 327.0035 x10 4 Cpd 1: C17 H11 Br O2: +ESI EIC(327,0015, 328,9996, 348,9835, 350,9816) Scan Frag=175.0V M. 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 Counts vs. Acquisition Time (min.)

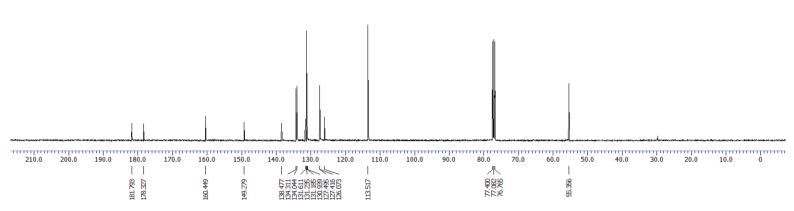


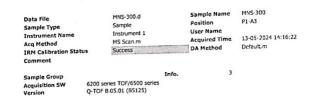


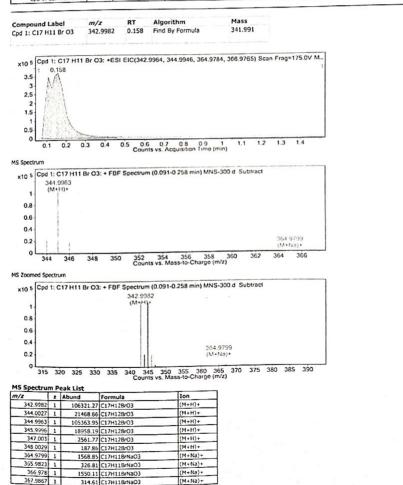


--- End Of Report ---


IR Spectra




$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃)



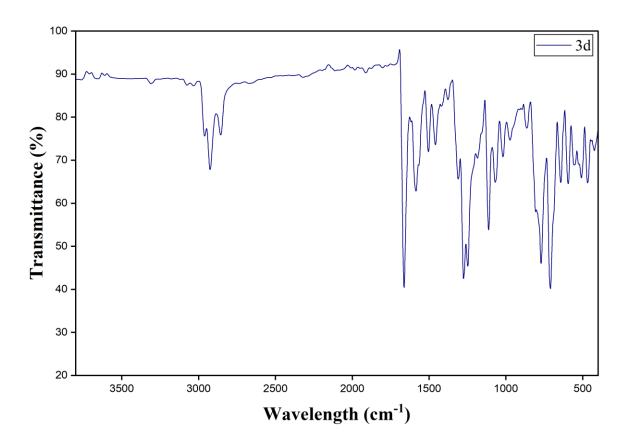
2-bromo-3-(4-methoxyphenyl)naphthalene-1,4-dione (3c)

Qualitative Compound Report

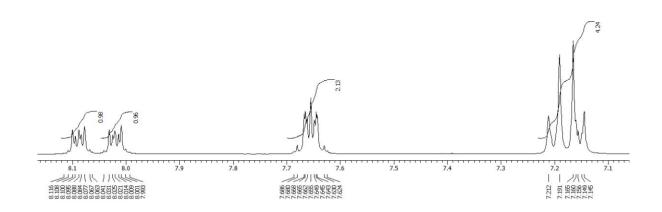
Compound Table						574		
			Abund	Formula	Tot Mass	Diff (ppm)	MFG Formula	DB Formula
Compound Label	RT	Mass	7100111				C17 H11 Br O3	C17 H11 Br O3
Cod 1: C17 H11 Br O3	0.158	341.991	105321	C17 H11 Br O3	341.9892	3.44	CIT HIT III OF	

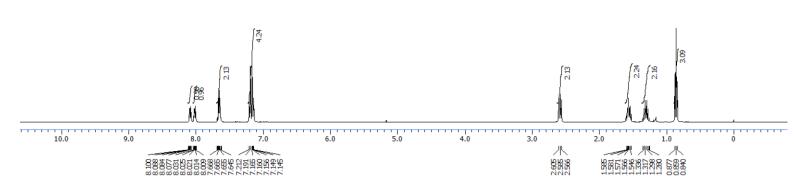
367.9867 1 Agilent Technologies

1550.11 C17H11BrNaO3 314.61 C17H11BrNaO3


Page 1 of 2

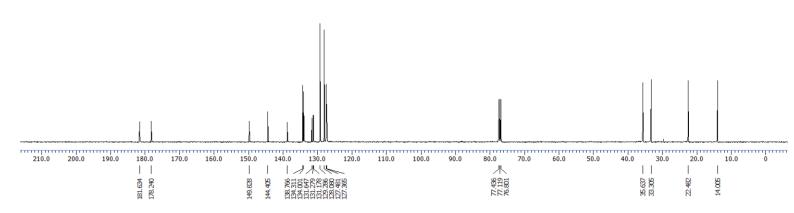
(M+Na)+


Printed at: 15:24 on:13-05-2024


IR Spectra

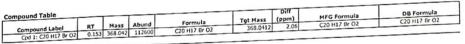
2-bromo-3-(4-butylphenyl)naphthalene-1,4-dione (3d)


2-bromo-3-(4-butylphenyl)naphthalene-1,4-dione (3d)



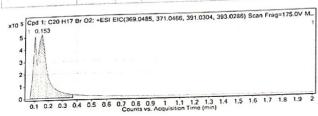
¹³C{¹H} NMR (100 MHz, CDCl₃)

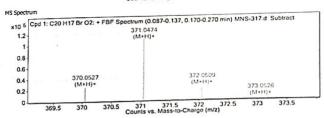
2-bromo-3-(4-butylphenyl)naphthalene-1,4-dione (3d)

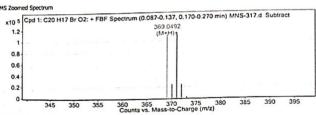


2-bromo-3-(4-butylphenyl)naphthalene-1,4-dione (3d)

Qualitative Compound Report

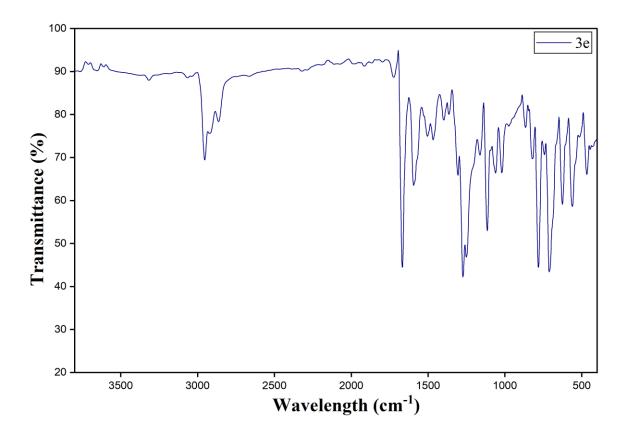

 Data File
 MNS-317.d
 Sample Name Position
 MNS-317 Pp.1-A8


 Sample Type
 Instrument 1 Instrument 1
 User Name Acquired Time Acqui

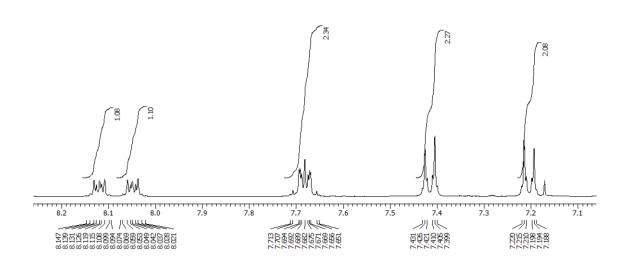


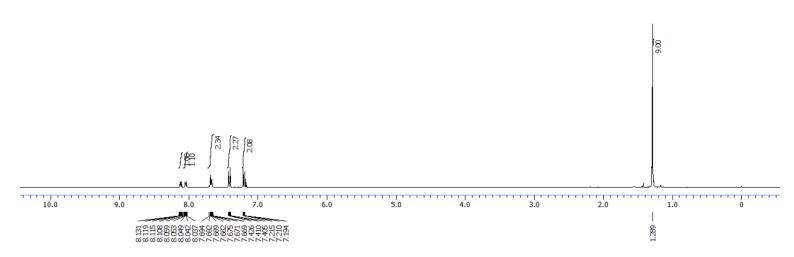
 Compound Label
 m/z
 RT
 Algorithm
 Mass

 Cpd 1: C20 H17 Br O2
 369.0492
 0.153
 Find By Formula
 368.042

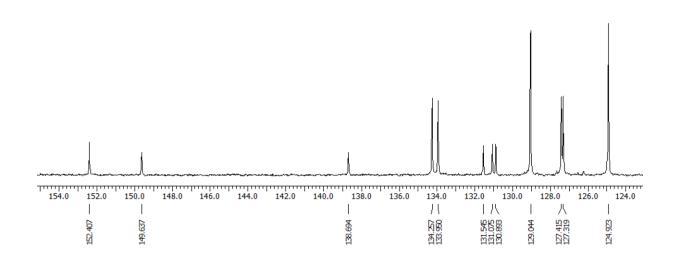


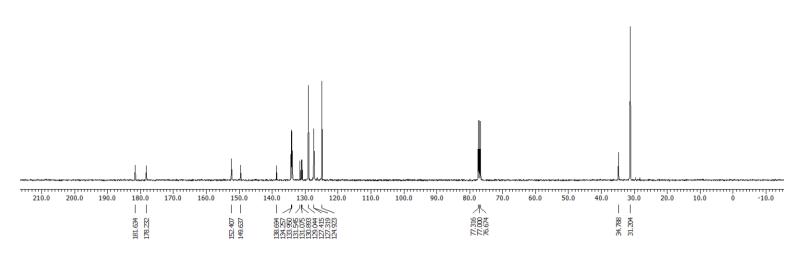
m/z	z	Abund	Formula	Ion
369.0492	1	112600.45	C20H188rO2	(M+H)+
370.0527	1	24693.54	C20H18BrO2	(M+H)+
371.0474	1	111579.8	C20H18BrO2	(M+H)+
372.0509	1	23795.92	C20H18BrO2	(M+H)+
373.0526	1	3040.17	C20H1SBrO2	(M+H)+
374.0448	1	326.97	C20H18BrO2	(M+H)+


--- Ford Of Danced


IR Spectra

2-bromo-3-(4-(tert-butyl)phenyl)naphthalene-1,4-dione (3e)


2-bromo-3-(4-(tert-butyl)phenyl)naphthalene-1,4-dione (3e)



¹³C{¹H} NMR (100 MHz, CDCl₃)

2-bromo-3-(4-(tert-butyl)phenyl)naphthalene-1,4-dione (3e)

2-bromo-3-(4-(tert-butyl)phenyl)naphthalene-1,4-dione (3e)

Qualitative Compound Report

 Data File
 MNS-313.d
 Sample Name
 MftS-313

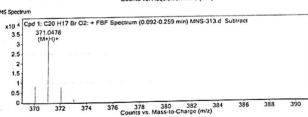
 Sample Type
 Sample
 Position
 P1-A6

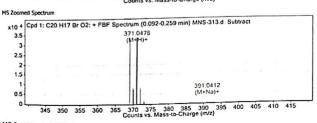
 Instrument Name
 Instrument 1
 User Name
 Acquired Time

 Acq Method
 MS Scan.m
 Acquired Time
 04-03-2025 12:57:15

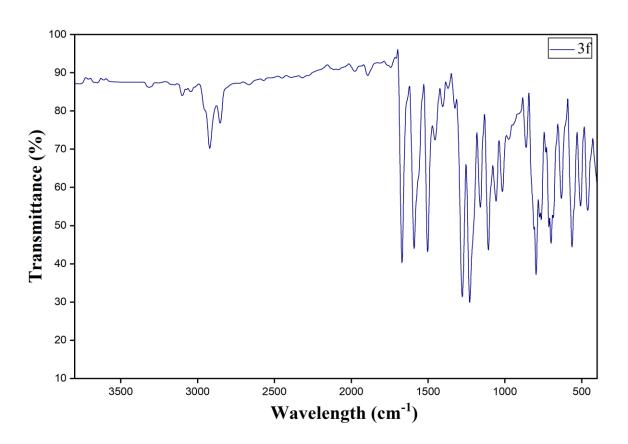
 IRM Calibration Status
 DA Method
 Dcfault.m

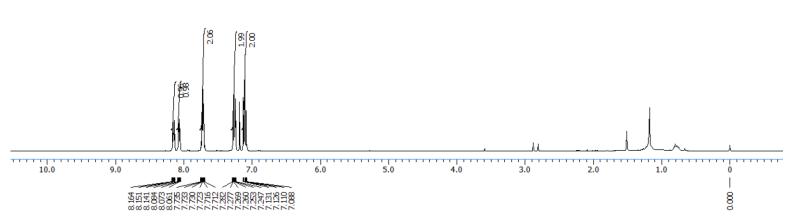

 Comment
 Info.
 3


 Sample Group
 Acquisition SW
 2-TOF 8.05.01 (65125)

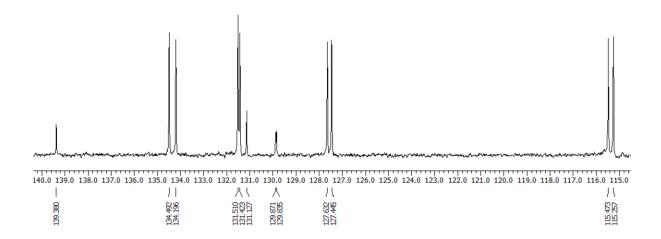

 Compound Table
 RT
 Mass Abund
 Formula Formula
 Tgt Mass (μρm)
 Oiff (μρm)
 MFG Formula MFG Formula
 DB Formula

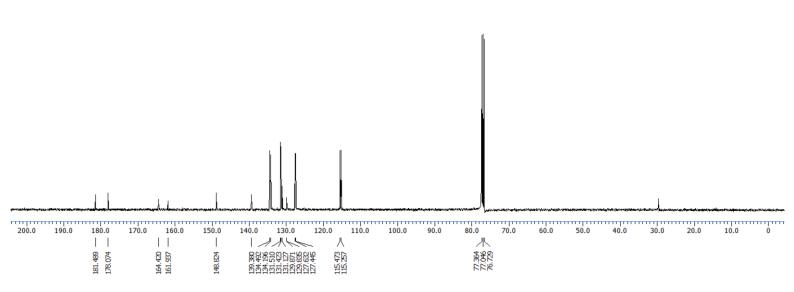
 Cpd 1: C20 H17 Br O2
 0.159
 368.0424
 32372
 C20 H17 Br O2
 368.0412
 3.28
 C20 H17 Br O2
 C20 H17 Br O2

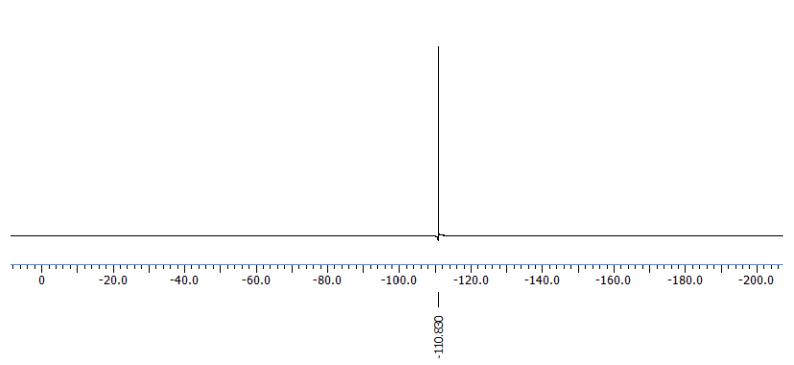



m/z	z	Abund	Formula	Ion
369.0497	1	32357.64	C20H18BrO2	(M+H)+
370.0532	1	8269.11	C20H18BrO2	(M+H)+
371.0478	1		C20H18BrO2	(M+H)+
372.0517	1	8049.56	C20H18BrO2	(M+H)+
373.0504	1	1769.93	C20H18BrO2	(M+H)+
391.0412	1	178 22	C20H17BrNaO2	(M+Na)+

--- End Of Report ---


IR Spectra

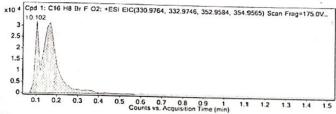


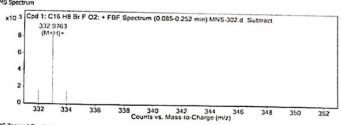


$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃)

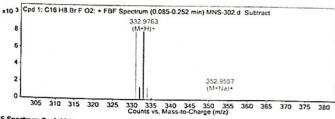
2-bromo-3-(4-fluorophenyl)naphthalene-1,4-dione (3f)

Qualitative Compound Report


Data File Sample Type Instrument Name Acq Method MNS-302.d MNS-302 P1-A4 Sample Name Position User Name Acquired Time DA Method MS Scan.m 13-05-2024 14:20:15 IRM Calibration Status Default.m

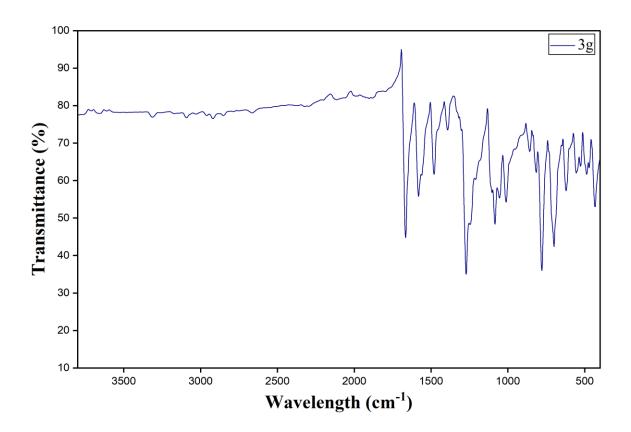

Sample Group Acquisition SW Version 6200 series TOF/6500 series Q-TOF B.05.01 (B5125)

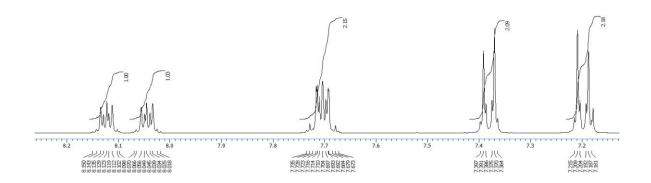
Compound Table Diff Compound Label RT 0.102 Formula C16 H8 Br F O2 Tgt Mass (ppm) 329.9692 6.09 MFG Formula C16 HS Br F O2 OB Formula C16 H8 Br F O2

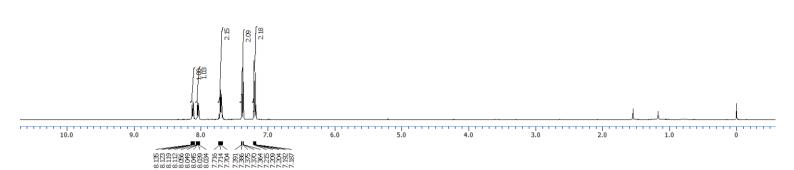

Mass

Algorithm Find By Formula Cpd 1: C16 H8 Br F O2 332.9763 0.102 329.9712 x10 4 Cpd 1: C16 H8 Br F O2: +ESI EIC(330.9764, 332.9746, 352.9584, 354.9565) Scan Frag=175.0V_ 10.102

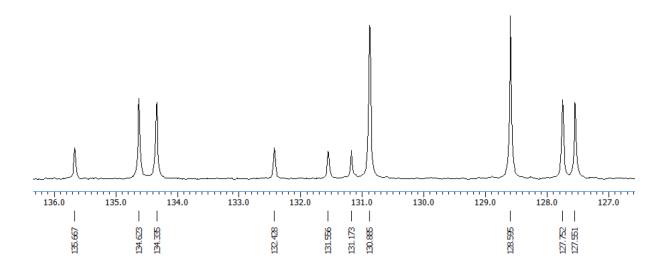
MS Zoomed Spectrum

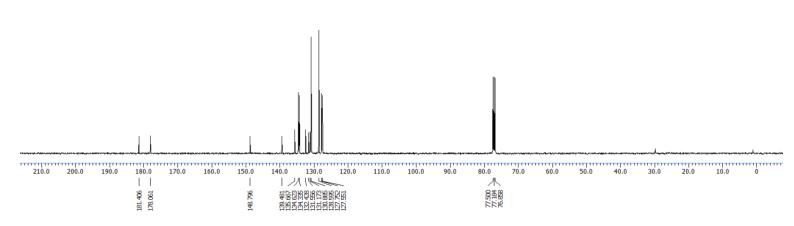


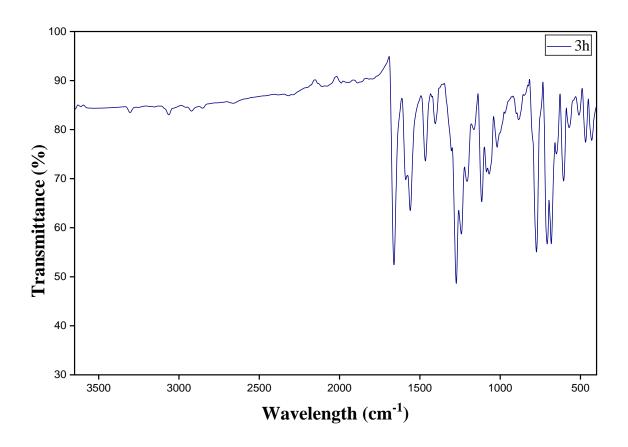

| MS Spectrum Peak List | m/z | x | Abund | Formula | 330.9785 | 1 | 7443.49 | C16H9BrF02 | 331.9829 | 1 | 1502.41 | C16H9BrF02 | 332.9763 | 1 | 8267.29 | C16H9BrF02 | 333.9802 | 1 | 1465.49 | C16H9BrF02 | 334.9861 | 1 | 220.44 | C16H9BrF02 | 352.9557 | 1 | 61.64 | C16H8BrFNaO2 | C16H8BrFNA (M+H)+ (M+H)+ (M+H)+ +(6M+M)

