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Software 

The software used in this work is available in the conda environment YAML files at: https://github.com/ejp-

lab/EJPLab_Computational_Projects/blob/master/%CE%B1-SynucleinBinder/environment.yml. The 

environment file defines the computational setup required to reproduce the analyses performed in this study, 

including all necessary Python packages, dependencies, and version specifications. 

 
Radioligand Competition Experiments 

α-synuclein fibrils (50 nM) were mixed with site 9 ligand [3H]BF-2846 (3 nM) and varying concentrations 

of competitor compounds. Compounds were diluted in 50 mM Tris-HCl (pH 7.4) and mixed with fibrils 

and radioligand in a total volume of 150 μL. Total binding was measured in the absence of competitor and 

non-specific binding was determined in reactions containing unlabeled BF-2846 (0.5 μM). In a duplicate 

set of binding reactions, fibrils were replaced with equal volume of buffer to measure the amount of 

radioligand binding to the filter paper. Reactions were incubated at 37 °C for 1 hour. After incubation bound 

and free radioligand were separated by vacuum filtration through Whatman GF/C filters (Brandel) in a 24-

sample harvester system (Brandel), followed by washing with buffer containing 10 mM Tris-HCl (pH 7.4) 

and 150 mM NaCl. Filters containing the bound ligand were mixed with 3 mL of scintillation cocktail 

(MicroScint-20, PerkinElmer; Waltham, MA, USA) and counted after 12 hours of incubation on a 

MicroBeta System (PerkinElmer). Counting of all samples was performed in triplicate and mean values 

computed for radioligand binding analyses. 
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Data Fitting 

To rigorously and consistently fit radioligand binding data and estimate uncertainty, we used a more 

sophisticated fitting algorithm proposed by Janssen et al. 1. To initially fit the data, we used the following 

system of equations:  

𝑌	 = 	𝐵𝑜𝑡𝑡𝑜𝑚	 +	(𝑇𝑜𝑝	 − 	𝐵𝑜𝑡𝑡𝑜𝑚)	/	(1	 + 	10 ∗∗ ((𝑙𝑜𝑔_𝑐𝑜𝑛𝑐	 − 	𝑙𝑜𝑔𝐼𝐶50) 	∗ 	𝐻𝑖𝑙𝑙𝑆𝑙𝑜𝑝𝑒)) 

𝐼𝐶50_𝑛𝑀	 = 	𝐾𝑖_𝑛𝑀	 ∗ 	(1	 + 	ℎ𝑜𝑡_𝑙𝑖𝑔𝑎𝑛𝑑_𝑐𝑜𝑛𝑐	/	𝑘𝑑_𝑛𝑚) 

Where Y is the signal of the radioligand, Bottom is the estimated bottom plateau value, Top is the estimated 

Top plateau value, log_conc is the logarithm of the competitor concentration, logIC50 is the log of the IC50 

value for a given competitor, Ki_nM is the Ki in nanomolar, hot_ligand_conc is the concentration of hot 

ligand in the assay, and kd_nm is the Kd of the radioligand. Scipy was used to optimize the curve fit over 

50000 iterations. After the initial fit, if the curve had datapoints that were beyond 2σ from the initial fit, the 

outliers were removed, and the curve was refit. For compounds with low uncertainty for various parameters 

(See Github for more information), these were defined as good. The hill slope of good was imputed on 

those with poorly defined parameters and the curve fit process was repeated. For curves with yet still 

undefined Bottoms, determined as having a Bottom estimation with high uncertainty, they were reclassified 

as non-binding. In total, 12 ligands changed their binding class for the final machine learning dataset. 
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Structure of HY-2-15  

HY-2-15 is a structural analog of M503.  

 

Fig. S1. Chemical structure of HY-2-15. 
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Machine Learning Datasets 

A total of 315 binding measurements were collected. The dataset exhibits reasonable class balance, 

comprising 138 BF-2846/M503 class compounds, 121 BV-21 class compounds, and 56 TZ61-84 class 

compounds. A quantitative visualization of the 3D similarity between the complete compound set and each 

of the three class parents, as well as BF-2846, is presented in Figure S2.  3D Tanimotos were computed 

according to maximal molecular overlap obtained after running a greedy minimization algorithm. The entire 

dataset was subjected to the same procedure for all four parent compounds to produce the data in Figure 

S2. 

 

Fig. S2. Data set distribution shown by 3D Tanimoto histograms compared to the structural classes: (A) 3D 
Tanimoto histogram compared to BF2846; (B) 3D Tanimoto histogram compared to M503; (C) 3D 
Tanimoto histogram compared to BV21; D) 3D Tanimoto histogram compared to TZ61-84. 

 

We allocated around 85% of the data for model training with five-fold cross-validation and reserved around 

15% as an independent test set. To maintain representative class proportions, stratified splitting was applied, 

resulting in a binder ratio of approximately 20% in both training and test datasets. Table S1 summarizes the 
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training and test datasets, detailing the number and proportion of binder and non-binder data points in each 

set. These datasets are available at: https://github.com/ejp-

lab/EJPLab_Computational_Projects/tree/master/%CE%B1-SynucleinBinder/Data.  

 

Table S1. Statistics of machine learning sets measured by [³H]BF-2846 displacement assays   

Set Binder 
Datapoints 

Non-
binder 

Datapoints 

Binder 
Ratio 

Non-
binder 
Ratio 

Train 55 216 0.20 0.80 

Test 9 35 0.20 0.80 

Total 64 251 N/A N/A 

 

 

Model Training 

Given the limited training dataset size (271 datapoints), we chose algorithms with inherently higher bias 

and lower variance: logistic regression, k-nearest neighbors, and decision tree classifier models. Molecules 

were featurized using Morgan fingerprints and Mordred descriptors, which capture structural and 

substructural information relevant to molecular similarity and physicochemical properties2, 3. Model 

performance was optimized through hyperparameter tuning and feature selection using five-fold cross-

validation, targeting the macro F1 score. Cross-validation was employed rather than allocating a separate 

validation set to ensure maximal use of the available data for both training and evaluation. The final models 

were selected from the best trial of Bayesian hyperparameter searching with the TPE sampler in the Optuna 

Python library4. We trained logistic regression, k-nearest neighbors, and decision tree classifier models. 

The classification reports of the best-performing models during cross-validation are presented in Tables 

S2–S4 for the logistic regression, k-nearest neighbors, and decision tree classifiers, respectively. To 

establish an intuitive point of reference, we constructed a straightforward similarity-based baseline 
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classifier grounded in cheminformatics practices. Specifically, we generated circular Morgan fingerprints 

(radius = 3, 1024-bit vectors) for every compound in the dataset using RDKit. For each test molecule, we 

computed its pairwise Tanimoto similarity against all training-set binders only. Each molecule was assigned 

a binder or non-binder label based on whether its maximum Tanimoto similarity to any training-set binder 

exceeded a threshold τ. We selected τ = 0.5 because thresholds substantially higher than this approach near-

identity similarity and therefore do not provide a meaningful predictive baseline. The classification report 

for the similarity-based baseline classifier is shown in Table S5. 

 

Table S2. Classification report of the best-performing model during cross-validation of the logistic 
regression model 

 

 Precision Recall F1 

Non-binder 0.94 0.76 0.84 

Binder 0.47 0.82 0.60 

    

Accuracy    0.77 

Macro 0.70 0.79 0.72 

Weighted 0.84 0.77 0.79 

    

 

 

 

 

 

 



S9 
 

Table S3. Classification report of the best-performing model during cross-validation of the k-nearest 
neighbors model 

 

 Precision Recall F1 

Non-binder 0.87 0.95 0.91 

Binder 0.71 0.44 0.54 

    

Accuracy    0.84 

Macro 0.79 0.69 0.72 

Weighted 0.83 0.84 0.83 

    

 

 

Table S4. Classification report of the best-performing model during cross-validation of the decision tree 
classifier model 

 

 Precision Recall F1 

Non-binder 0.93 0.77 0.84 

Binder 0.47 0.78 0.59 

    

Accuracy    0.77 

Macro 0.70 0.77 0.71 

Weighted 0.83 0.77 0.79 
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Table S5. Classification report for the similarity-based baseline classifier 

 Precision Recall F1 

Non-binder 1.00 0.46 0.63 

Binder 0.32 1.00 0.49 

    

Accuracy    0.57 

Macro 0.66 0.73 0.56 

Weighted 0.86 0.57 0.60 

  
 

 

Model selection for predicting the prospective set was based on test set performance. The test metrics for 

the k-nearest neighbors and decision tree classifiers are provided in Tables S6–S7, while those for the 

logistic regression model are reported in the main text. Among all models, the logistic regression model 

achieved the best overall performance on test set. A confusion matrix plot for the test set is shown in Fig. 