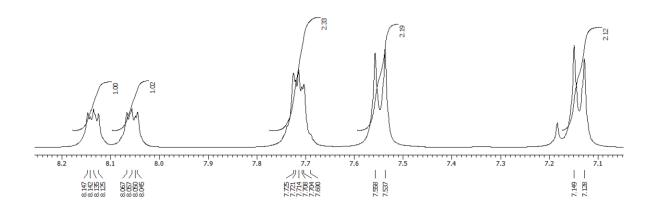

⁻⁻⁻ End Of Report ---

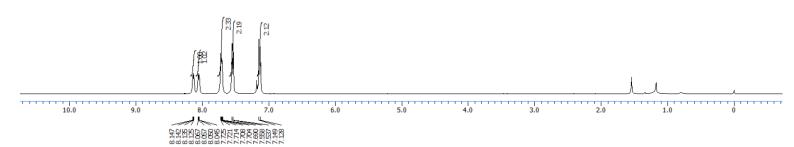
IR Spectra

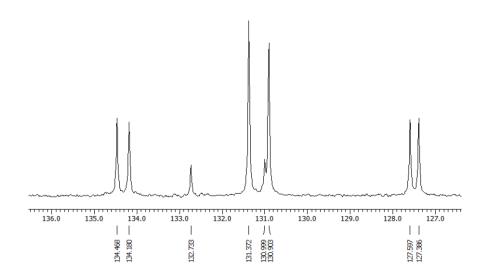

2-bromo-3-(4-chlorophenyl)naphthalene-1,4-dione (3g)

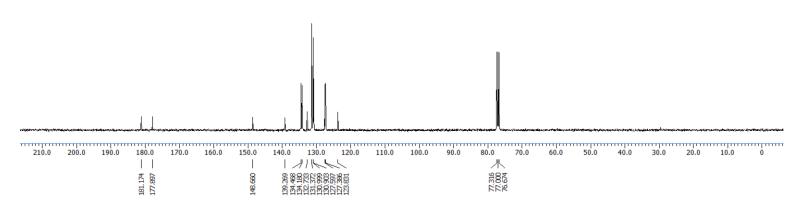


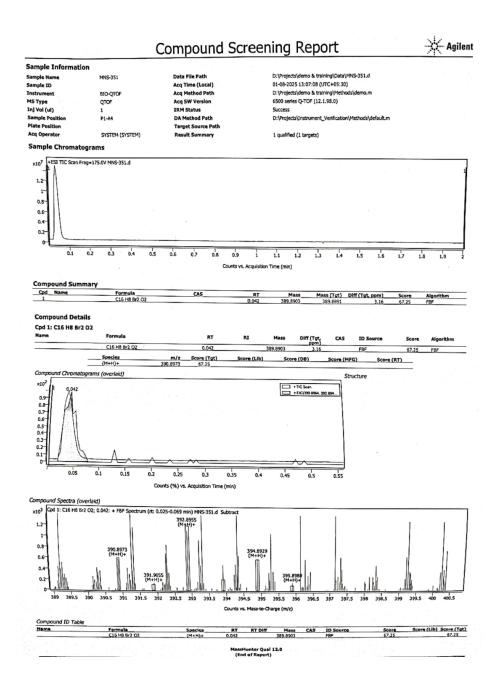


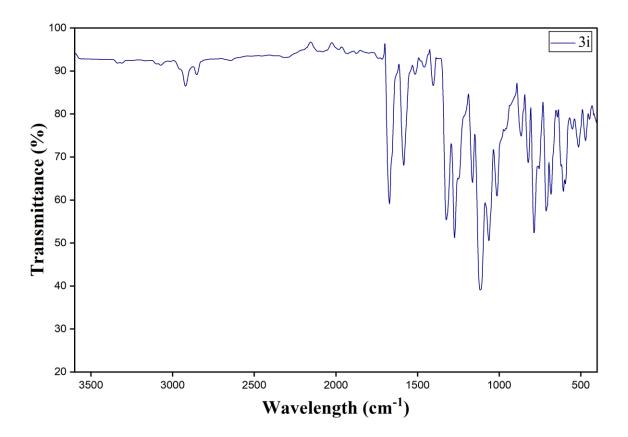

¹³C{¹H} NMR (100 MHz, CDCl₃)

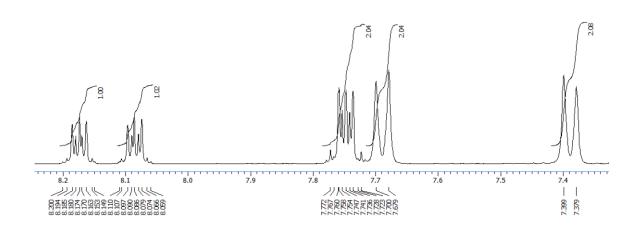


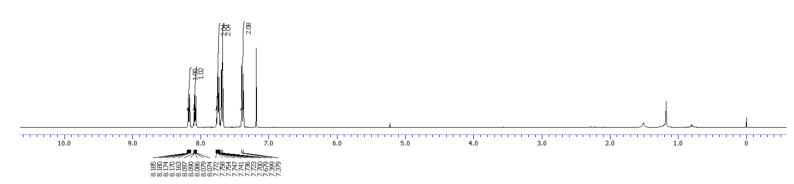

IR Spectra

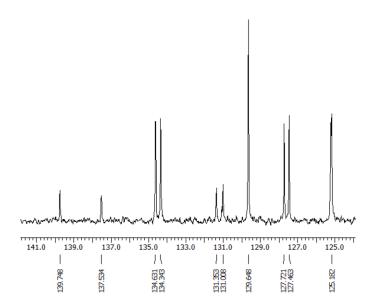


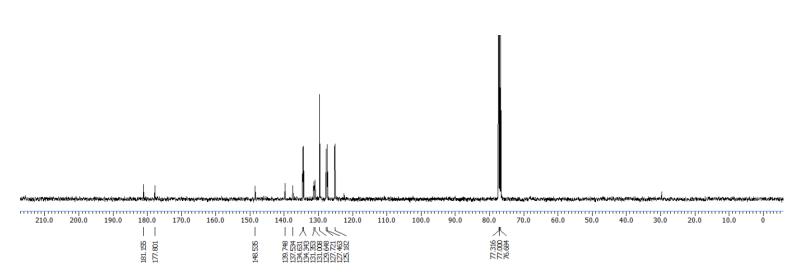



¹³C{¹H} NMR (100 MHz, CDCl₃)

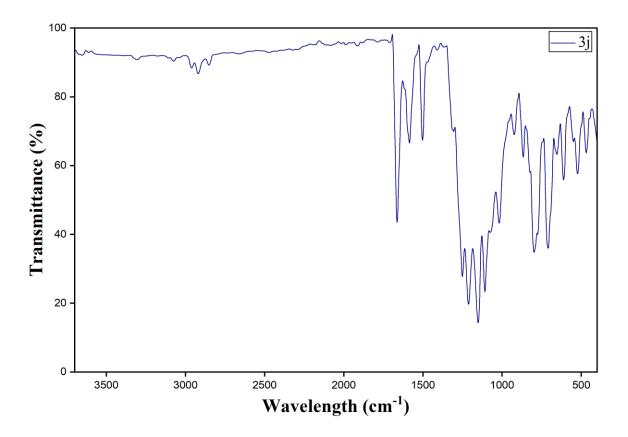


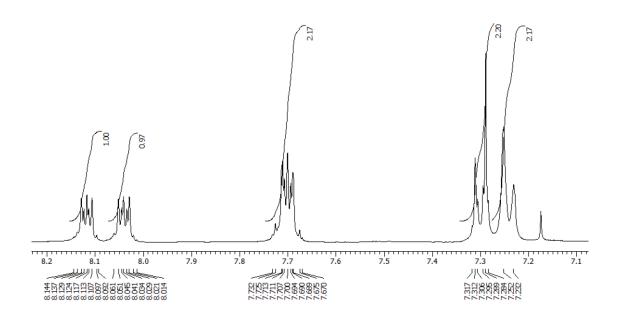


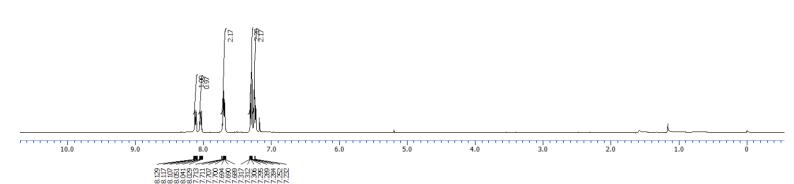


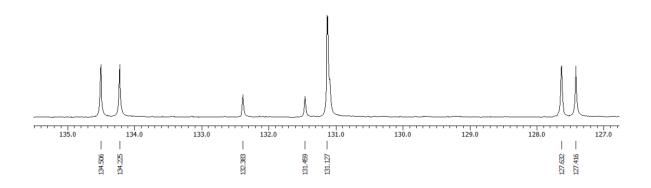

IR Spectra

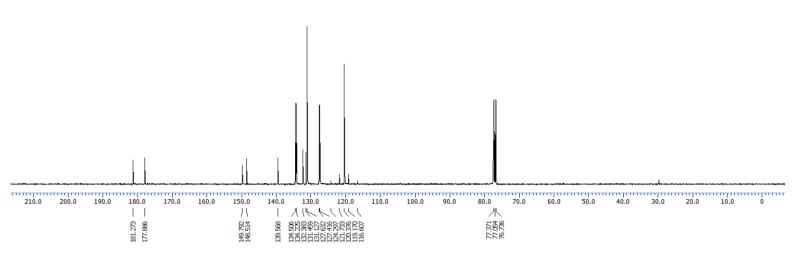


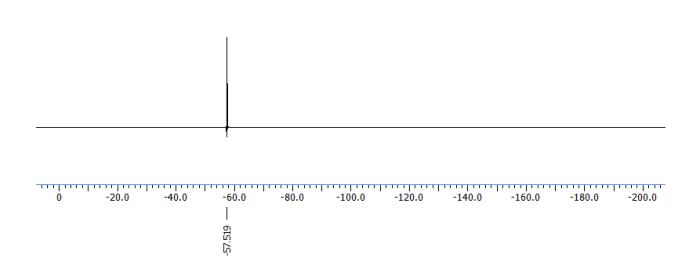




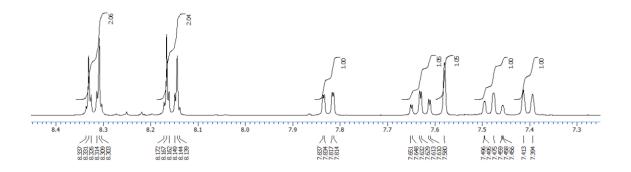


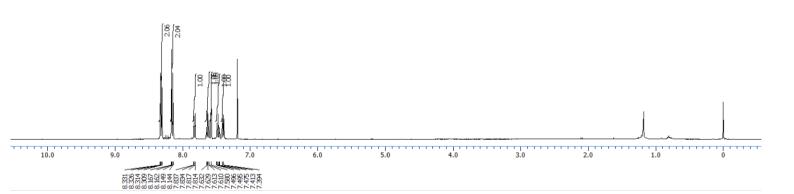



IR Spectra

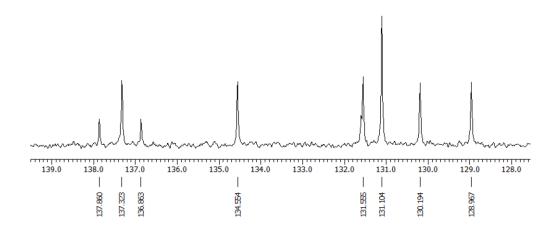


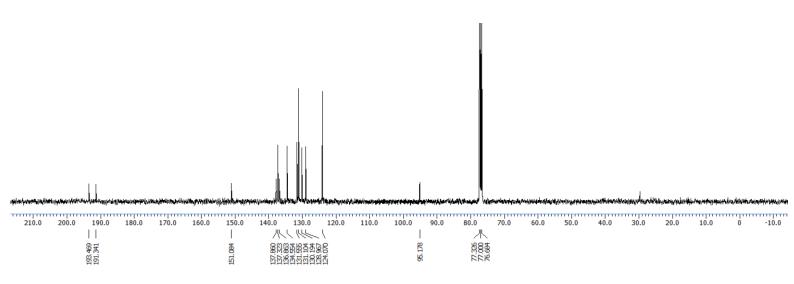
2-bromo-3-(4-(trifluoromethoxy)phenyl)naphthalene-1,4-dione (3j)

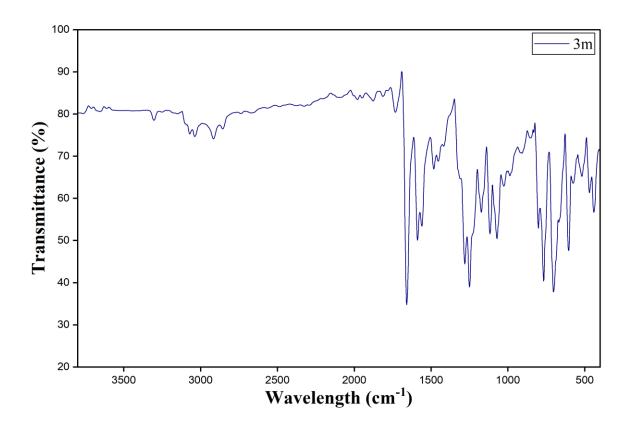


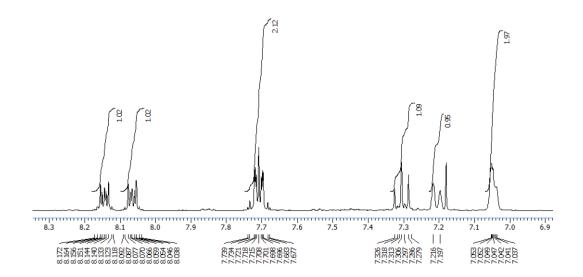

HRMS

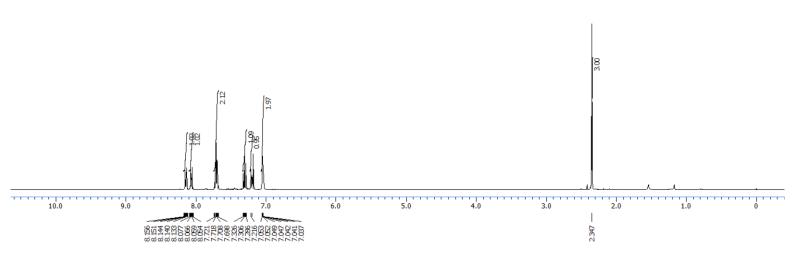
2-bromo-3-(4-(trifluoromethoxy)phenyl)naphthalene-1,4-dione (3j)



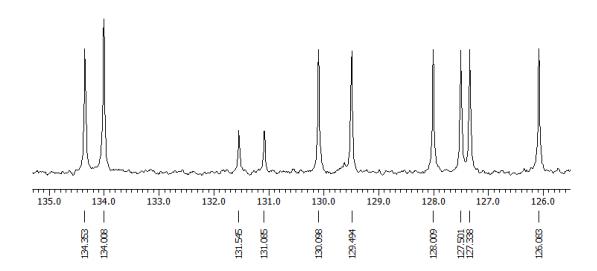

1-(2-(2,2-dibromovinyl)phenyl)-2-(4-nitrophenyl)ethane-1,2-dione (3k')

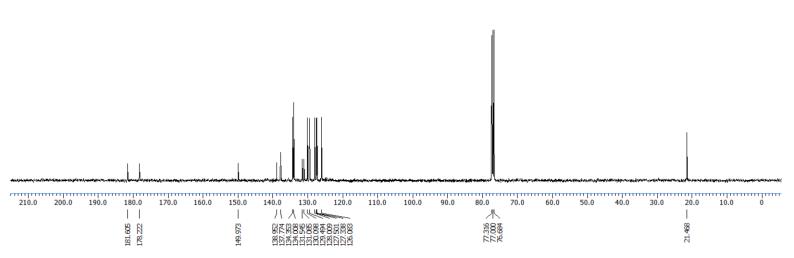

1-(2-(2,2-dibromovinyl)phenyl)-2-(4-nitrophenyl)ethane-1,2-dione (3k')




IR Spectra

2-bromo-3-(*m*-tolyl)naphthalene-1,4-dione (3m)



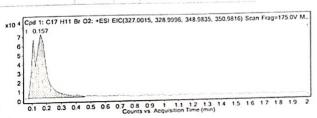

2-bromo-3-(*m*-tolyl)naphthalene-1,4-dione (3m)

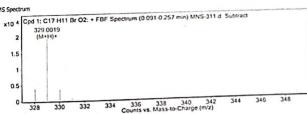
2-bromo-3-(m-tolyl)naphthalene-1,4-dione (3m)

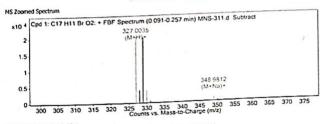
HRMS

2-bromo-3-(m-tolyl)naphthalene-1,4-dione (3m)

Qualitative Compound Report

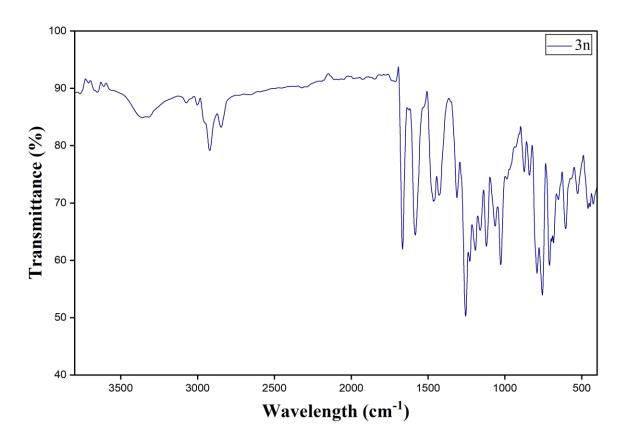

Sample Name Position User Name Acquired Time DA Method MNS-311 P1-B1 Data File Sample Type Instrument Name Acq Method IRM Calibration Status MNS-311.d Sample Instrument 1 MS Scan.m 11-06-2024 13:23:20 Default.m


Sample Group Acquisition SW Version

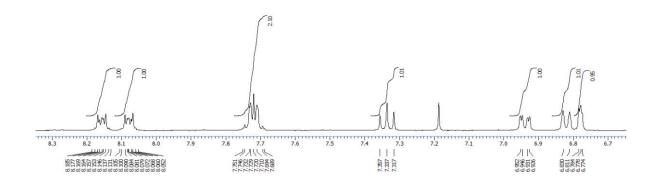

6200 series TOF/6500 series Q-TOF B.05.01 (B5125)

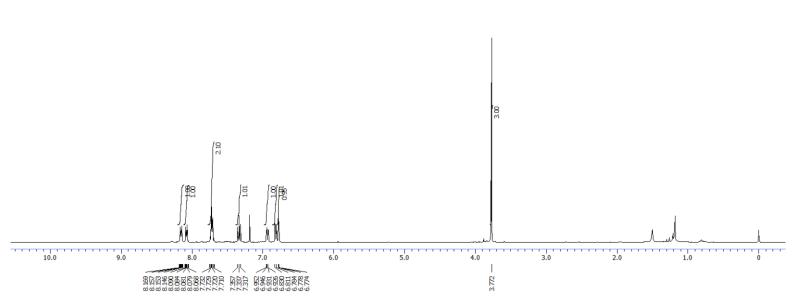
Compound Table						Diff			
		Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula	
Compound Label	RT	325.9963		C17 H11 Br O2	325.9942	6.27	C17 H11 Br O2	C17 H11 Br O2	
Cpd 1: C17 H11 Br O2	0.157	325.9903	20071	CIP HILL IN OL					

Compound Label	m/z	RT	Algorithm	Mass
Cpd 1: C17 H11 Br O2	and the second second	0.157	Find By Formula	325.9963

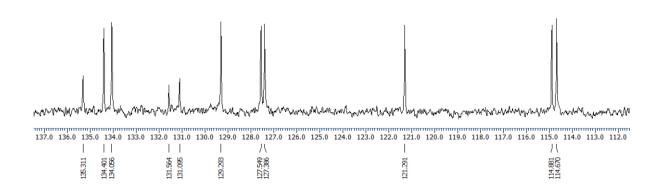


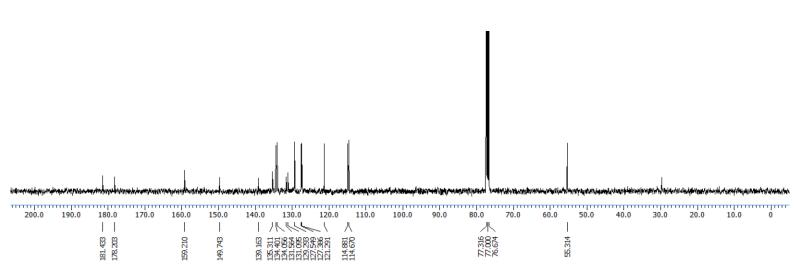
MS Spectrum			Formula	Ion	
			C17H12BrO2	(M+H)+	
327.0035				(M+H)+	
328.0067	1		C17H12BrO2	(M+H)+	
329.0019	1	19387.96	C17H12BrO2	-	
330.0055		3731 68	C17H12BrO2	(M+H)+	
			C17H12BrO2	(M+H)+	
331.0089				(M+H)+	
332.0095	1		C17H12Br02	(M+Na)+	
348.9812	1		C17H11BrNaO2	(M+Na)+	
349.9818	1	284.89	C17H11BrNaO2	(M+Na)+	


--- End Of Report ---

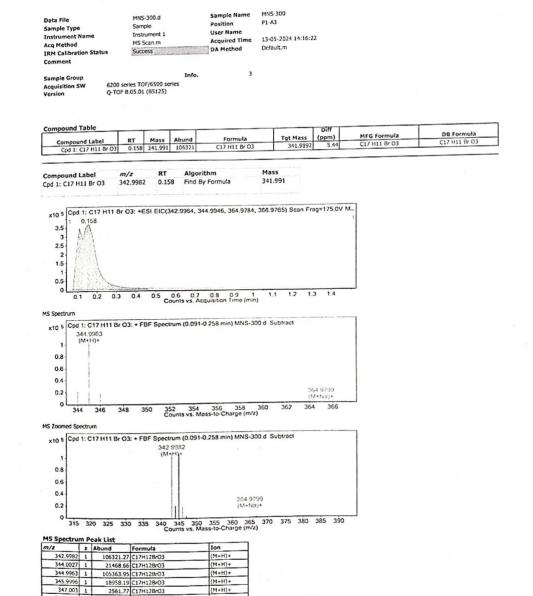

IR Spectra

2-bromo-3-(3-methoxyphenyl)naphthalene-1,4-dione (3n)


2-bromo-3-(3-methoxyphenyl)naphthalene-1,4-dione (3n).



$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃)


2-bromo-3-(3-methoxyphenyl)naphthalene-1,4-dione (3n).

2-bromo-3-(3-methoxyphenyl)naphthalene-1,4-dione (3n).