S3. 

 

Table S6. Classification report of the hyperparameter-tuned k-nearest neighbors model on test set 

 Precision Recall F1 

Non-binder 0.84 0.91 0.87 

Binder 0.50 0.33 0.40 

    

Accuracy    0.79 

Macro 0.67 0.62 0.64 

Weighted 0.77 0.79 0.77 
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Table S7. Classification report of the hyperparameter-tuned decision tree classifier model on test set 

 Precision Recall F1 

Non-binder 0.96 0.68 0.79 

Binder 0.42 0.89 0.57 

    

Accuracy    0.72 

Macro 0.69 0.78 0.68 

Weighted 0.85 0.72 0.75 

 

 

The best parameters of the logistic regression model are shown in Table S8. The optimized model can be 

directly applied for α-synuclein fibril binding prediction, and its configuration file is available for download 

at: https://github.com/ejp-lab/EJPLab_Computational_Projects/blob/master/%CE%B1-

SynucleinBinder/Model/cv_selected_logistic_regression.joblib. The selected features are available at: 

https://github.com/ejp-lab/EJPLab_Computational_Projects/blob/master/%CE%B1-

SynucleinBinder/Model/cv_selected_features.joblib.  

 

Table S8. Best hyperparameters obtained by Optuna Bayesian optimization 

Set C Class_weight max_iter random_state solver tol 

Prospective 45.52397795434362, balanced 1000 42 saga 0.01 
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Fig. S3. Confusion matrix plot for test set using optimal logistic regression model 

 
 

Feature Analysis 

To gain insight into which features the classifier relies on, we examined the coefficients of the final logistic 

regression model trained on selected Morgan fingerprints and Mordred descriptors. For each feature, we 

extracted the corresponding model coefficient and computed its absolute value as a measure of feature 

importance. The sign of the coefficient indicates whether the presence of that feature increases (positive 

sign) or decreases (negative sign) the log-odds of a compound being classified as an α-synuclein fibril 

binder. 

The distribution of the top 40 logistic regression coefficients (Fig. S4) provides a clear view of the 

molecular features that most strongly influence the model’s predictions. The model relies primarily on 

Morgan (ECFP) bits that encode local atom environments. In addition, several Mordred descriptors also 

appear among the highest-ranked features, including ATSC, AATS, and GATS autocorrelation descriptors 

(capturing how atomic properties are distributed across the molecular graph), bonding and unsaturation 

descriptors such as C1SP2, nBondsM, and nBondsKD, and graph-connectivity indices such as VAdjMat 
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(explanations of these descriptors are given in Table S9). For completeness, the full list of selected features 

and their corresponding coefficients is provided in our GitHub repository (https://github.com/ejp-

lab/EJPLab_Computational_Projects/tree/master/%CE%B1-SynucleinBinder/Model), enabling readers to 

examine the learned structure–activity relationships in detail. 

 
Fig. S4. Top 40 features ranked by logistic regression coefficients  
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Table S9. Mordred descriptors for key features in logistic regression model 

Descriptor Explanation 
ATSC8p Centered Broto–Moreau autocorrelation at lag 8 weighted by polarizability; measures how atomic 

polarizabilities correlate across bonds 8 steps apart. 

AATS3se Average Moreau–Broto autocorrelation at lag 3 weighted by Sanderson electronegativity; shows 
electronegativity correlation over 3-bond distances. 

C1SP2 Count of sp² carbon atoms with exactly one substituent (terminal sp² carbons). 

ATSC6i Centered autocorrelation at lag 6 weighted by ionization potential; reflects how ionization energies vary across 
atoms 6 bonds apart. 

VAdjMat Topological descriptor derived from the adjacency matrix; measures structural branching/complexity based on 
eigenvalues or matrix variance. 