Qualitative Compound Report

367.9867 1 Agilent Technologies

345.9996 1 347.003 1

348.0029 1 364.9799 1 365.9823 1

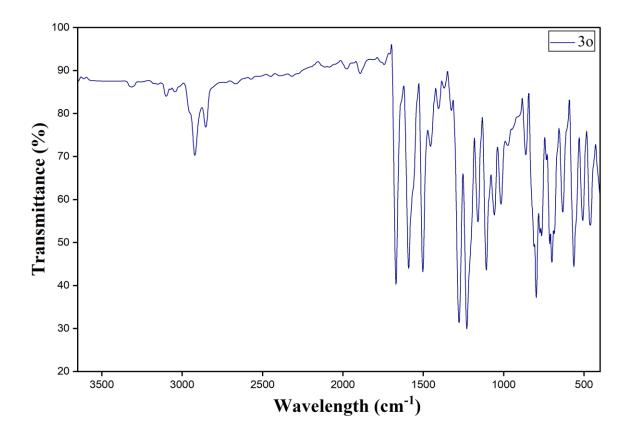
18958.19 C17H128rO3 2561.77 C17H12BrO3

187.86 C17H12BrO3 1568.85 C17H11BrNaO3

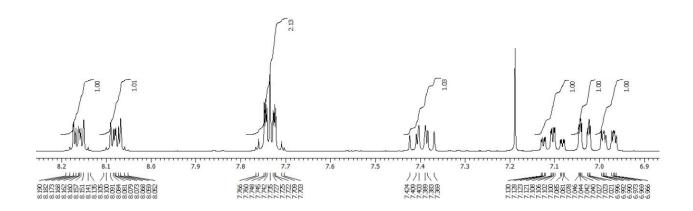
326.81 C17H11BrNaO3 1550.11 C17H11BrNaO3 314.61 C17H11BrNaO3

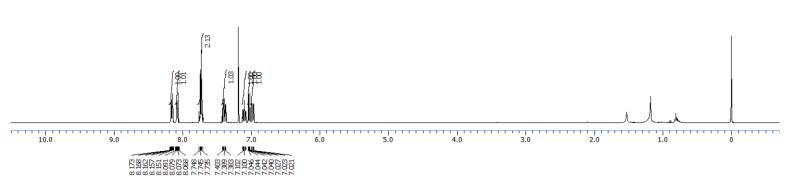
Page 1 of 2

(M+H)+

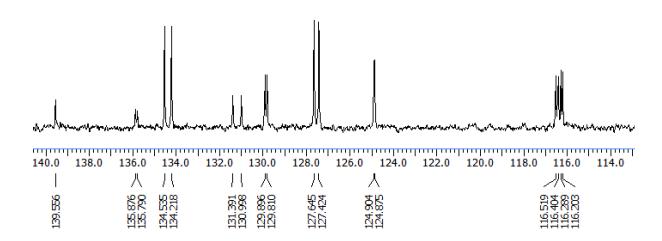

(M+Na)+

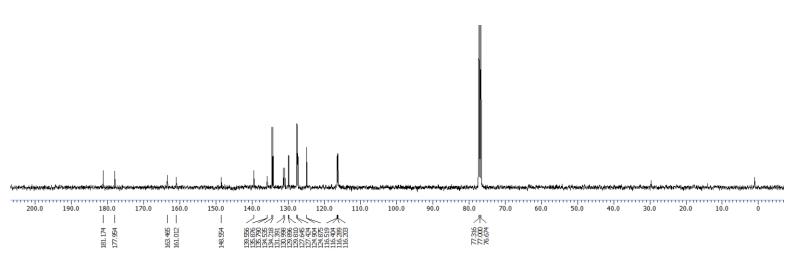
(M+Na)+

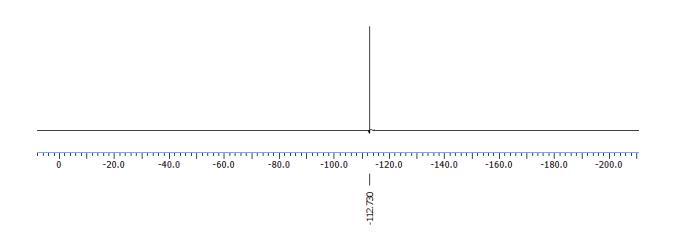

Printed at: 15:24 on:13-05-2024


IR Spectra

2-bromo-3-(3-fluorophenyl)naphthalene-1,4-dione (30)




2-bromo-3-(3-fluorophenyl)naphthalene-1,4-dione (30)



2-bromo-3-(3-fluorophenyl)naphthalene-1,4-dione (30)

2-bromo-3-(3-fluorophenyl)naphthalene-1,4-dione (3o)

HRMS

2-bromo-3-(3-fluorophenyl)naphthalene-1,4-dione (30)

Qualitative Compound Report

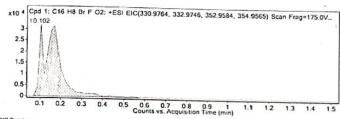
 Data File
 MNS-302.d
 Sample Name
 MNS-302

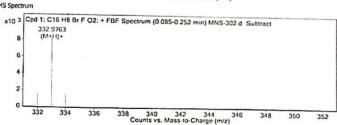
 Sample Type
 Sample
 Position
 P1-A4

 Instrument Name
 Instrument 1
 User Name
 Acquired Time
 13-05-2024 14:20:15

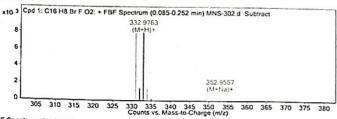
 IRM Calibration Status
 Success
 DA Method
 Default.m

Sample Group Acquisition SW Version


6200 series TOF/6500 series Q-TOF 8.05.01 (85125) 3

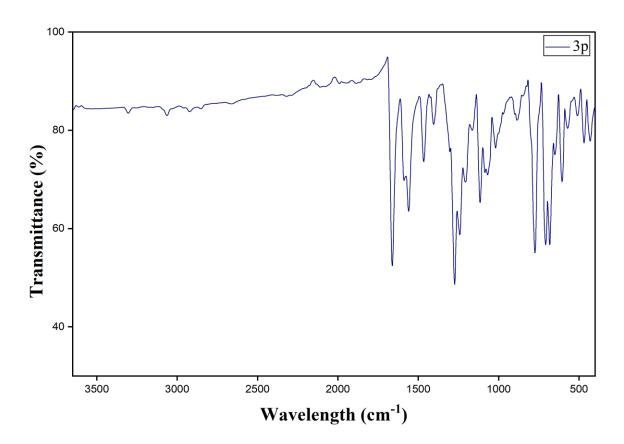

Compound Table

Compound Label	RT	Mass	Abund	Formula	Tgt Mass	Diff		
Cpd 1: C16 H8 Br F O2	0.102	329.9712	8267			(ppm)	MFG Formula	DB Formula
			0707	C16 H8 Br F O2	329.9692	6.09	C16 H\$ Br F O2	C16 H8 Br F O2

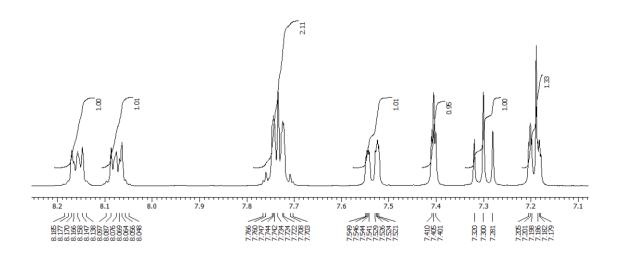

 Compound Label
 m/z
 RT
 Algorithm
 Mass

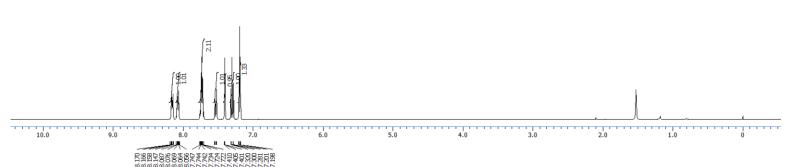
 Cpd 1: C16 H8 Br F O2
 332.9763
 0.102
 Find By Formula
 329.9712

MS Zoomed Spectrum


MS Spectrum Peak List

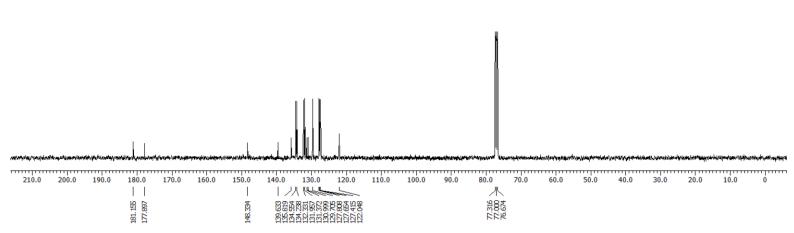
m/z	Z	Abund	Formula	Ion
330.9785	1	7443.49	C16H9BrFO2	(M+H)+
331.9829	1		C16H9BrFO2	(M+H)+
332.9763	1		C16H9BrFO2	(M+H)+
333.9802	1		C16H9BrFO2	(M+H)+
334.9861			C16H9BrFO2	(M+H)+
352.9557	1		C16H8BrFNaO2	+(6N+M)

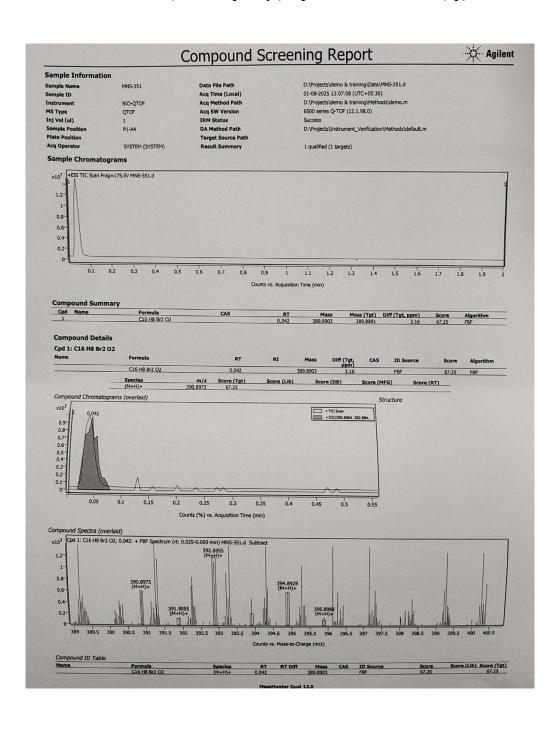

--- End Of Report ---


IR Spectra

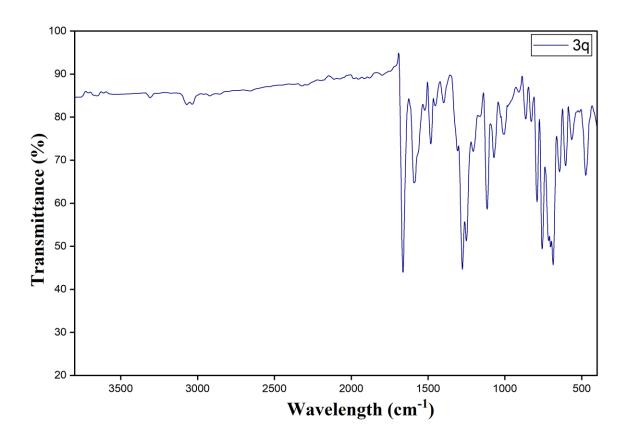
2-bromo-3-(3-bromophenyl)naphthalene-1,4-dione (3p)

2-bromo-3-(3-bromophenyl)naphthalene-1,4-dione (3p)

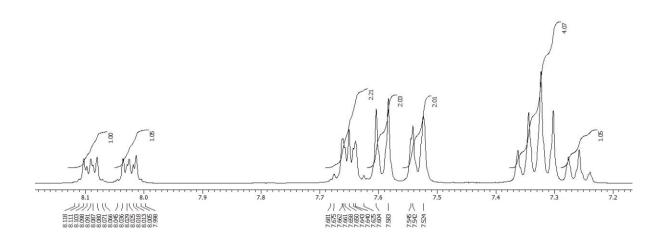


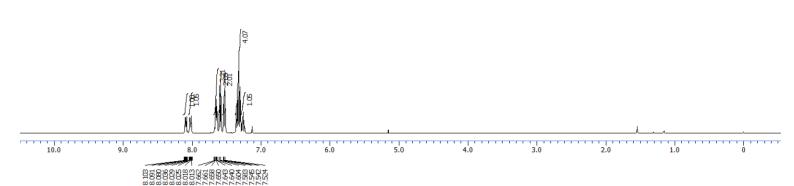

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (100 MHz, CDCl₃)

2-bromo-3-(3-bromophenyl)naphthalene-1,4-dione (3p)

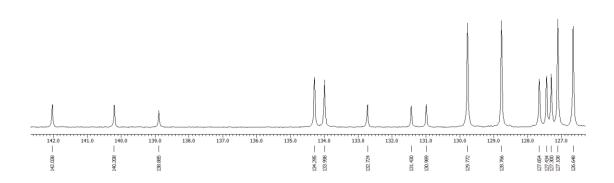


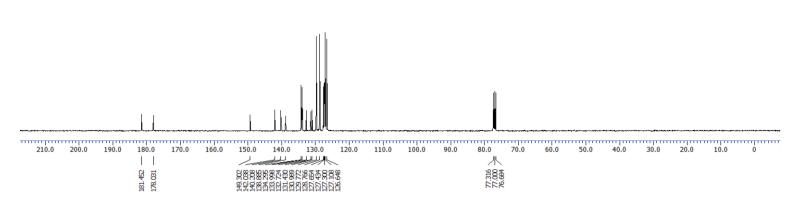
2-bromo-3-(3-bromophenyl)naphthalene-1,4-dione (3p)

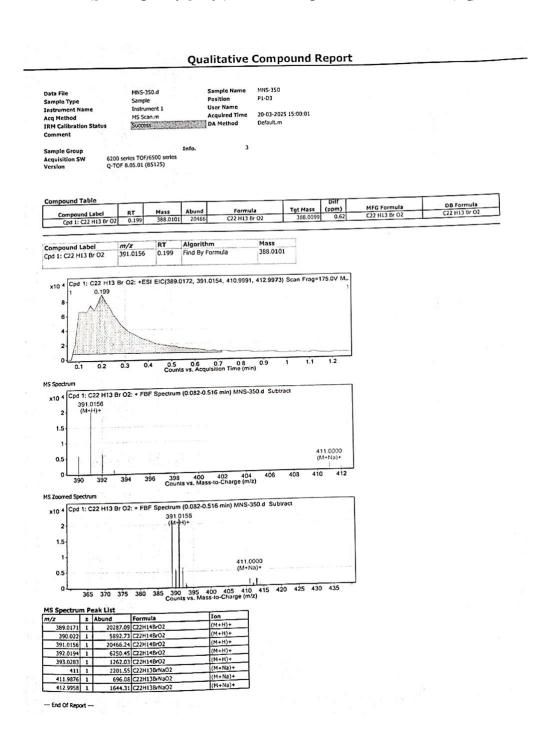


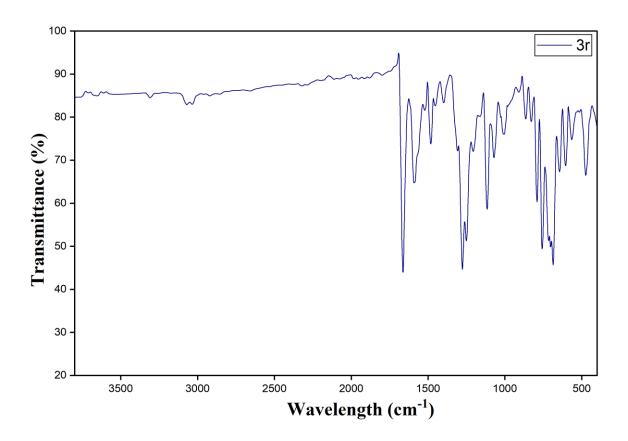

IR Spectra

2-([1,1'-biphenyl]-4-yl)-3-bromonaphthalene-1,4-dione (3q)

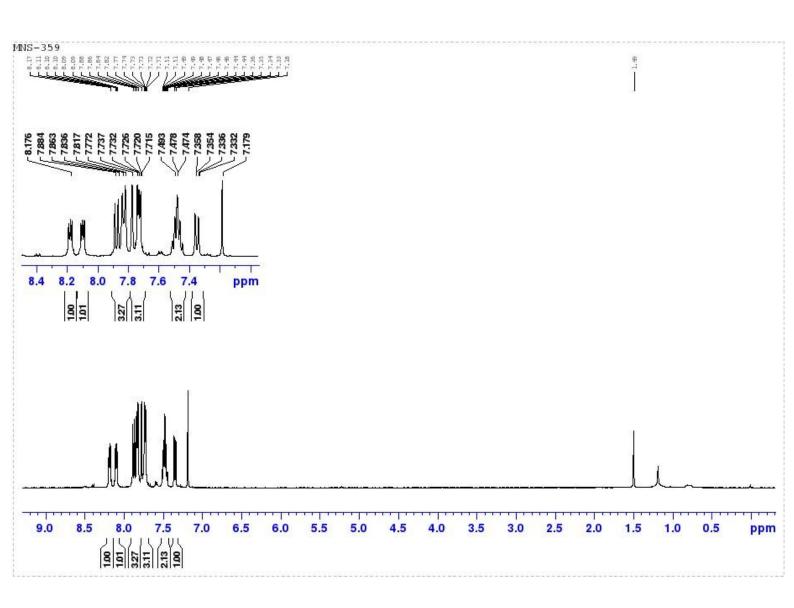



$\hbox{$2$-([1,1'$-biphenyl]$-4-yl)-3-bromonaphthalene-1,4-dione (3q)}$

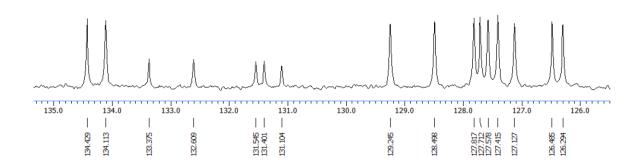

2-([1,1'-biphenyl]-4-yl)-3-bromonaphthalene-1,4-dione (3q)

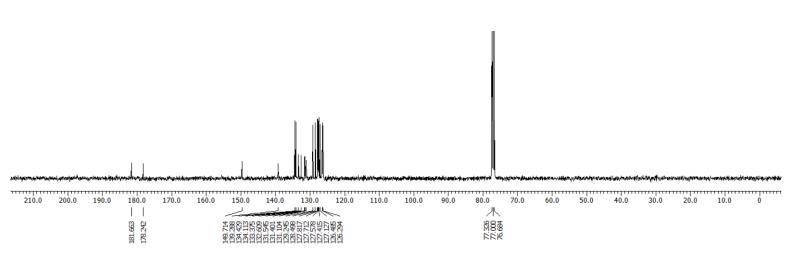

HRMS

2-([1,1'-biphenyl]-4-yl)-3-bromonaphthalene-1,4-dione (3q)

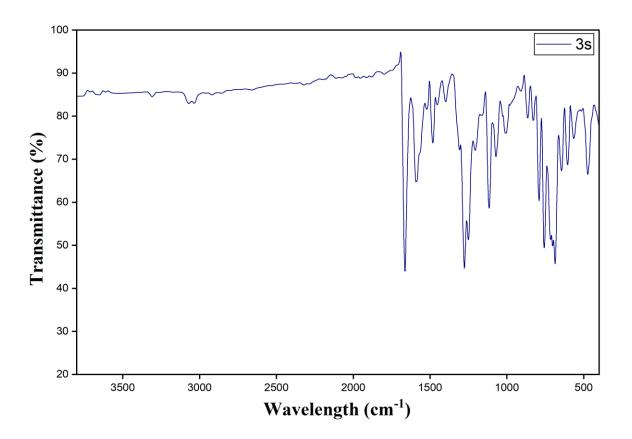

IR Spectra

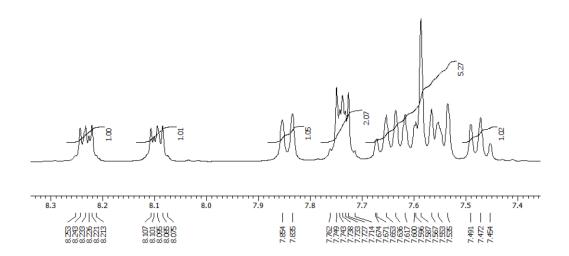
3-bromo-[2,2'-binaphthalene]-1,4-dione (3r)

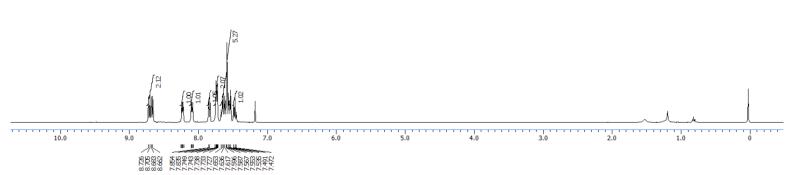



¹H NMR (400 MHz, CDCl₃)

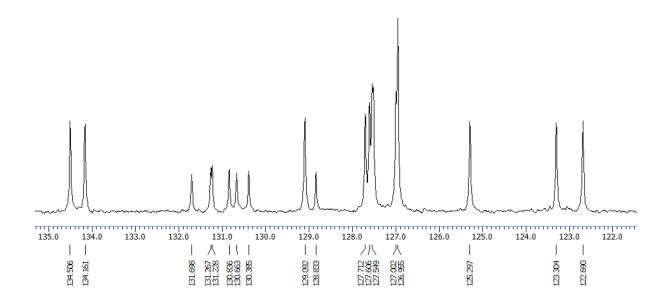
3-bromo-[2,2'-binaphthalene]-1,4-dione (3r)

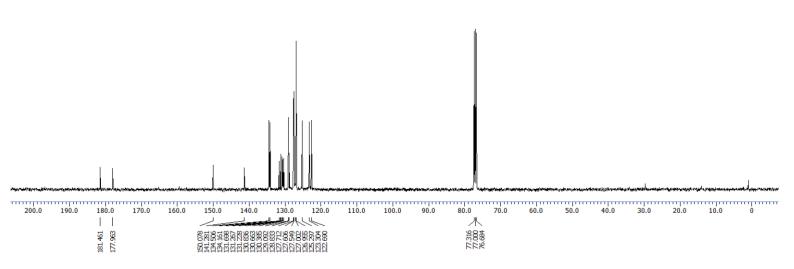

3-bromo-[2,2'-binaphthalene]-1,4-dione (3r)




IR Spectra

2-bromo-3-(phenanthren-9-yl)naphthalene-1,4-dione (3s)




2-bromo-3-(phenanthren-9-yl)naphthalene-1,4-dione (3s)

2-bromo-3-(phenanthren-9-yl)naphthalene-1,4-dione (3s)

HRMS

2-bromo-3-(phenanthren-9-yl)naphthalene-1,4-dione (3s)

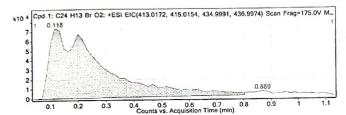
Qualitative Compound Report

 Data File
 MNS-353.d
 Sample Name
 MNS-353.d
 P1-08

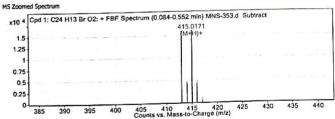
 Sample Type
 Sample
 Position
 P1-08

 Instrument Name
 Instrument 1
 User Name

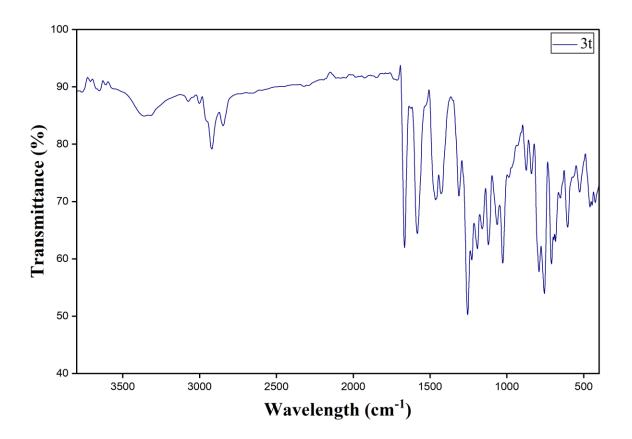
 Acq Method
 MS Scan.m
 Acquired Time
 08-03-2025 12:42:04


 IRM Calibration Status
 Success
 DA Method
 Default.m

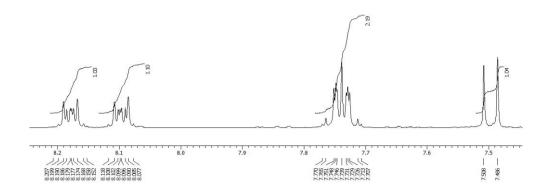
 Comment
 Sample Group
 Info.
 3

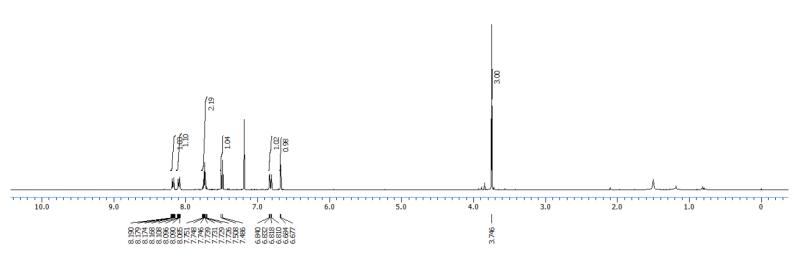

 Acquisition SW
 6200 series TOF/6500 series
 F1 F0.50.01 (BS125)

Compound Table					,	Diff		
	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
Compound Label							C24 H13 Br O2	C24 H13 Br O2
Cod 1: C24 H13 Br O2	0.118	412.0113	15412	C24 H13 Br O2	412.0099	3,34	CZ TITTS OF GE	

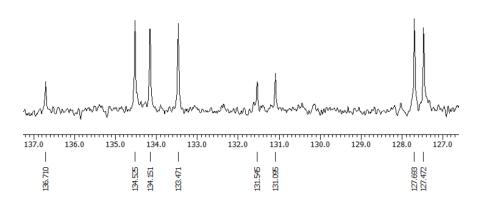


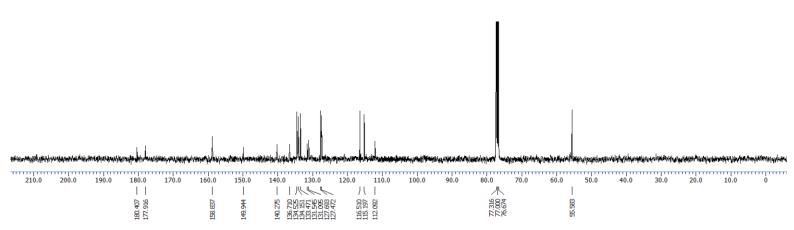
MS Spectrum Peak List							
m/z	z	Abund	Formula	Ion			
413.0184	1	14907.75	C24H14BrO2	(M+H)+			
414.0217		4704.23	C24H14BrO2	(M+H)+			
415.0171			C24H14BrO2	(M+H)+			
416.0192			C24H14BrO2	(M+H)+			
417.025			C24H14BrO2	(M+II)+			

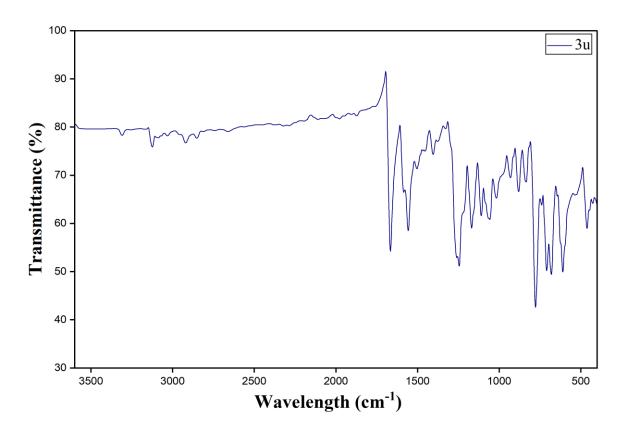

--- End Of Report ---

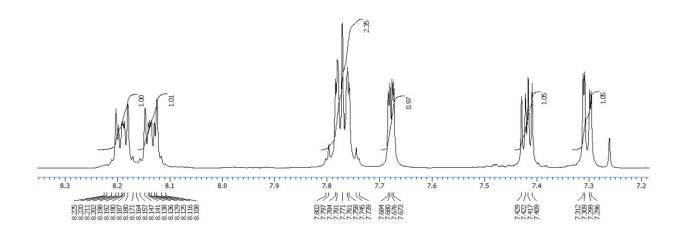

IR Spectra

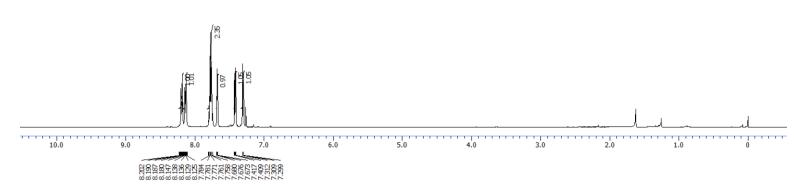
2-bromo-3-(2-bromo-4-methoxyphenyl)naphthalene-1,4-dione (3t)



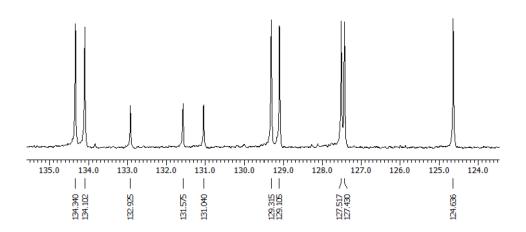

2-bromo-3-(2-bromo-4-methoxyphenyl)naphthalene-1,4-dione (3t)

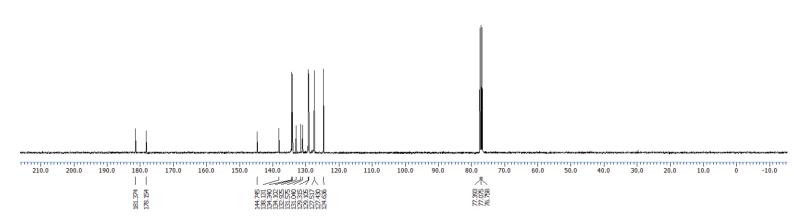

2-bromo-3-(2-bromo-4-methoxyphenyl)naphthalene-1,4-dione (3t)




IR Spectra

2-bromo-3-(thiophen-2-yl)naphthalene-1,4-dione (3u)




2-bromo-3-(thiophen-2-yl)naphthalene-1,4-dione (3u)

2-bromo-3-(thiophen-2-yl)naphthalene-1,4-dione (3u)

2-bromo-3-(thiophen-2-yl)naphthalene-1,4-dione (3u)

Qualitative Compound Report

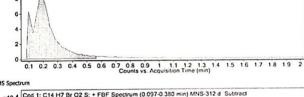
Data File Sample Type Instrument Name Acq Method IRM Calibration Status Comment

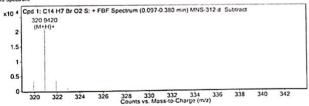
Compound Label Cpd 1: C14 H7 Br O2 S

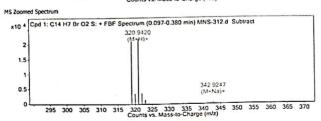
MNS-312.d Sample Instrument 1 MS Scan.m Sample Name Position User Name Acquired Time DA Method

MNS-312 P1-A9

11-06-2024 13:20:27 Default.m Success

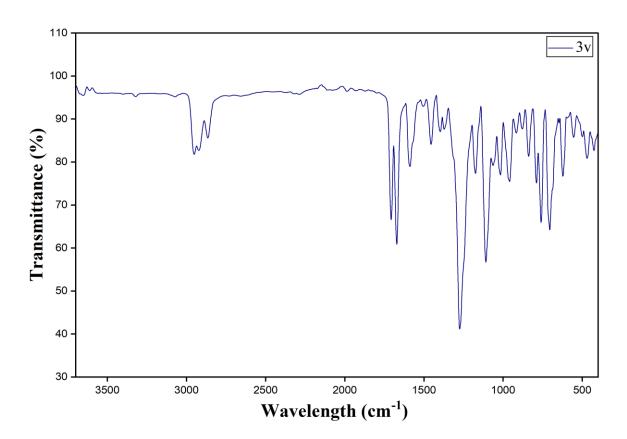

Sample Group Acquisition SW Version


6200 series TOF/6500 series Q-TOF B.05.01 (B5125)

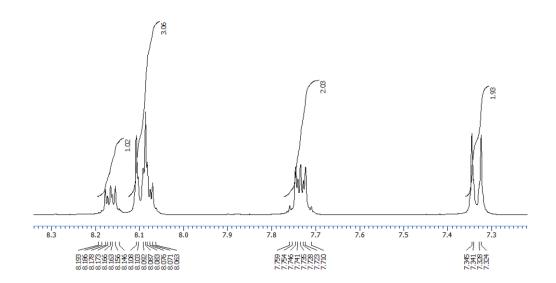

m/z 320.942

mpound Table					W			
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
Cod 1: C14 H7 Br O2 S	0.18	317.9368	21647	C14 H7 Br O2 S	317.935	5.7	C14 H7 Br O2 S	C14 H7 Br O2 S
Cpg 1: C14 H/ bi O2 3	0.10	317.7300	21017	CITIO D. OLD	31550			

x10 4 Cpd 1: C14 H7 Br O2 S: +ESI EIC(318.9423, 320.9403, 340.9242, 342.9222) Scan Frag=175.0V_

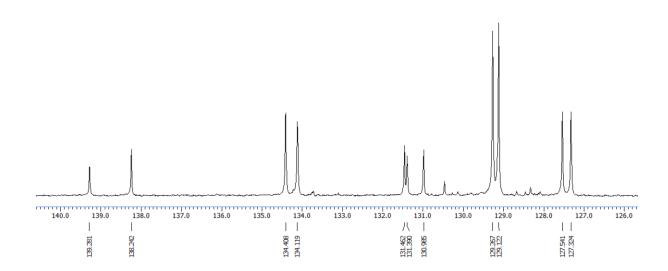


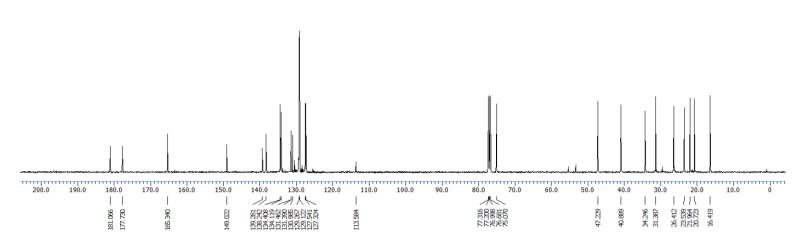
m/z	z	Abund	Formula	Ion
318.9441	1	21016.16	C14HSBrO2S	(M+H)+
319.9473	1	3464.53	C14H8BrO2S	(M+H)+
320.942	1	21647.11	C14H8BrO25	(M+H)+
321.9456	1	3515.03	C14H8BrO2S	(M+H)+
322.941	1	1209.5	C14H88rO25	(M+H)+
323.9454	1	140.54	C14H8BrO2S	(M+H)+
342.9247	1	333.55	C14H7BrNaO2S	(M+Na)+
343.9211	1	62.64	C14H7BrNaO25	+(6N+M)

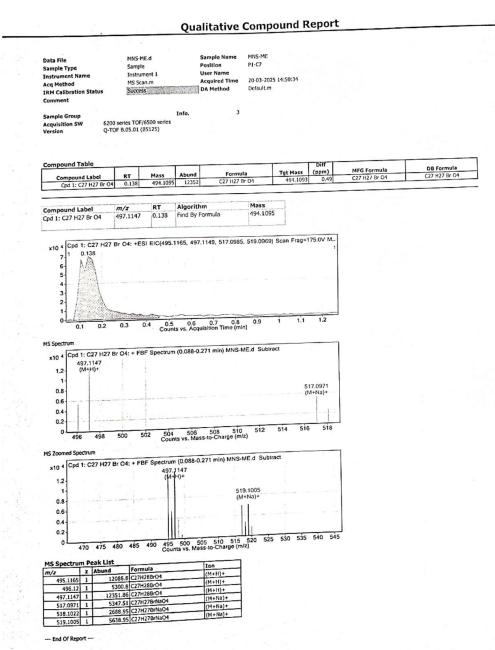

--- End Of Report ---

IR Spectra

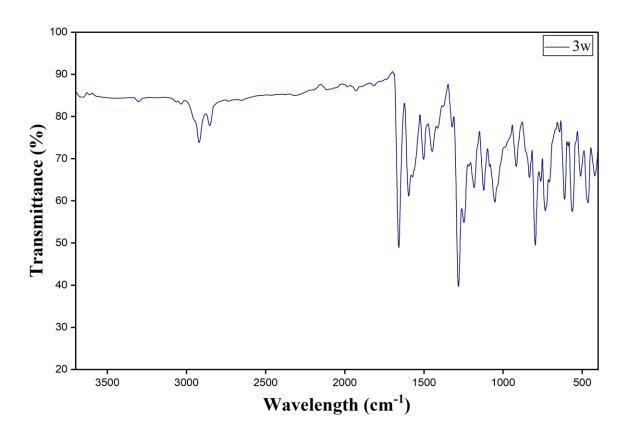
2-isopropyl-5-methylcyclohexyl 4-(3-bromo-1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzoate (3v)

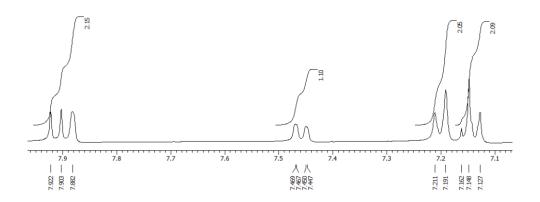


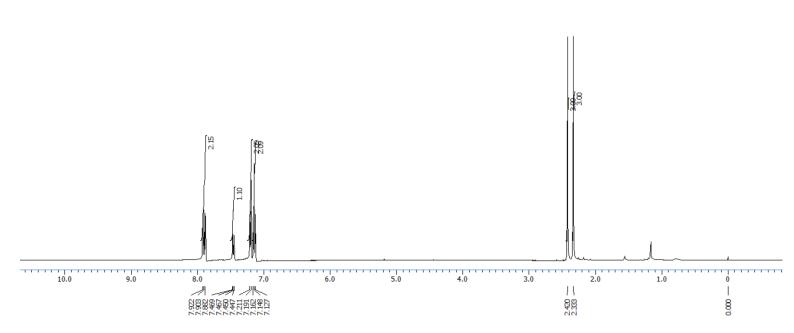

2-isopropyl-5-methylcyclohexyl 4-(3-bromo-1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzoate (3v)

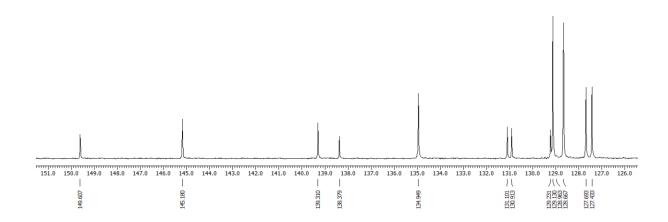


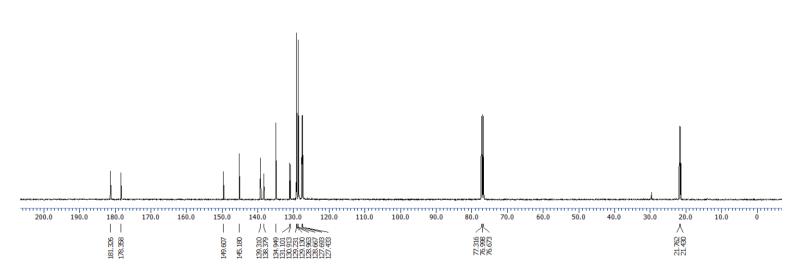
2-isopropyl-5-methylcyclohexyl 4-(3-bromo-1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzoate (3v)

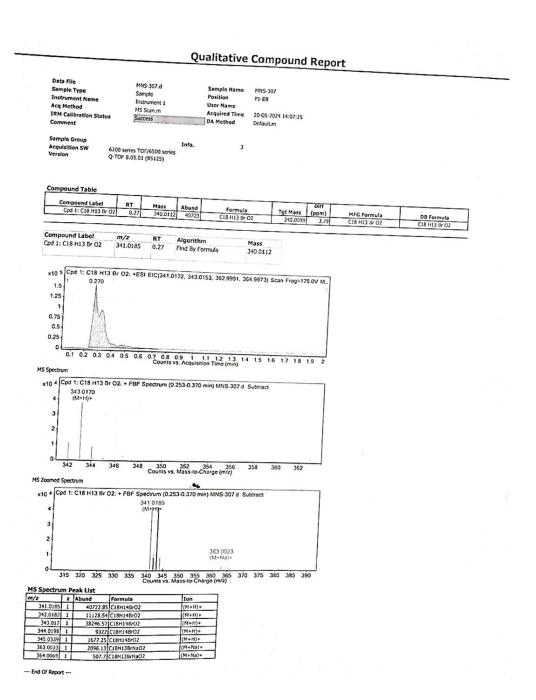


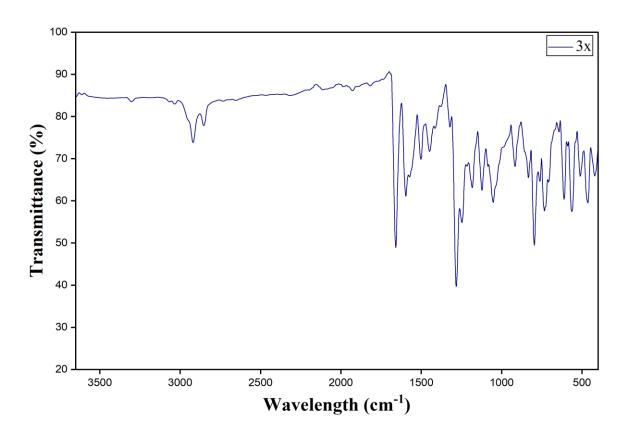


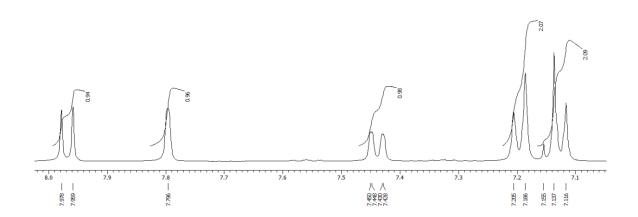

2-isopropyl-5-methylcyclohexyl 4-(3-bromo-1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzoate (3v)

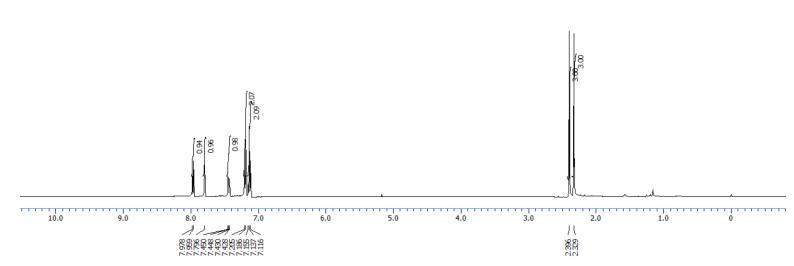


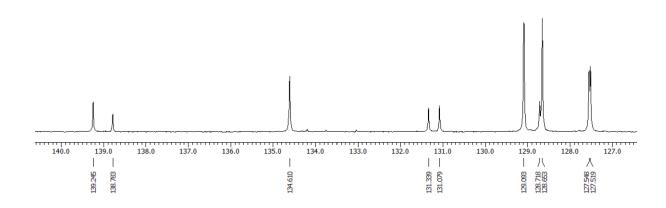

IR Spectra

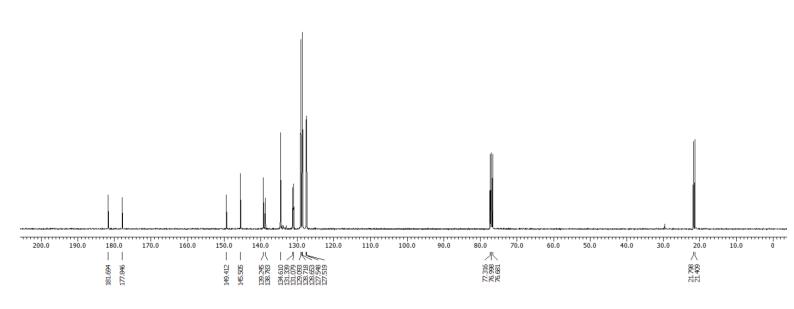









IR Spectra


3-bromo-7-methyl-2-(p-tolyl)naphthalene-1,4-dione (3x)