ATSC4p Centered autocorrelation at lag 4 weighted by polarizability. 

ATSC4v Centered autocorrelation at lag 4 weighted by van der Waals volume (VdW volume correlation at 4-bond 
separation). 

nBondsM Number of multiple bonds (double, triple, aromatic). 

Mpe Mean atomic polarizability of the molecule. 

nBondsKD Number of Kier–Hall delocalized bonds, indicating resonance/delocalization. 

GATS3se Geary autocorrelation at lag 3 weighted by Sanderson electronegativity; reflects electronegativity variation 
across 3-bond separations. 

 

 

Analysis of Training/Test Data Set Diversity 

To illustrate the diversity within our 315 compound test and training data sets, in Fig. S5, we show each of 

the three parent compounds (M503, BV-21, and TZ61-84) with examples of compounds with high (>0.5) 

and low (0.5-0.2) 2D Tanimoto similarity scores relative to their assigned parent compound class, and low 

scores relative to the other two compound classes.  It also shows an example of an M503/BV-21 hybrid and 

a BV-21/TZ61-84 hybrid (compounds with 2D Tanimoto scores >0.2 in two categories and less than 0.2 in 

the other).  Finally, Fig. S4 shows examples of alternative scaffold compounds (2D Tanimoto scores <0.2 

in all categories).  Of the 315 compounds in the test and training data sets, 99 are considered alternative 

compounds by this criterion, a quantitative measure of diversity in the library. 

This figure also provides a visual representation of the degree of similarity represented by certain 

ranges of 2D Tanimoto scores to allow for an intuitive understanding of the quantitative data.  For example, 
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a single atom substitution of Cl for I in BV-21 accounts for a Tanimoto score of 0.759.  Even the low 

similarity compounds might be viewed as recognizably similar to their parent compounds.  However, those 

compounds classified as alternative scaffolds are significantly different while still sharing general features 

such as multiple aromatic rings and ≥5 heteroatoms.  We note that the range of scores in the 3D Tanimoto 

analysis of these compounds (Fig. S2) is more compressed.  This may be due in part to similar placement 

of functional groups in 3D conformers in the molecules that is not accounted for in 2D analysis, but caution 

should be used in comparing the two analyses, as the range of 3D Tanimoto scores is inherently different. 

 
Fig. S5. Illustration of 2D Tanimoto scores for select train/test set compounds. Parent compounds are shown 
with examples of compounds with High (>0.5) and Low (0.5-0.2) 2D Tanimoto similarity scores relative 
to their assigned parent compound class, as well as Hybrid compounds (2D Tanimoto scores >0.2 in two 
categories) and Alternative scaffold compounds (2D Tanimoto scores <0.2 in all categories). Beneath each 
structure is shown the compound name and its 2D Tanimoto scores relative to the three class parents. 
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Binder Detection from Mcule library 

We curated a prospective dataset from the full Mcule library (downloaded August 04, 2025), comprising 

139,655,928 compounds, using a scaffold-aware workflow5. The library was obtained from the Mcule 

website(https://mcule.com/database/). Prior structure-activity relationship (SAR) analysis has focused on 

three chemotypes for α-synuclein binders, exemplified by BV-21, M503/BF-2846, and TZ61-841, 6-9.  We 

assigned each library molecule to its nearest reference scaffold using the Tanimoto similarity coefficient, 

thereby quantifying structural relatedness between Mcule compounds and predefined parental chemotypes. 

Each molecule was mapped to the scaffold for which it exhibited the highest Tanimoto similarity. This 

scaffold-based mapping provided a structural landscape of the library in relation to known chemotypes, 

highlighting both conserved and novel regions of chemical space. For prospective compound set selection, 

we deliberately selected a small number of compounds that exhibited high Tanimoto similarity to the 

reference scaffolds to ensure chemical continuity with validated cores, while also sampling compounds 

across lower similarity ranges to introduce structural diversity. This balanced, scaffold-aware yet diversity-

oriented selection strategy enabled the design of a 30-compound prospective set that both preserved known 

structural motifs and explored less-charted regions of the chemical space. Note: Due to lack of TZ61-84-

type compound availability, three novel compounds were included from in-house libraries.  Some of the 

compounds from Mcule libraries were also available through synthesis. 