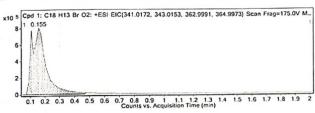
3-bromo-7-methyl-2-(p-tolyl)naphthalene-1,4-dione (3x)

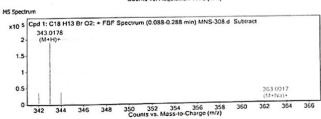
Qualitative Compound Report

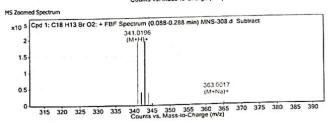
Data File Sample Type Instrument Name Acq Method IRM Calibration S

MNS-308.d Sample Instrument I MS Scan.m Success Sample Name Position User Name Acquired Time DA Method

MNS-308 P1-B2

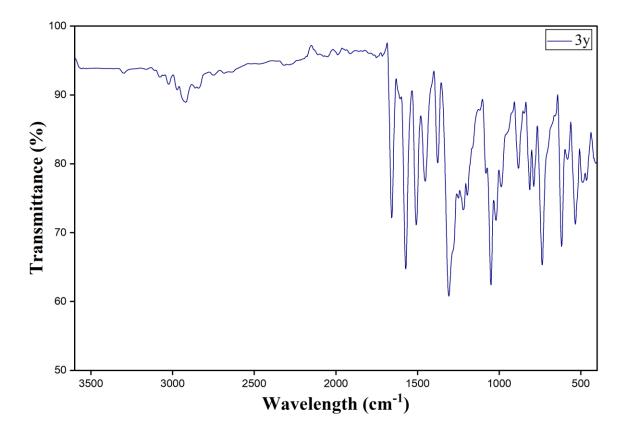

11-06-2024 13:24:12

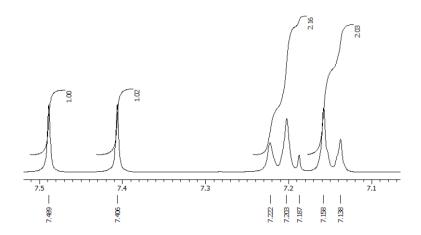

Sample Group Acquisition SW Version

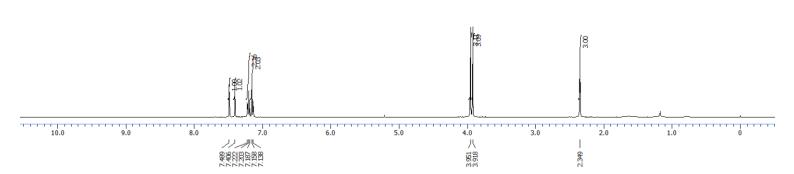

6200 series TOF/6500 series Q-TOF B.05.01 (B5125)

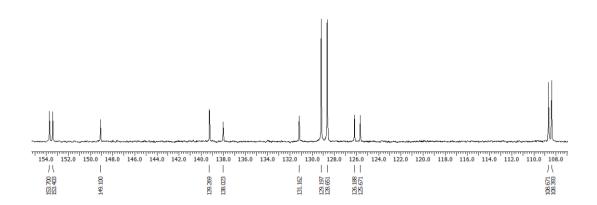
mpound Table								
Compound Label	RT	Mass	Abund	Formula	Tot Mass	(ppm)	MFG Formula	DB Formula
					340.0099		C18 H13 Br O2	C18 H13 Br O2
Cpd 1: C18 H13 Br O2	0.155	340.0123	198976	C18 H13 Br O2	340.0099	7.17	CIOTITA DI GE	

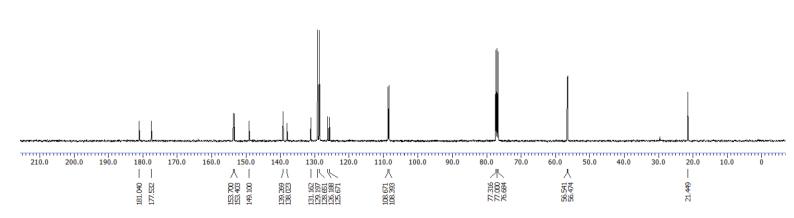
Compound Label Cpd 1: C18 H13 Br O2 Algorithm Find By Formula Mass 340.0123 m/z 341.0196 RT 0.155






m/z	z	Abund	Formula	Ion
341.0196	1	198975.84	C18H14BrO2	(M+H)+
342.0229	1		C18H14BrO2	(M+H)+
343.0178	1	192492.22	C18H14BrO2	(M+H)+
344.0209	1	35392.73	C18H14BrO2	(M+H)+
345.0239	1	4378.64	C18H14BrO2	(M+H)+
346.0271	1	309.46	C18H14BrO2	(M+H)+
363.0017	1	3811.13	C18H13BrNaO2	*(6N+M)
364.0053			C18H13BrNaO2	+(6N+M)
364,9998	_		C18H13BrNaO2	+(6N+M)
366,0032			C18H13BrNaO2	+(6N+M)


--- End Of Report ---


IR Spectra

2-bromo-6,7-dimethoxy-3-(p-tolyl)naphthalene-1,4-dione (3y)

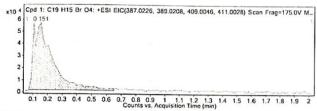
Qualitative Compound Report

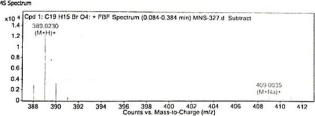
Data File Sample Type Instrument Name Acq Method IRM Calibration Status

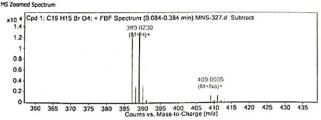
MNS-376.d Sample Instrument 1 MS Scan.m Success

Sample Name Position User Name Acquired Time DA Method

P1-A1 HP-PC\Admin 31-01-2025 15:14:10 Default.m

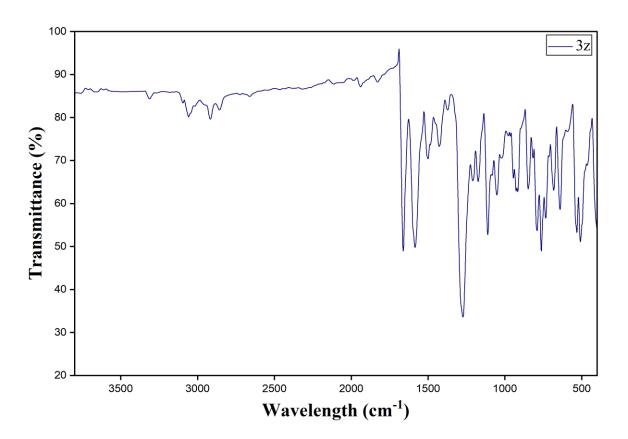

Sample Group Acquisition SW Version

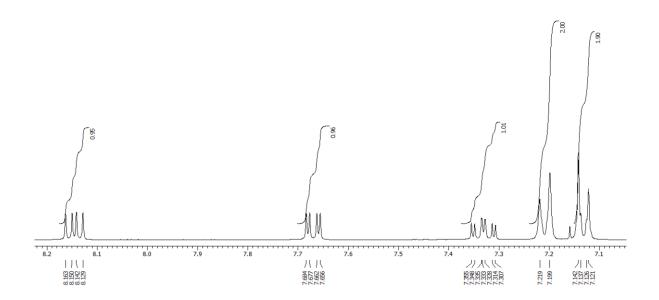

6200 series TOF/6500 series Q-TOF B.05.01 (B5125)

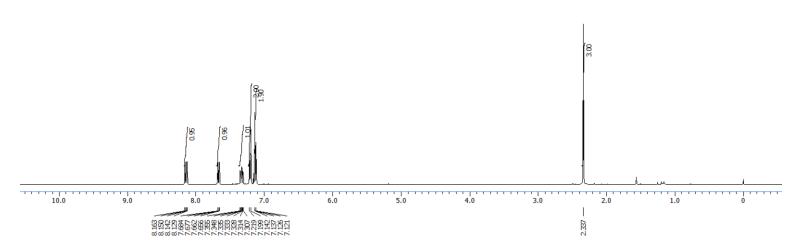

Compound Table

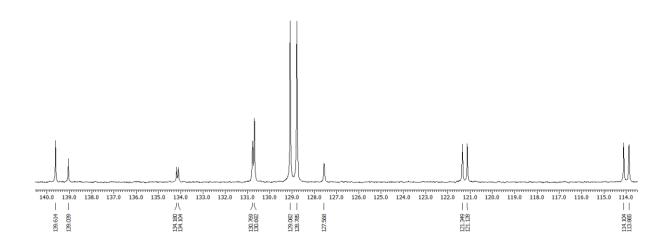
Compound Label	RT	Mass	Abund	Formula	Tot Mass	(ppm)	MFG Formula	DB Formula
Cpd 1: C19 H15 Br O4	0.151	386.0183	12551	C19 H15 Br O4	386.0154			C19 H15 Br Q4

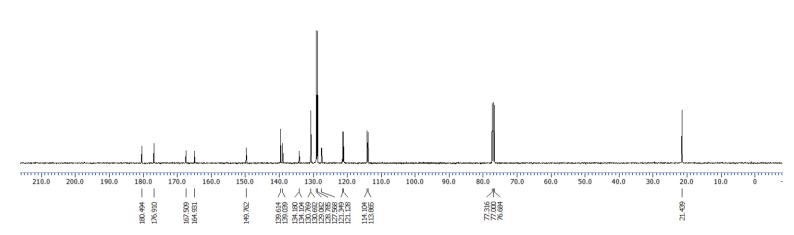
Compound Label m/z 389.023 Algorithm Find By Formula Mass 386.0183 0.151

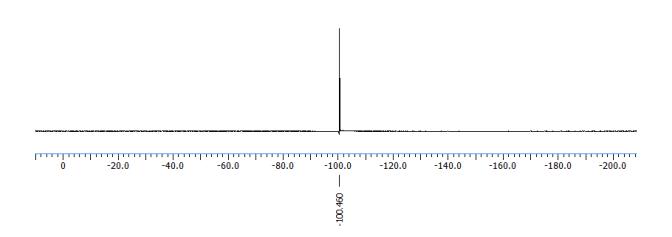


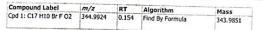

MS Spectrum Peak List

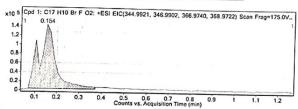

m/z	2	Abund	Formula	Ion
387.0252	1	12527.12	C19H16BrO4	(M+H)+
388.0291	1	3009.38	C19H16BrO4	(M+H)+
389.023	1	12550.58	C19H16BrO4	(M+H)+
390.0277	1	3206.66	C19H16BrO4	(M+H)+
391.0329	1	569.2	C19H16BrO4	(M+H)+
409.0035	1	914.87	C19H15BrNaO4	(M+Na)+
410.0098	1	224.33	C19H15BrNaO4	(M+Na)+
411.01	1	898.98	C19H15BrNaO4	(M+Na)+
412.0176	1	239.31	C19H15BrNaO4	(M+Na)+
413.025	1		C19H15BrNaO4	(M+Na)+

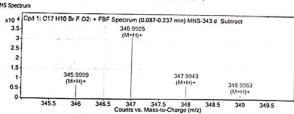

--- End Of Report ---

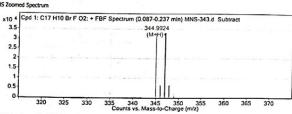

IR Spectra




2-bromo-6-fluoro-3-(p-tolyl)naphthalene-1,4-dione (3z)


Qualitative Compound Report

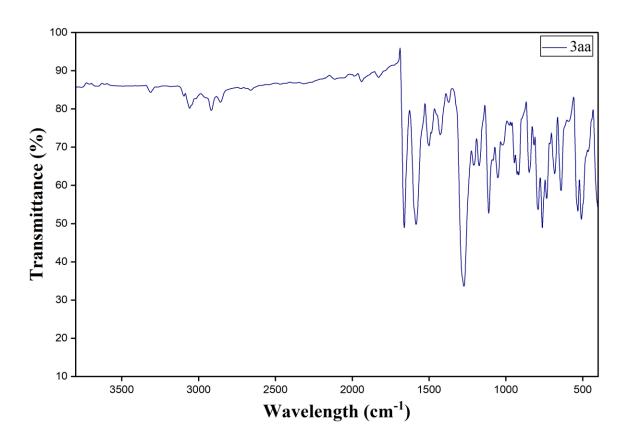

Data File Sample Type Instrument Name Acq Method IRM Calibration Status Comment Sample Name Position User Name Acquired Time DA Method MNS-343 P1-C9 Sample Instrument 1 MS Scan.m Success 20-03-2025 14:53:37 Sample Group Acquisition SW Version 6200 series TOF/6500 series Q-TOF B.05.01 (B5125)


Compound Table

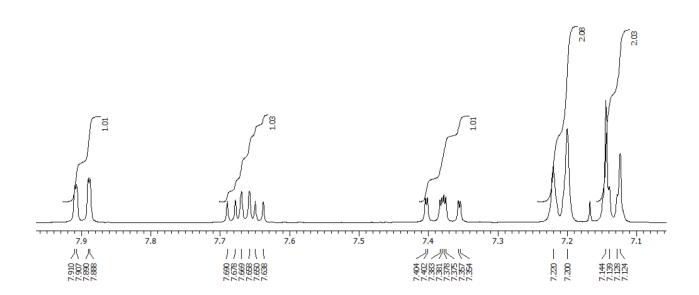
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
Cpd 1: C17 H10 Br F O2 0	0.154	343.9851	32198	C17 H10 Br F O2	343.9848	0.91	C17 H10 Br F O2	C17 H10 Br F O2

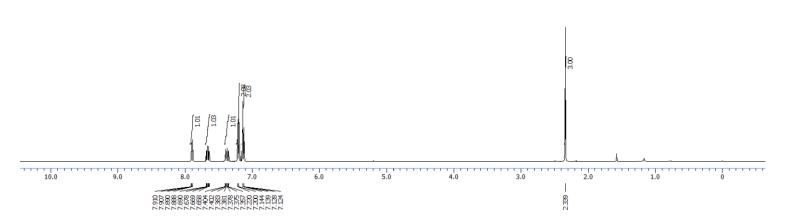
MS Spectrum Peak List									
m/z	z	Abund	Formula	Ion					
344.9924	1	32197.95	C17H11BrFO2	(M+H)+					
345.9959	1	6764.91	C17H11BrFO2	(M+H)+					
346.9905	1	31816.02	C17H11BrF02	(M+H)+					
347.9943	1	6577.36	C17H11BrFO2	(M+H)+					
348.9963	1	2117.14	C17H11BrFO2	(M+H)+					
349.9919	1		C17H118rF02	(M+H)+					

- End Of Report ---

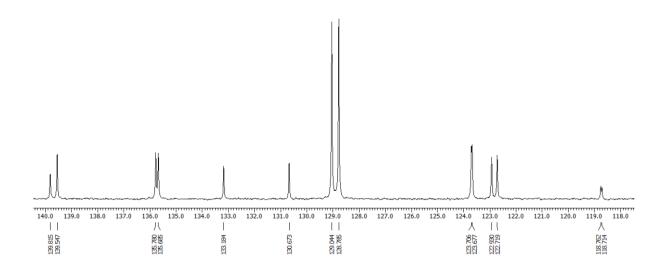

Agilent Technologies

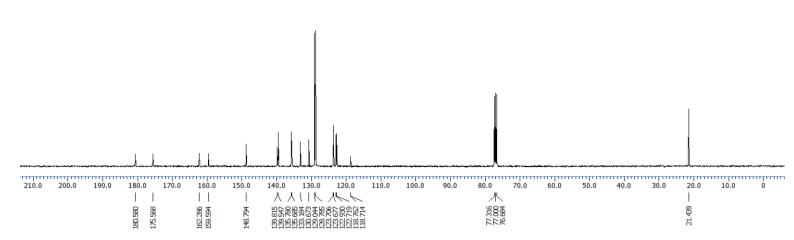
Page 1 of 1

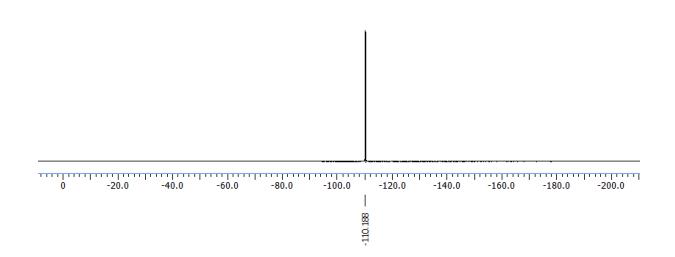

Printed at: 15:18 on:20-03-2025


IR Spectra

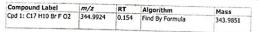
3-bromo-5-fluoro-2-(p-tolyl)naphthalene-1,4-dione (3aa)

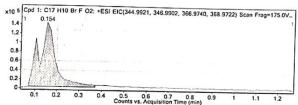


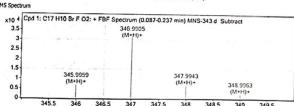

3-bromo-5-fluoro-2-(p-tolyl)naphthalene-1,4-dione (3aa)

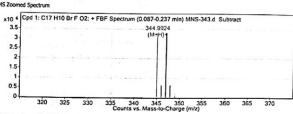


3-bromo-5-fluoro-2-(p-tolyl)naphthalene-1,4-dione (3aa)


3-bromo-5-fluoro-2-(p-tolyl)naphthalene-1,4-dione (3aa)


Qualitative Compound Report

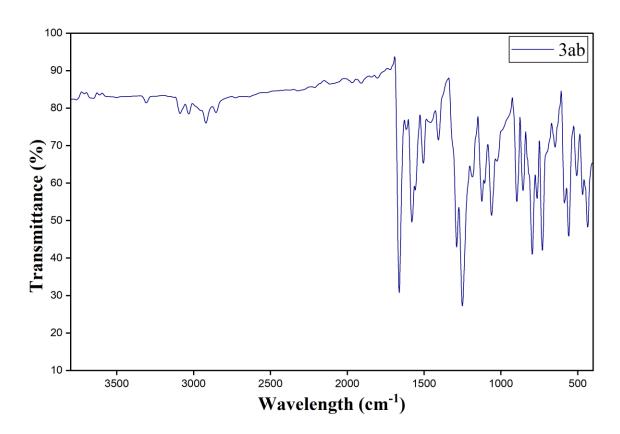

Data File Sample Type Instrument Name Acq Method IRM Calibration Status Comment Sample Name Position User Name Acquired Time DA Method MNS-343 P1-C9 Sample Instrument 1 MS Scan.m Success 20-03-2025 14:53:37 Sample Group Acquisition SW Version 6200 series TOF/6500 series Q-TOF B.05.01 (B5125)

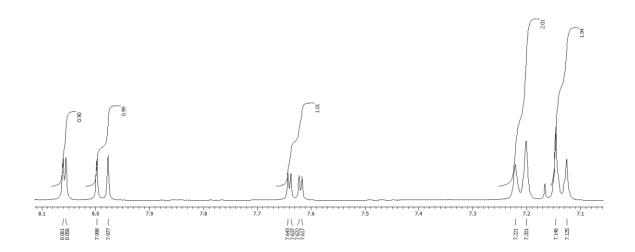

Compound Table

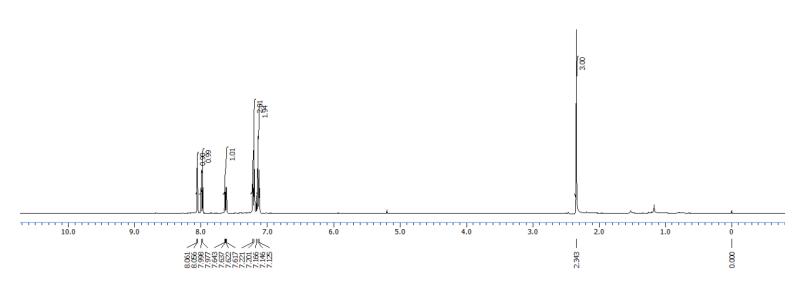
Cod 1: C17 H10 Pr F C2	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
Cpd 1: C17 H10 Br F O2	0.154	343.9851	32198	C17 H10 Br F O2	343.9848		C17 H10 Br F O2	C17 H10 Br F O2

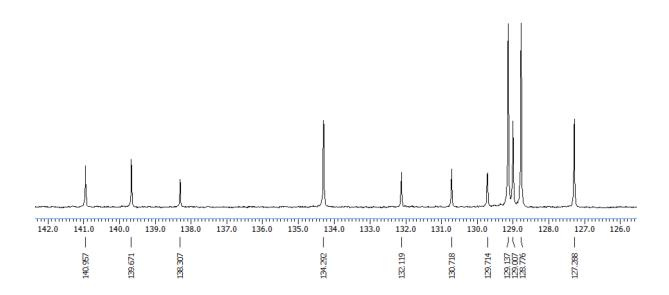
m/z	Z	Abund	Formula	Ion
344.9924	1	32197.95	C17H11BrFO2	(M+H)+
345.9959	1	6764.91	C17H11BrFO2	(M+H)+
346.9905	1	31816.02	C17H11BrF02	(M+H)+
347.9943	1	6577.36	C17H11BrFO2	(M+H)+
348.9963	1	2117.14	C17H11BrFO2	(M+H)+
349.9919	1	78.84	C17HL1BrFO2	(M+H)+

- End Of Report ---

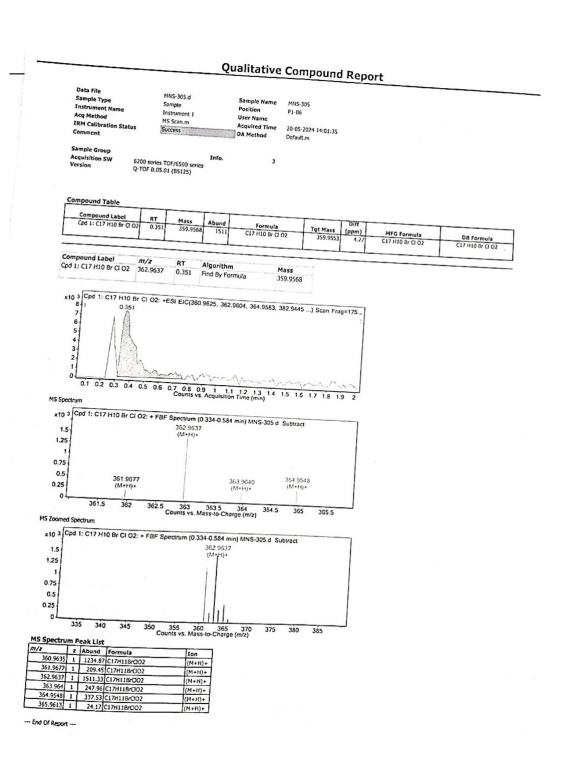

Agilent Technologies

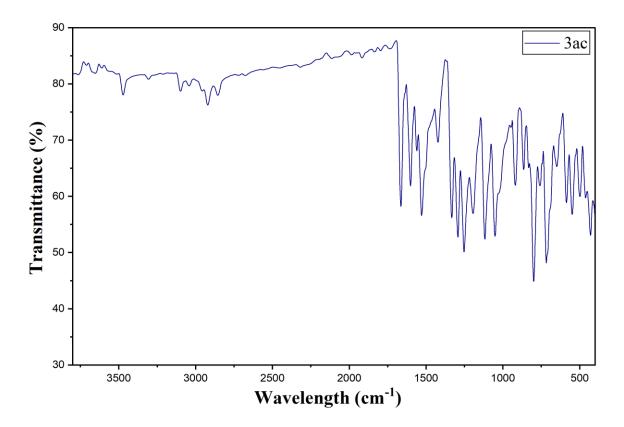

Page 1 of 1

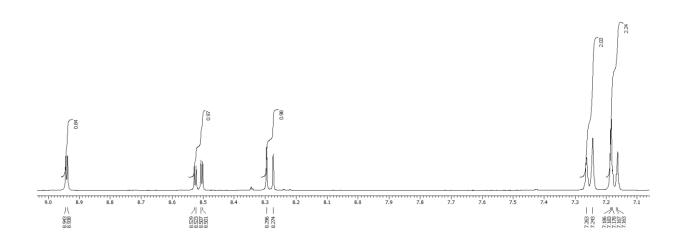

Printed at: 15:18 on:20-03-2025

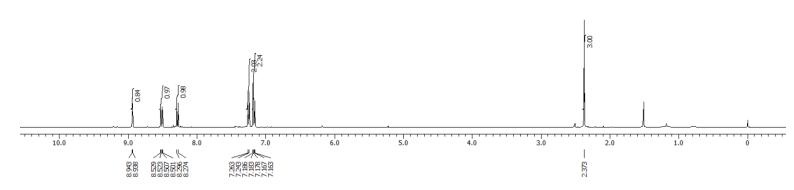

IR Spectra

3-bromo-6-chloro-2-(p-tolyl)naphthalene-1,4-dione (3ab)

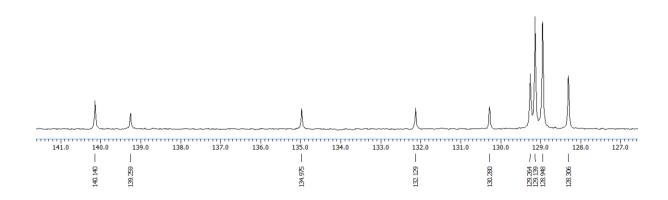


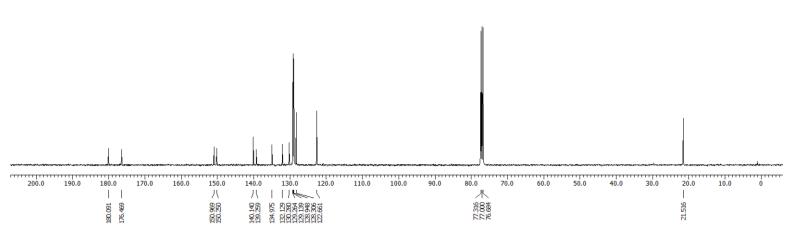





IR Spectra

3-bromo-6-nitro-2-(p-tolyl)naphthalene-1,4-dione (3ac)




3-bromo-6-nitro-2-(p-tolyl)naphthalene-1,4-dione (3ac)

3-bromo-6-nitro-2-(p-tolyl)naphthalene-1,4-dione (3ac)

$$O_2N$$
 O
 Br
 O
 Me

3-bromo-6-nitro-2-(p-tolyl)naphthalene-1,4-dione (3ac)

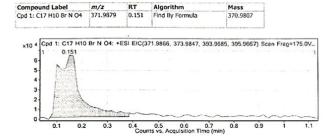
Qualitative Compound Report

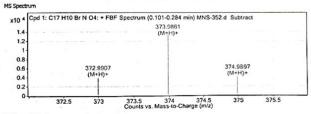
 Data File
 MNS-352.d
 Sample Name
 MNS-352

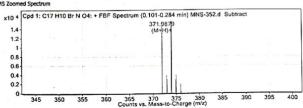
 Sample Type
 Sample
 Position
 P1-89

 Instrument Name
 Instrument 1
 User Name

 Acq Method
 MS Scan.m
 Acquired Time
 08-03-205 12:45:09


 IRN Calibration Status
 Soccess
 DA Method
 Default.m

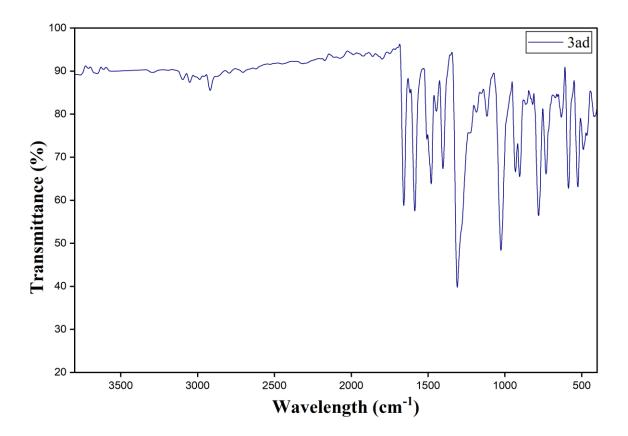

 Sample Group
 Info.


 Acquisition SW
 6200 series TOF/6500 series

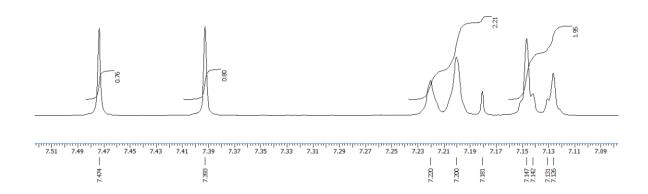
 Version
 Q-TOF B.0S.01 (B5125)

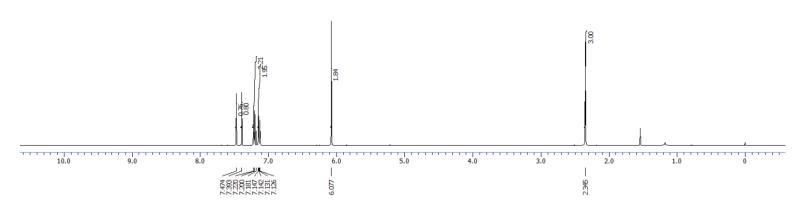
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
Cpd 1: C17 H10 Br N O4	0.151	370.9807	13881	C17 H10 Br N O4	370.9793	3.77	C17 H10 Br N O4	C17 H10 Br N O4

m/z	2	Abund	Formula	Ion
371.9879	1	13881.47	C17H11BrNO4	(f4+H)+
372.9907	1	3959.85	C17H11BrNO4	(M+H)+
373.9861	1	13668.22	C17H11BrNO4	(M+H)+
374,9897	1	4041.41	C17H11BrNO4	(M+H)+
375.9928	1	2034.66	C17H11BrNO4	(M+H)+

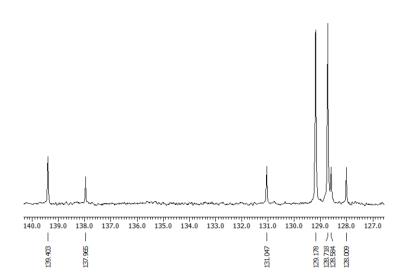

--- End Of Report ---

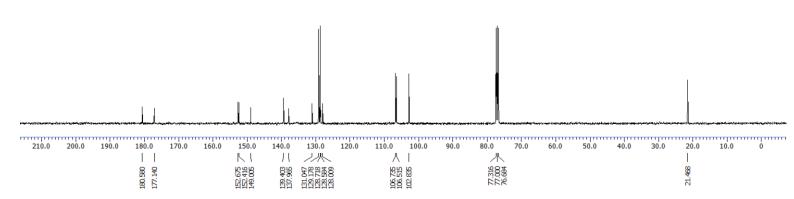
Page 1 of 1

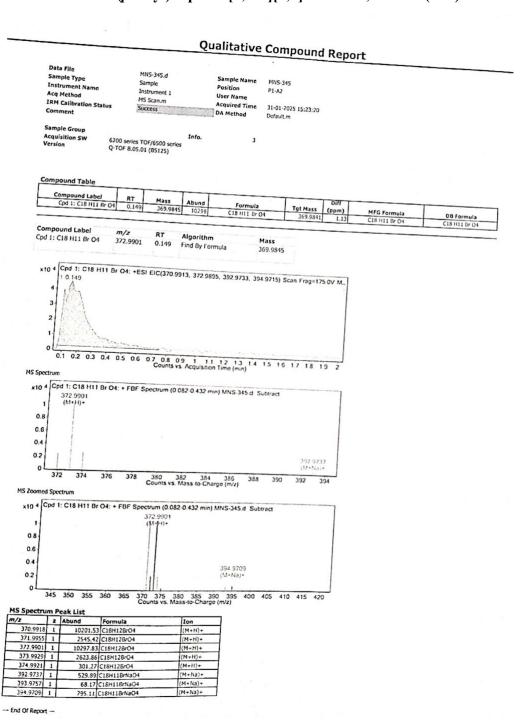

Printed at: 12:55 on:08-03-2025


IR Spectra

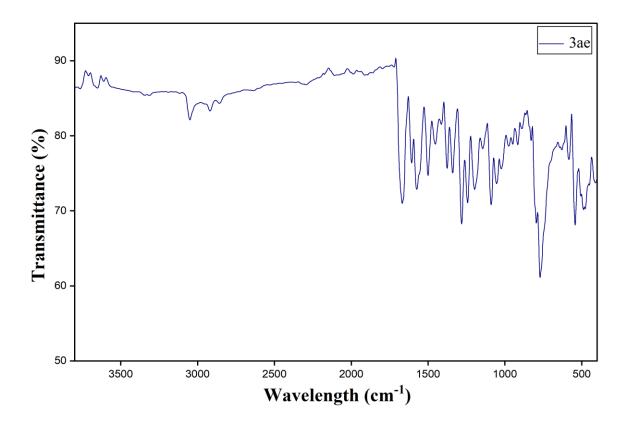
6-bromo-7-(p-tolyl)naphtho[2,3-d][1,3]dioxole-5,8-dione (3ad)



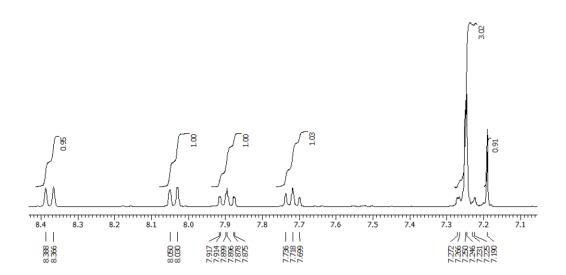

6-bromo-7-(p-tolyl)naphtho[2,3-d][1,3]dioxole-5,8-dione (3ad)

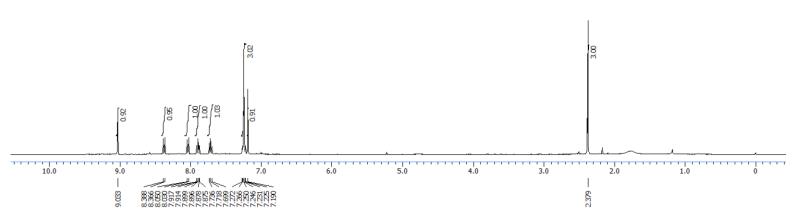


6-bromo-7-(p-tolyl)naphtho[2,3-d][1,3]dioxole-5,8-dione (3ad)

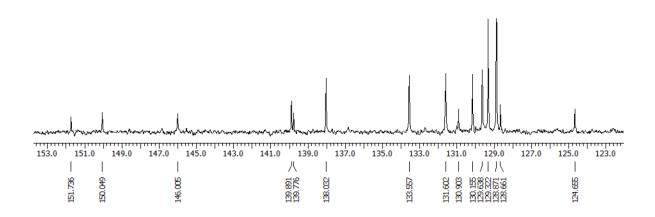


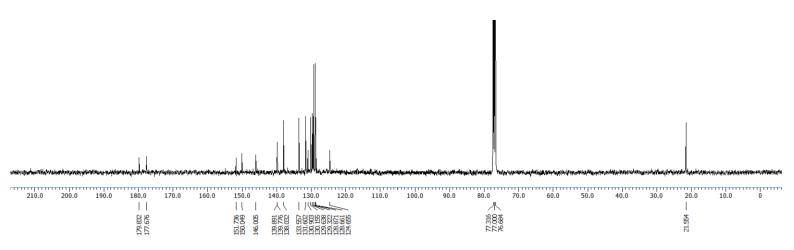
6-bromo-7-(p-tolyl)naphtho[2,3-d][1,3]dioxole-5,8-dione (3ad)

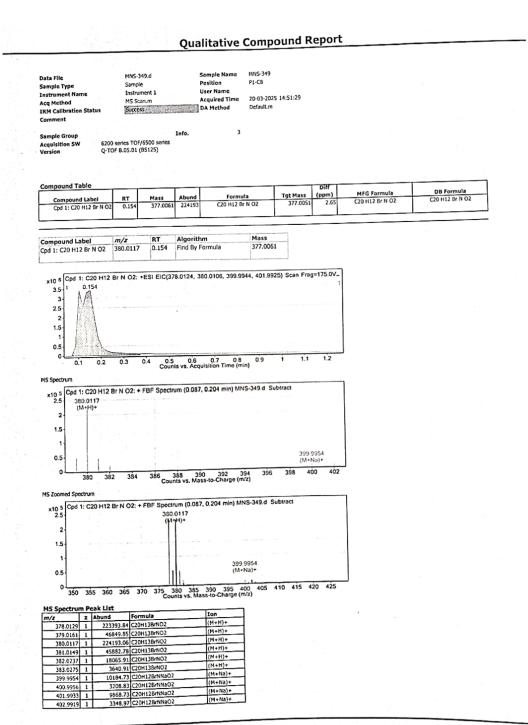



IR Spectra

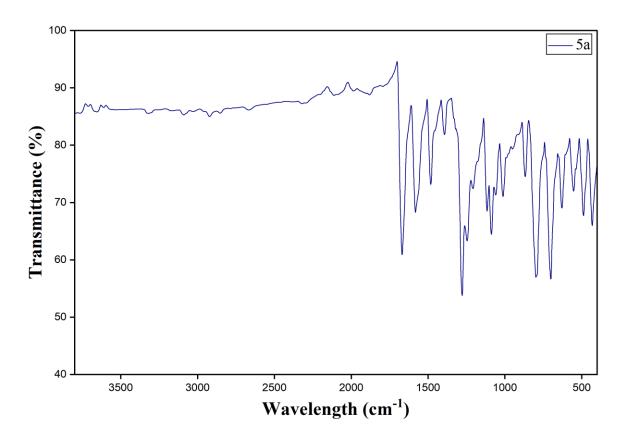
2-bromo-3-(p-tolyl)acridine-1,4-dione (3ae)

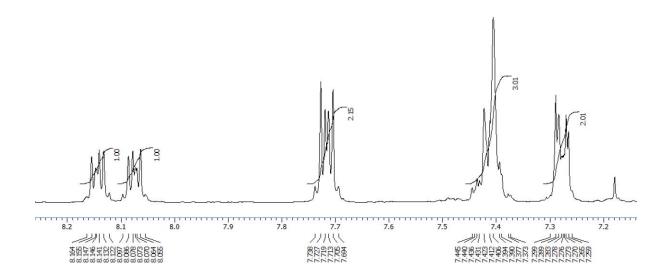


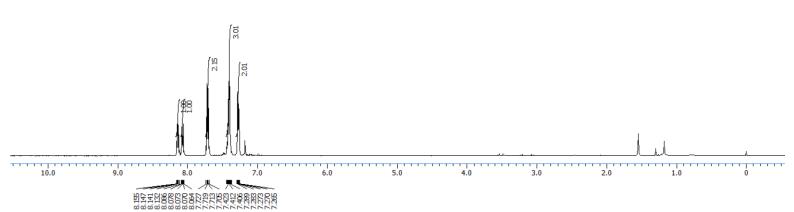

2-bromo-3-(p-tolyl)acridine-1,4-dione (3ae)

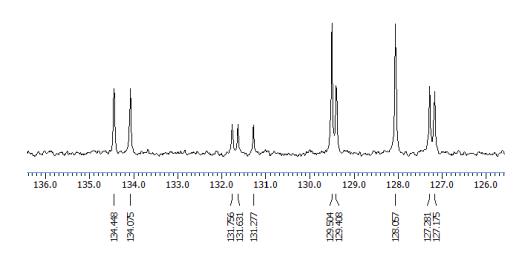


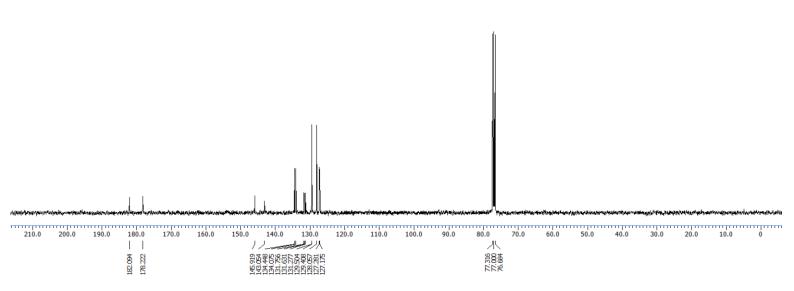
2-bromo-3-(p-tolyl)acridine-1,4-dione (3ae)

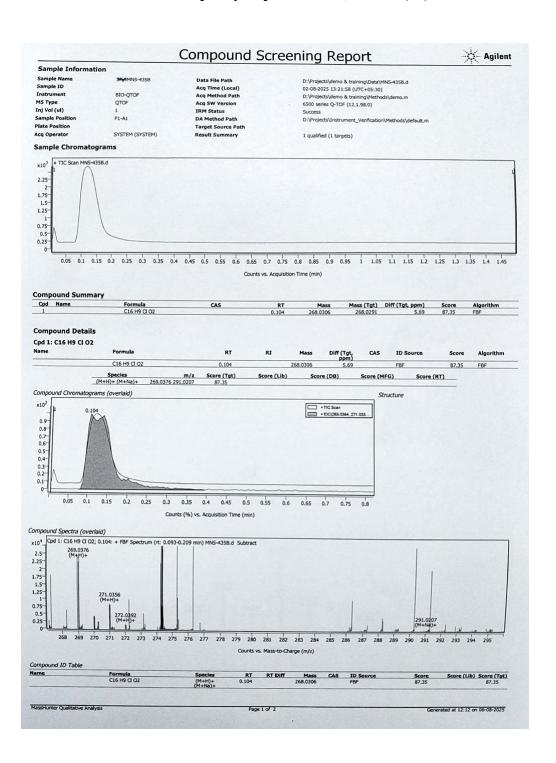


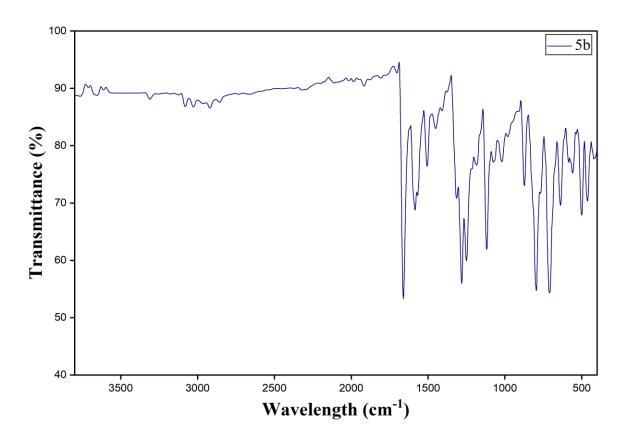


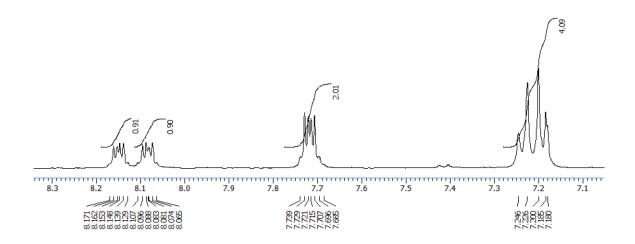

2-bromo-3-(p-tolyl)acridine-1,4-dione (3ae)

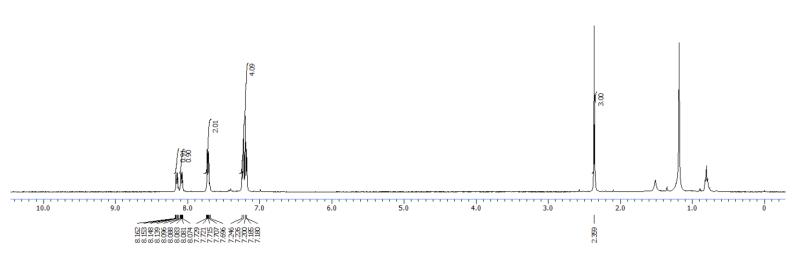



IR Spectra

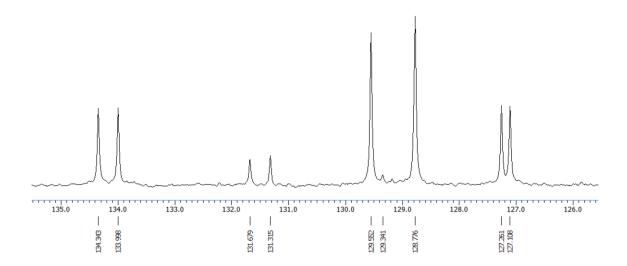


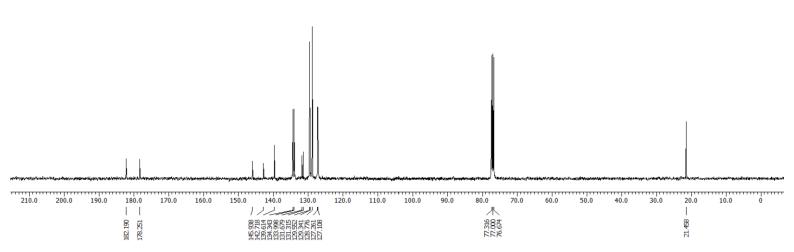




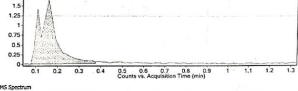

IR Spectra

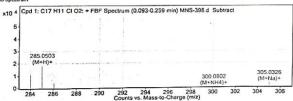
2-chloro-3-(p-tolyl)naphthalene-1,4-dione (5b).