After selecting the prospective dataset, the final model was applied to predict potential binders within it. 

Experimental confirmation of these predictions was obtained via [³H]BF-2846 displacement assays 

(described above), with summary statistics reported in Table S10. The complete prospective set is publicly 

available at https://github.com/ejp-lab/EJPLab_Computational_Projects/tree/master/%CE%B1-

SynucleinBinder/Data. Model classification metrics on this dataset are provided in Table S11. 
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Table S10. Statistics of the prospective set obtained from Mcule library and measured by [³H]BF-2846 
displacement assays 

 

Set Binder 
Datapoints 

Non-
binder 

Datapoints 

Binder 
Ratio 

Non-
binder 
Ratio 

Prospective 9 21 0.3 0.7 

 

 

Table S11. Classification report of the hyperparameter-tuned logistic regression model on the prospective 
dataset 

 

 Precision Recall F1 

Non-binder 0.88 0.71 0.79 

Binder 0.54 0.78 0.64 

    

Accuracy    0.73 

Macro 0.71 0.75 0.71 

Weighted 0.78 0.73 0.74 

 

Examples of binding data for four compounds are shown in Fig. S6 with the fitted curves used in 

determining Ki. Note that differences in percent displacement of [3H]-BF2846 do not affect the Ki values. 

Table S12 presents all of the compounds in the prospective set, including their chemical structures, SMILES 

strings, Mcule IDs, predicted binding classes, Ki values, experimental binding classes, and Tanimoto scores 

relative to BV-21, TZ61-84, and M503.  They are sorted according to the highest Tanimoto score in any 

class. Compounds below a Tanimoto score of 0.2 for any parent are determined to be alternative scaffolds. 

This table is also provided as a csv file. 
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Fig. S6. Example binding data in [3H]-BF2846 displacement assay. Curves were fit as described in Data 
Fitting section to obtain Ki. Red data points indicate outliers identified in fitting procedure. 
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Table S12. Prospective compound set prediction, testing, and structural analysis data 

 

Name SMILES Mcule ID Pred. Ki (nM) Exp. FP BV-21 FP TZ61-84 FP M503

P07-A
CC=1C=C(N2CC(O)CC2C=3C=CC(F)=CC3)N4N
=CN=C4N1 MCULE-8208018033 0 NB 0 0.073 0.103 0.118

P11-A
C1CCN(C2=NC=C(C3N=C(C4CN5C(=CN=C5)CC
4)ON=3)C=C2)CC1 MCULE-4759842239 0 NB 0 0.096 0.070 0.127

P06-A
CCC1=CC=C(C=C1)NC(NC2=CNC3=CC=CC=C2
3)=O MCULE-2241433376 0 NB 0 0.102 0.101 0.127

P10-A
C1(=NN=C(SCC(=O)NC2=CC=C3C(OCO3)=C2)N
1C)C1C=COC=1C MCULE-6909752187 0 NB 0 0.125 0.095 0.136

P17-A
ClC=1C=CN2N=C(NC(=O)NC=3C=NN(C3)C4CC
CCC4)N=C2C1 MCULE-8621314498 0 NB 0 0.136 0.105 0.128

P25-A
CC1=CC=C(C2NC(SCC(NC3=CC4=C(C=CN4C)C
=C3)=O)=NN=2)C=C1 MCULE-6496962235 1 NB 0 0.127 0.115 0.138

P02-A NC1=NC(C2=CC=C(N(C)C)C=C2)=CS1 MCULE-3640234203 0 NB 0 0.143 0.087 0.106

P09-A
CC(CN(CC1)C(Nc(cc2)ccc2C(C)=O)=O)N1c1ccc(
C)cc1 MCULE-8493756119 0 NB 0 0.134 0.089 0.145