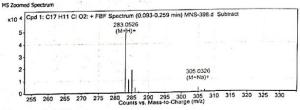



2-chloro-3-(p-tolyl)naphthalene-1,4-dione (5b).

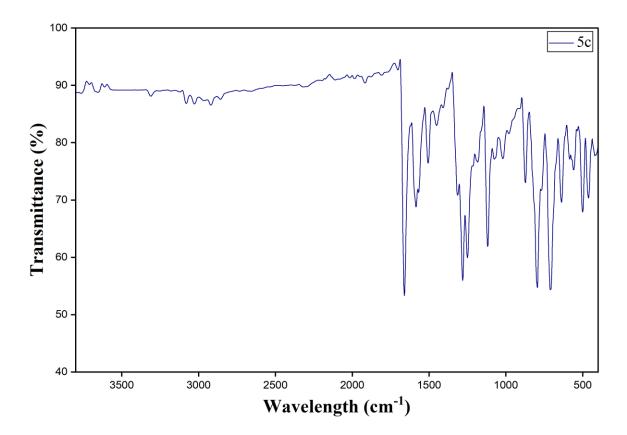
2-chloro-3-(p-tolyl)naphthalene-1,4-dione (5b).



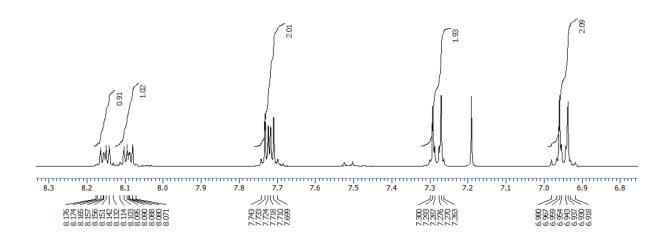

2-chloro-3-(p-tolyl)naphthalene-1,4-dione (5b).


Qualitative Compound Report

Data File Sample Type Instrument Name Acq Method IRM Calibration Status MNS-398.d MNS-398 P1-03 Sample Instrument I MS Scan.m User Name Acquired Time DA Method 20-05-2025 13:06:17 Success 6200 series TOF/6500 series Q-TOF B.05.01 (B5125) Compound Table

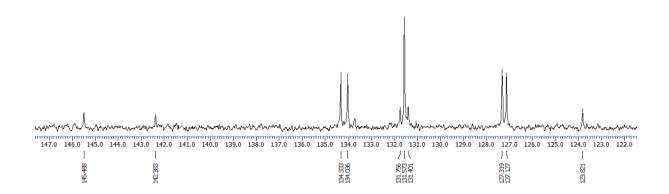

m/z	2	Abund	Formula	Ion
283,0526	1	50149.84	C17H12ClO2	(M+H)+
284.0565	1	11052.92	C17H12ClO2	(M+H)+
285.0503	1	18559.03	C17H12ClO2	(M+H)+
286.0526	Ť	3790.17	C17H12ClO2	(M+H)+
287.0621	Ť	501.44	C17H12GO2	(M+H)+
300.0802	÷		C17H15CINO2	(M+NH4)+
305.0326	÷		C17H11CINaO2	(M+Na)+
306.0315	÷		C17H11CINaO2	+(6N+M)
307.0333	+		C17H11CINaO2	(M+Na)+

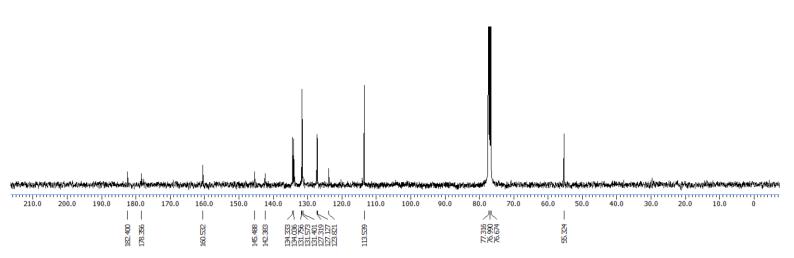
--- End Of Report --

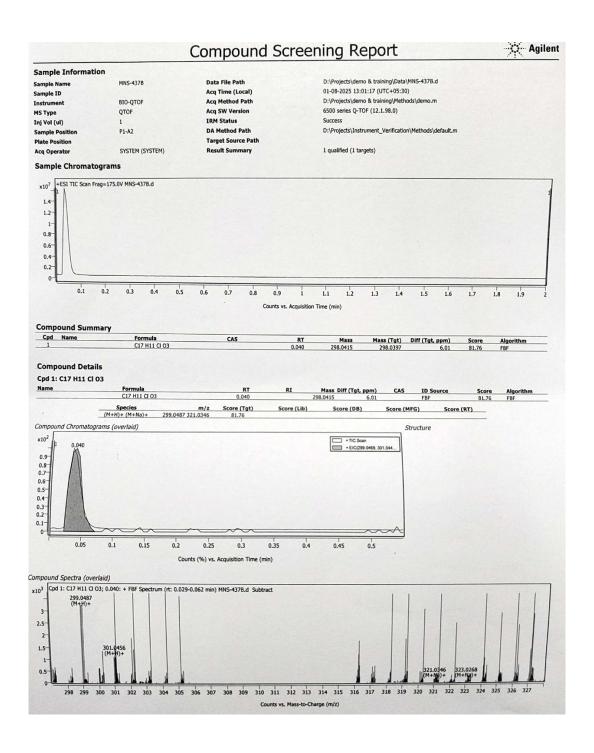

Printed at: 10:54 on:21-05-2025

IR Spectra

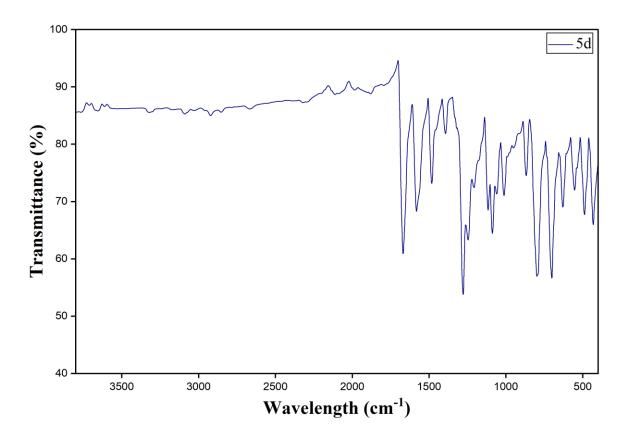
2-chloro-3-(4-methoxyphenyl)naphthalene-1,4-dione (5c).

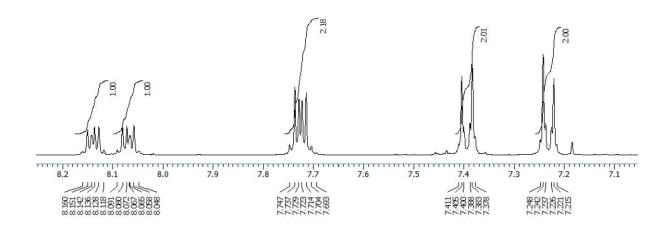


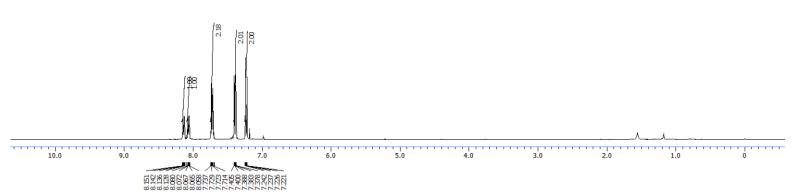

2-chloro-3-(4-methoxyphenyl)naphthalene-1,4-dione (5c).



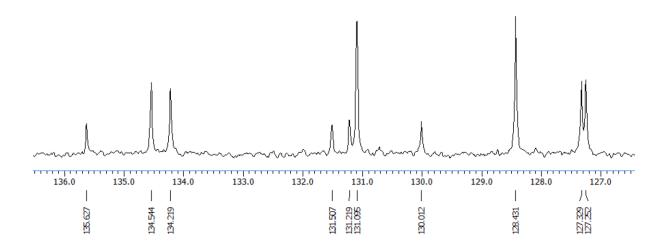
2-chloro-3-(4-methoxyphenyl)naphthalene-1,4-dione (5c).

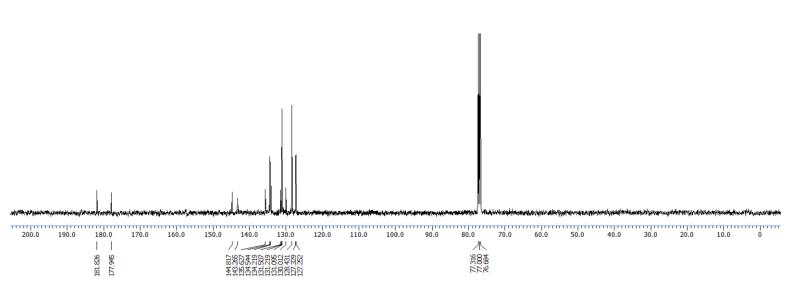


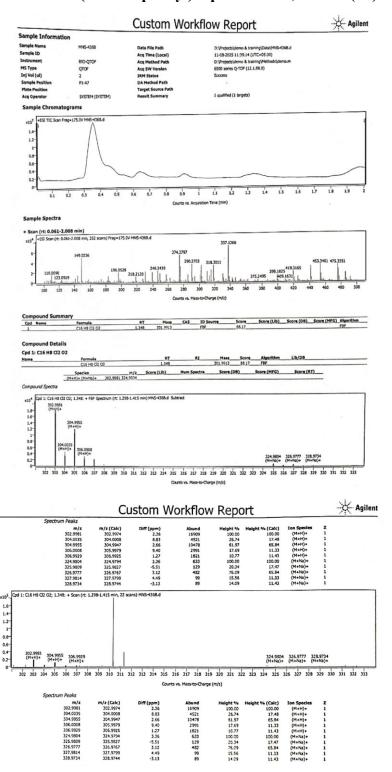

2-chloro-3-(4-methoxyphenyl)naphthalene-1,4-dione (5c).



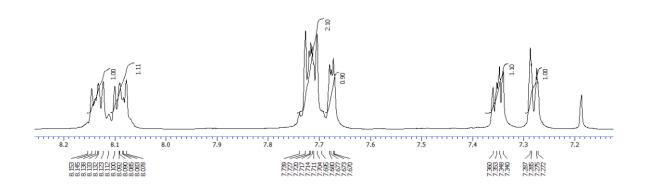
2-chloro-3-(4-chlorophenyl)naphthalene-1,4-dione (5d).

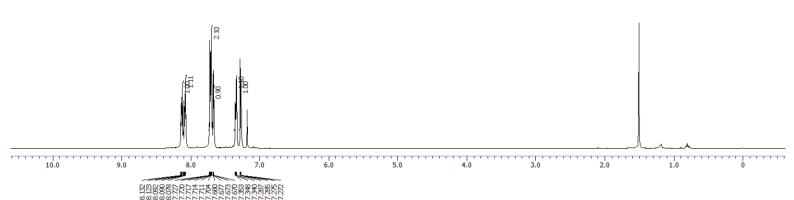


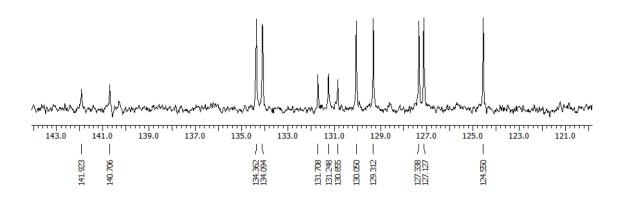

2-chloro-3-(4-chlorophenyl)naphthalene-1,4-dione (5d).

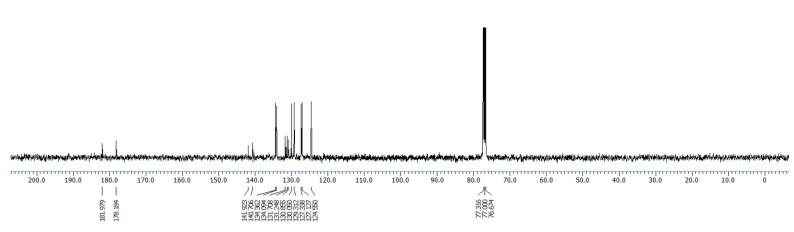


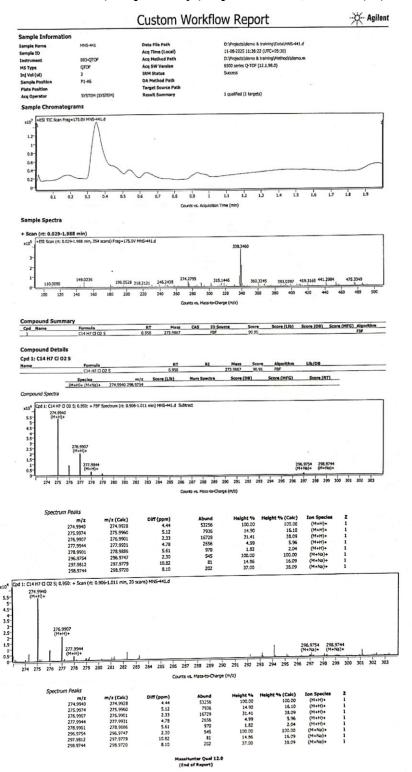
2-chloro-3-(4-chlorophenyl)naphthalene-1,4-dione (5d).

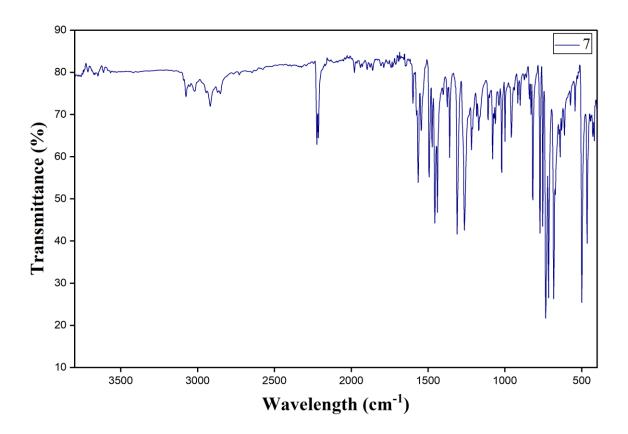


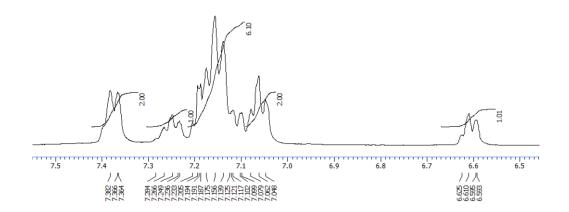


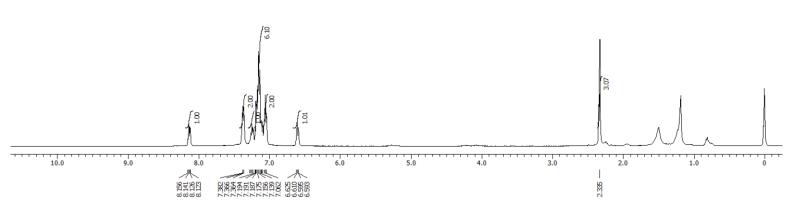

2-chloro-3-(4-chlorophenyl)naphthalene-1,4-dione (5d).



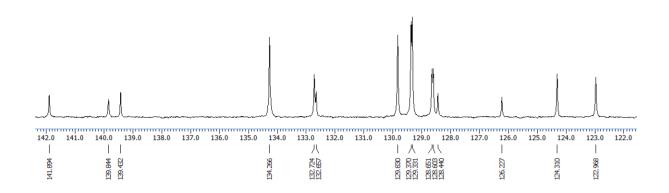


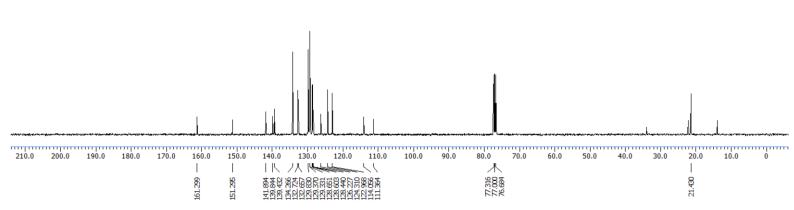


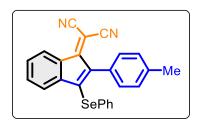


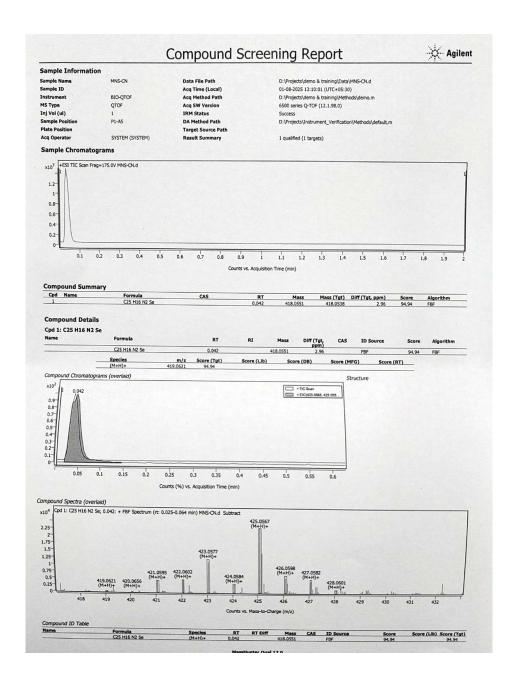

IR Spectra

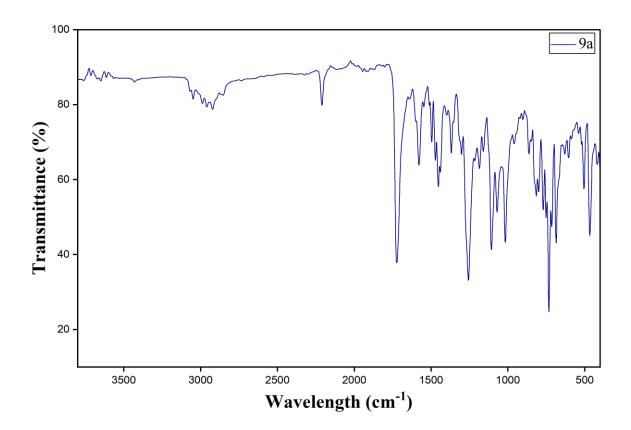
2-(3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-ylidene)malononitrile (7).



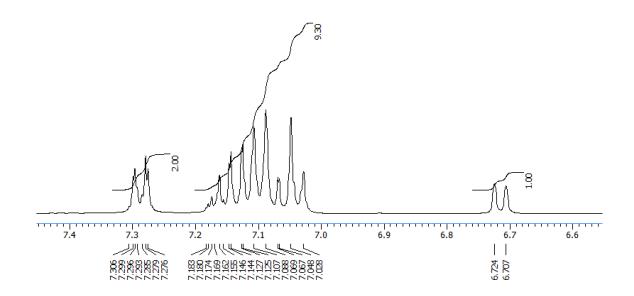

$\hbox{2-(3-(phenylselanyl)-2-(p-tolyl)-1} H-inden-1-ylidene) malononitrile~(7).$

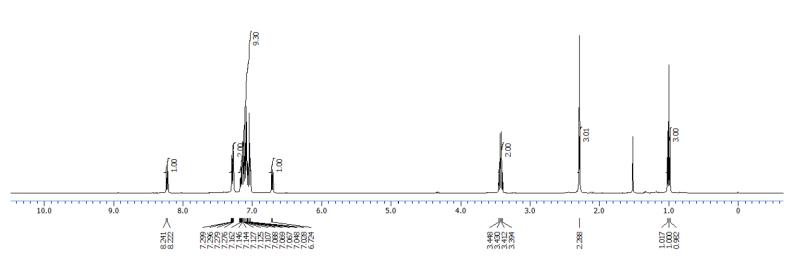



2-(3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-ylidene)malononitrile (7).

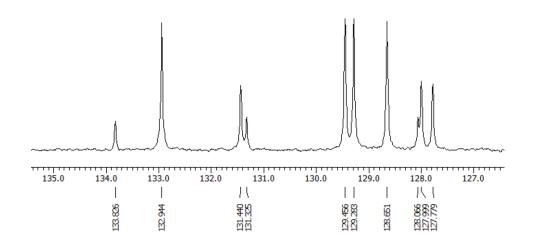


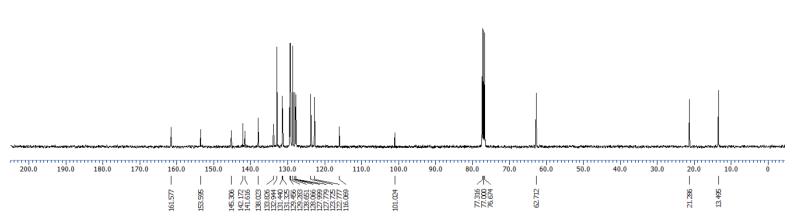
2-(3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-ylidene)malononitrile (7).

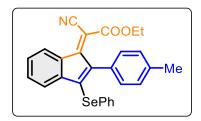


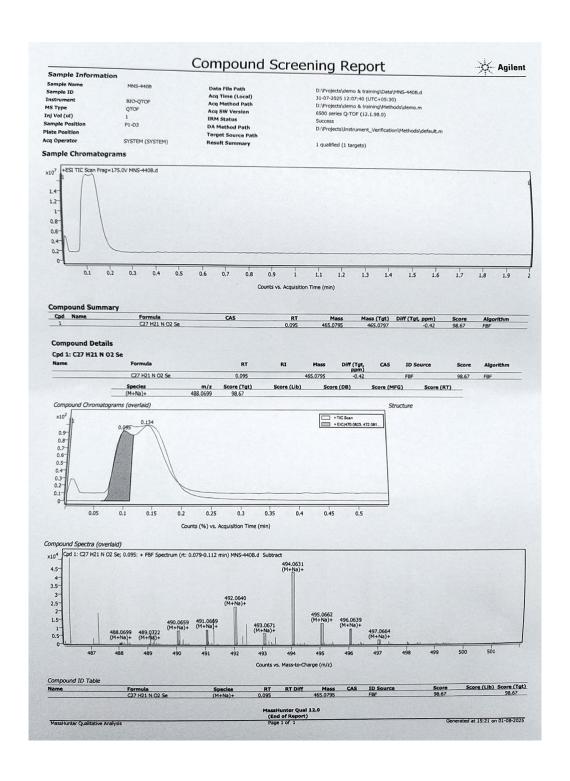

IR Spectra

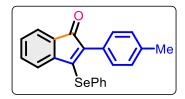
Ethyl (Z)-2-cyano-2-(3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-ylidene)acetate (9a).

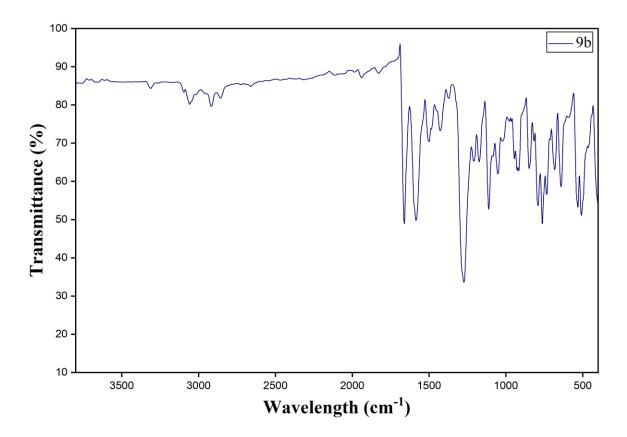


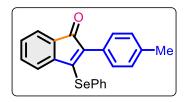

Ethyl (Z)-2-cyano-2-(3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-ylidene)acetate (9a).

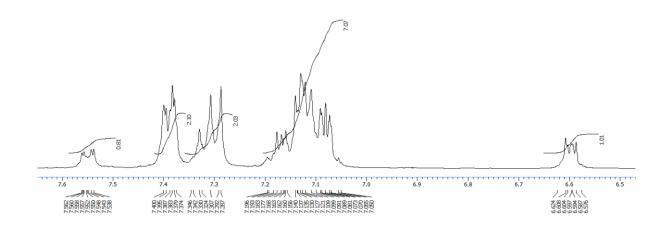


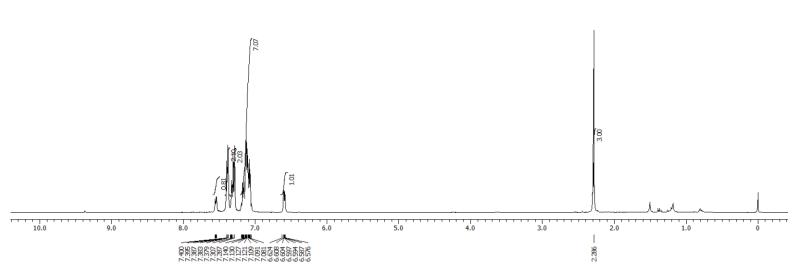

Ethyl (Z)-2-cyano-2-(3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-ylidene)acetate (9a).

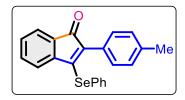


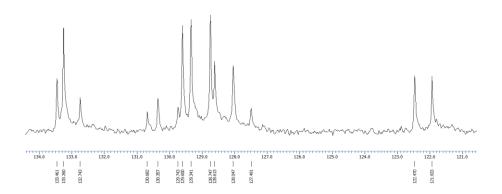

Ethyl (Z)-2-cyano-2-(3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-ylidene)acetate (9a).

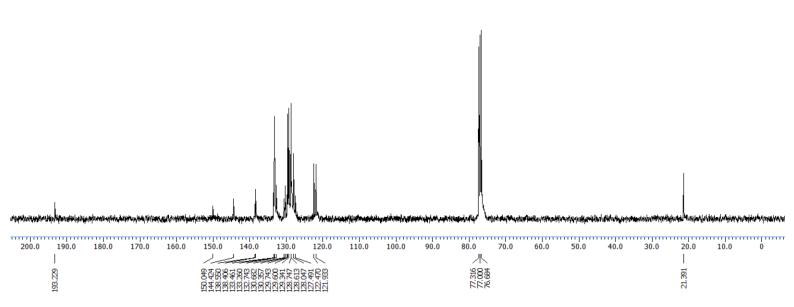

IR Spectra

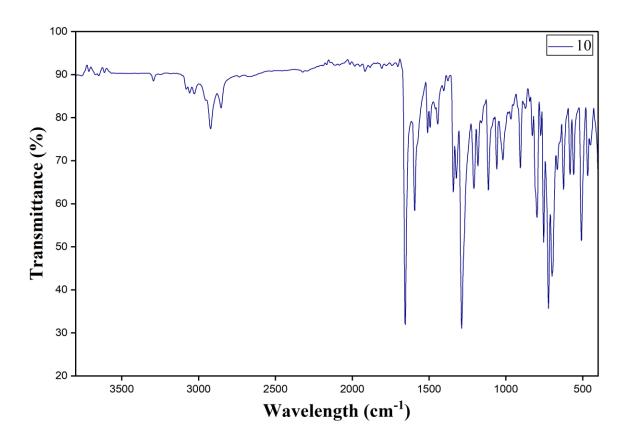

3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-one (9b).

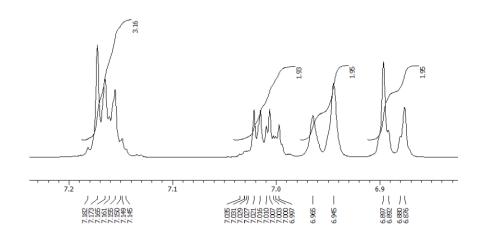


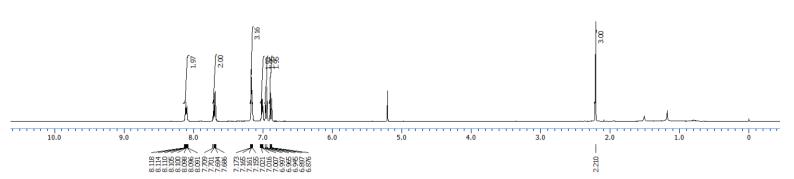

¹H NMR (400 MHz, CDCl₃)


3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-one (9b).

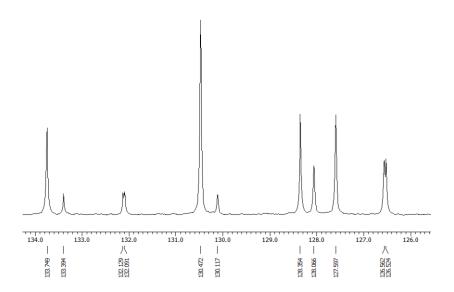


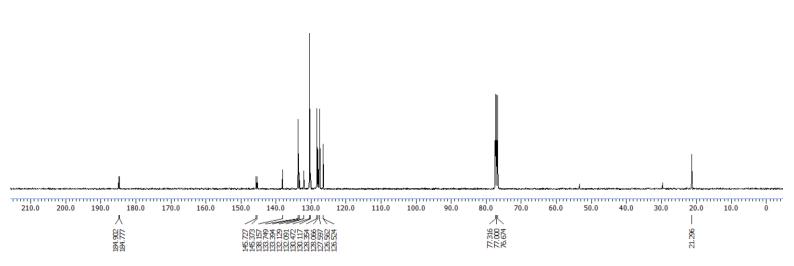

3-(phenylselanyl)-2-(p-tolyl)-1H-inden-1-one (9b).




IR Spectra

2-phenyl-3-(p-tolyl)naphthalene-1,4-dione (10)




2-phenyl-3-(p-tolyl)naphthalene-1,4-dione (10)

2-phenyl-3-(p-tolyl)naphthalene-1,4-dione (10)

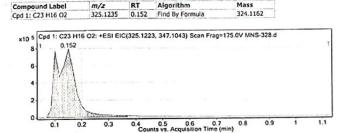
2-phenyl-3-(p-tolyl)naphthalene-1,4-dione (10)

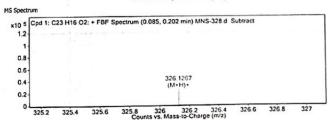
Qualitative Compound Report

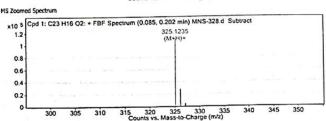
MNS-328.d

MNS-328 P1-C1

Data File Sample Type Instrument Name Acq Method IRM Calibration Status

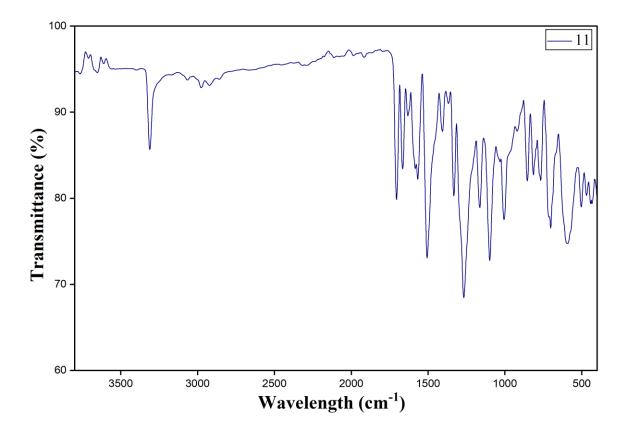

Sample Name Position User Name Acquired Time DA Method Sample Instrument 1 MS Scan.m Success


08-03-2025 12:46:04


Sample Group Acquisition SW Version

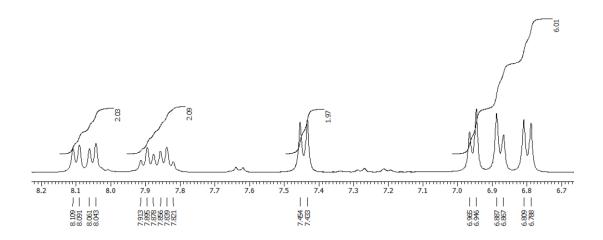
6200 series TOF/6500 series Q-TOF B.05.01 (B5125)

Compound Table								
		Mass	Abund	Formula	Tot Mass	(ppm)	MFG Formula	DB Formula
Compound Label	A1						633 1116 03	C23 H16 O2
Cod 1: C33 H16 O3	0.152	324.1162	110550	C23 H16 O2	324.115	3.68	C23 H16 O2	CES .110 OZ



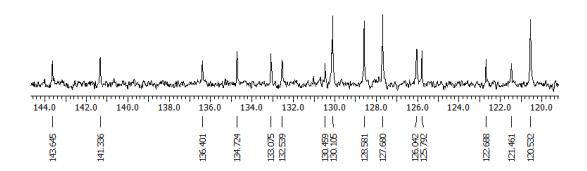
MS Spectrur	n P	eak List	Coone	73, 11033 10 0.10
m/z	z	Abund	Formula	Ion
325.1235	1	110550.06	C23H17O2	(M+H)+
326.1267	1	26070.9	C23H17O2	(M+H)+
327 121	•	3960.02	C23H17O2	(M+H)+

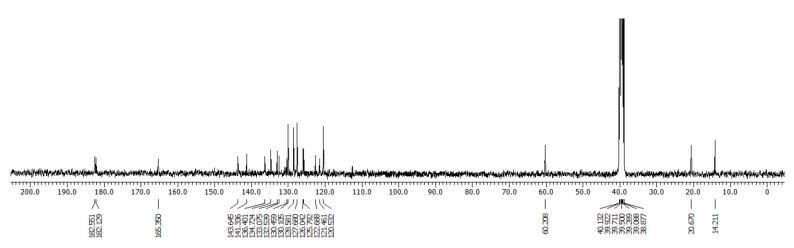
--- End Of Report ---

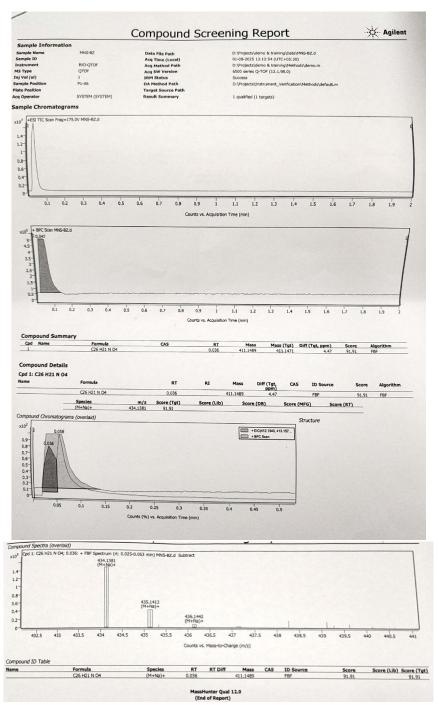

IR Spectra

ethyl 4-((1,4-dioxo-3-(p-tolyl)-1,4-dihydronaphthalen-2-yl)amino)benzoate (11)

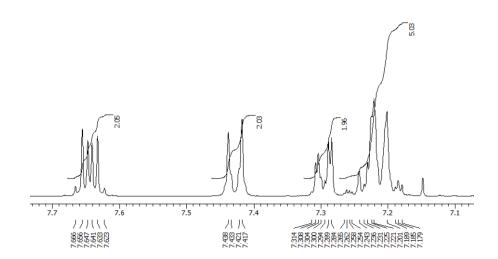
¹H NMR (400 MHz, CDCl₃)

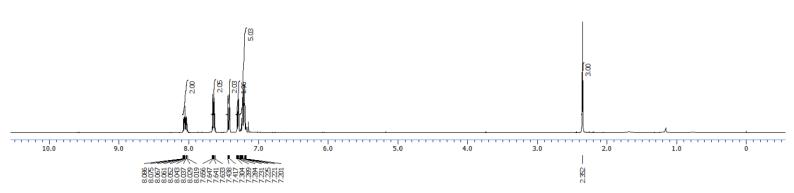

ethyl 4-((1,4-dioxo-3-(p-tolyl)-1,4-dihydronaphthalen-2-yl)amino)benzoate (11)



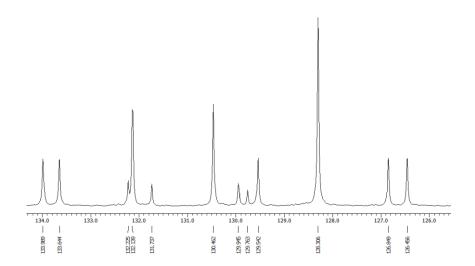

¹³C{¹H} NMR (100 MHz, CDCl₃)

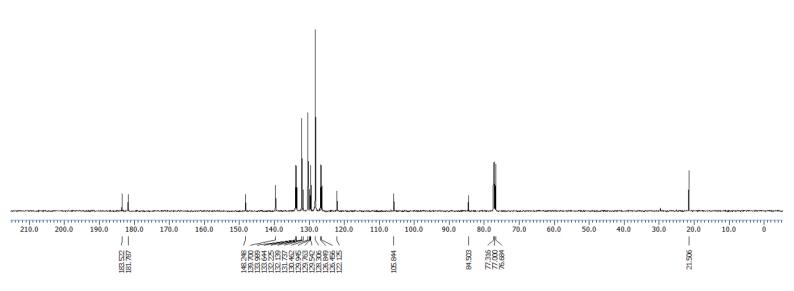
ethyl 4-((1,4-dioxo-3-(p-tolyl)-1,4-dihydronaphthalen-2-yl)amino)benzoate (11)

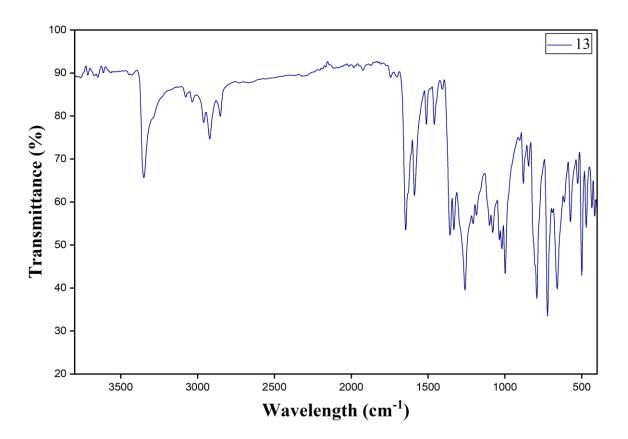




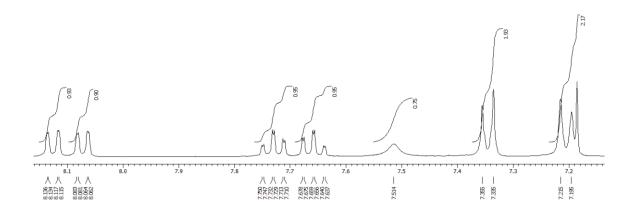
ethyl 4-((1,4-dioxo-3-(p-tolyl)-1,4-dihydronaphthalen-2-yl)amino)benzoate (11)

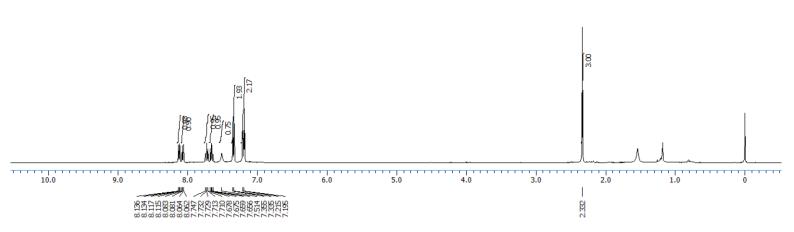



2-(phenylethynyl)-3-(p-tolyl)naphthalene-1,4-dione (12)

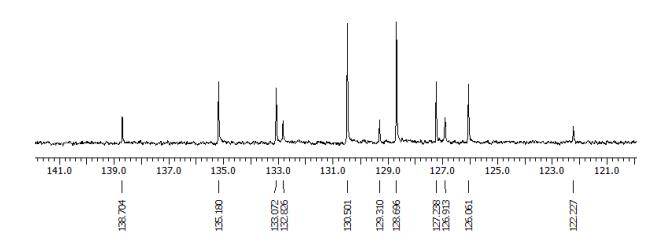


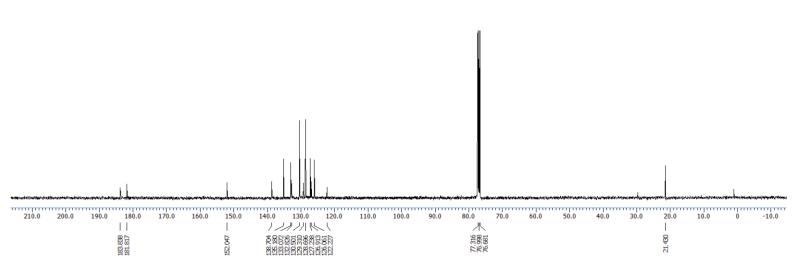
2-(phenylethynyl)-3-(p-tolyl)naphthalene-1,4-dione (12)

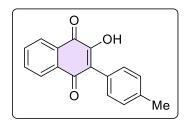




2-hydroxy-3-(p-tolyl)naphthalene-1,4-dione (13)



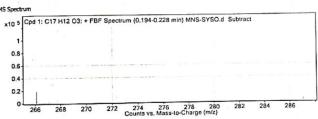

2-hydroxy-3-(p-tolyl)naphthalene-1,4-dione (13)

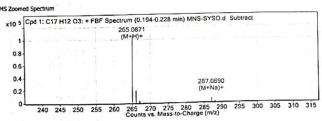


2-hydroxy-3-(p-tolyl)naphthalene-1,4-dione (13)

2-hydroxy-3-(p-tolyl)naphthalene-1,4-dione (13)

Qualitative Compound Report

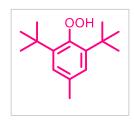

Data File Sample Type Instrument Name Acq Method IRM Calibration Status MNS-SYSO.d Sample Instrument I MS Scan.m Success Sample Name Position User Name Acquired Time DA Method MNS-SYSO P1-C2 08-03-2025 12:48:02


08-03-2025 12:48:0: Default.m

Sample Group Acquisition SW Version

Isition SW 6200 series TOF/6500 series on Q-TOF B.05.01 (B5125)

Compound Table						Diff		
Compound Label	RT	Mass	Abund	Formula	Tgt Mass	(ppm)	MFG Formula	DB Formula
	_	264.0799			264.0786	4.6	C17 H12 O3	C17 H12 O3
OM 1: C17 H12 O3	0.144	264.0799	104627	C17 H12 U3	20110700			



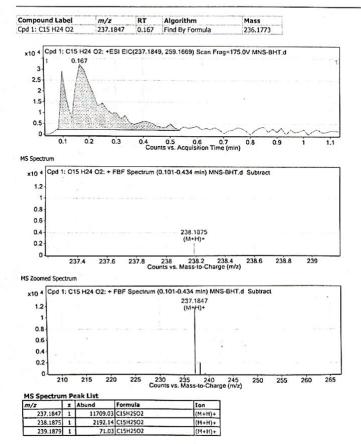
m/z	z	Abund	Formula	Ion
265.0871	1	104626.56	C17H13O3	(M+H)+
266.0905	1	19418.01	C17H13O3	(M+H)+
267.096	1	2525.97	C17H13O3	(M+H)+
287.069		4962.73	C17H12NaO3	(M+Na)+
288.0728			C17H12NaO3	(M+Na)+

--- End Of Report ---

HRMS of BHT adduct

1,3-di-tert-butyl-2-hydroperoxy-5-methylbenzene

Qualitative Compound Report


Data File MNS-BHT.d Sample Name Position MNS-BHT Sample Type Sample Instrument I **Instrument Name User Name** Acq Method IRM Calibration Status MS Scan.m Acquired Time
DA Method 21-05-2025 15:17:37 Success Default.m Sample Group Info.

Acquisition SW 6200 series TOF/6500 series
Version Q-TOF 8.05.01 (B5125)

 Compound Table

 Compound Label
 RT
 Mass
 Abund
 Formula
 Tgt Mass
 Diff (ppm)
 MFG Formula
 DB Formula

 Cpd 1: C15 H24 Q2
 0.167
 236.1773
 11709
 C15 H24 Q2
 236.1776
 -1.28
 C15 H24 Q2
 C15 H24 Q2