P16-A
CC(C)N1C=C(NC(=O)NC=2C=CC3=C(OCC3(C)C
)C2)C=N1 MCULE-9820771788 0 NB 0 0.147 0.112 0.137

P15-A
CC(C)C1=NC=2C=C(NC(=O)NC=3C=C(C=CN3)C
(=O)N(C)C)C=CC2O1 MCULE-8008821641 0 NB 0 0.148 0.124 0.138

P26-A
CC(C1OC(C2=CC=CC=C2)=CN=1)NC(C(NC1=C
C2=C(N=C(O2)C)C=C1)=O)=O MCULE-5206636263 0 NB 0 0.143 0.148 0.171

P13-A
CC(C)NC=1C=CC(=CN1)C(=O)NC2=NN=C(S2)C
=3C=CN=CC3 MCULE-5266123310 1 104 0 0.179 0.117 0.153

P14-A
O=C(NC1=NN=C(S1)C=2C=CN=CC2)C=3C=CC(
SC4CC4)=CC3 MCULE-6206705061 0 61.74 0 0.188 0.077 0.111

P22-A
CCN(CC)C=1C=CC(=CC1)C(=O)NC2=NN=C(S2)
C=3C=CN=CC3 MCULE-9236698514 1 4.605 1 0.191 0.097 0.113

P29-A
CC1=NNC(=N1)C=2C=CC(NC(=O)C3=CC=4C=N
C=CC4O3)=CC2 MCULE-2019341366 1 9.414 1 0.196 0.123 0.189

P12-A

[O-
][N+](=O)C=1C=CC(=CC1)C(=O)NC2=NN=C(S2)
C=3C=CN=CC3 MCULE-7388529879 0 617 0 0.198 0.071 0.096

P19-V
O=C(C1=CC=C(C)C(C)=C1)NC(S2)=NN=C2C3=
CC=NC=C3 MCULE-4854937769 0 12.7 1 0.202 0.092 0.108

P23-V CCOc(cc1)ccc1C(Nc1nnc(-c2ccncc2)s1)=O MCULE-1488042594 1 10.36 1 0.244 0.127 0.164

P24-M
COC1=CC=C(N=C(N2CCN(C3=NC=CC=N3)CC2)
S4)C4=C1 MCULE-1195918550 1 30.524 0 0.158 0.140 0.273

P08-M Cc1nc(N(CC2)CCN2c2ncccc2)nc(CCC2)c1C2=O MCULE-5461172863 1 NB 0 0.075 0.067 0.323

P18-Z
CN(C)C1=CC2=CC=CC=C2N=C1NC3=CN=C(OC
)C=C3 TZ80-142 0 NB 0 0.112 0.330 0.157

P04-V
O=C(NC1=NN=C(C2=CC=NC=C2)S1)C3=CC=C(
OC)C=C3 MCULE-4152335408 1 47.9 0 0.350 0.143 0.192

P05-Z
CN(C)C(C=C1)=CC2=C1N=C(S2)NC3=CN=C(OC
)C=C3 TZ80-84 0 257.6 0 0.121 0.352 0.155

P01-V NC1=CC(C2=CC=C(OC)C=C2)=NO1 MCULE-5879131729 0 NB 0 0.375 0.136 0.169

P30-Z
COC1=CC=C(N=C(NC2=CC=C(OC)C=C2)C=C3)
C3=C1 TZ90-8 1 22.12 1 0.181 0.447 0.200

P28-V
BrC1=CC=C(C2=NOC(NC(C3=CC=CC(OCC)=C3
)=O)=C2)C=C1 MCULE-1131491708 1 9.87 1 0.457 0.140 0.165

P20-V
CC1=CC=C(C2=NOC(NC(C3=CC=C(OCCC)C=C
3)=O)=C2)C=C1 MCULE-6705203185 1 4.25 1 0.583 0.145 0.140

P27-M
O=C(C1=CN=C(N=C1)N2CCN(CC2)C3=NC=CC=
C3)NC4=CC=C(OC)C=C4 MCULE-1682064949 1 6.77 1 0.227 0.159 0.646

P03-M
O=C(C(C=NC(N1CCN(CC1)C2=CC=C(OC)C=C2)
=N3)=C3N)NC4=CC=C(OC)C=C4 MCULE-2502940094 1 44.78 0 0.221 0.185 0.692

P21-V
BrC1=CC=C(C2=NOC(NC(C3=CC=C(OC)C=C3)=
O)=C2)C=C1 MCULE-5698809192 0 16.62 1 0.783 0.155 0.194
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