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Software

The software used in this work is available in the conda environment YAML files at: https://github.com/eip-

lab/EJPLab_Computational Projects/blob/master/%CE%B]1-SynucleinBinder/environment.yml. The

environment file defines the computational setup required to reproduce the analyses performed in this study,

including all necessary Python packages, dependencies, and version specifications.

Radioligand Competition Experiments

a-synuclein fibrils (50 nM) were mixed with site 9 ligand [°’H]BF-2846 (3 nM) and varying concentrations
of competitor compounds. Compounds were diluted in 50 mM Tris-HCI (pH 7.4) and mixed with fibrils
and radioligand in a total volume of 150 uL. Total binding was measured in the absence of competitor and
non-specific binding was determined in reactions containing unlabeled BF-2846 (0.5 uM). In a duplicate
set of binding reactions, fibrils were replaced with equal volume of buffer to measure the amount of
radioligand binding to the filter paper. Reactions were incubated at 37 °C for 1 hour. After incubation bound
and free radioligand were separated by vacuum filtration through Whatman GF/C filters (Brandel) in a 24-
sample harvester system (Brandel), followed by washing with buffer containing 10 mM Tris-HCI (pH 7.4)
and 150 mM NacCl. Filters containing the bound ligand were mixed with 3 mL of scintillation cocktail
(MicroScint-20, PerkinElmer; Waltham, MA, USA) and counted after 12 hours of incubation on a
MicroBeta System (PerkinElmer). Counting of all samples was performed in triplicate and mean values

computed for radioligand binding analyses.
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Data Fitting

To rigorously and consistently fit radioligand binding data and estimate uncertainty, we used a more
sophisticated fitting algorithm proposed by Janssen et al. '. To initially fit the data, we used the following

system of equations:
Y = Bottom + (Top — Bottom) /(1 + 10 ** ((log_conc — logIC50) = HillSlope))
IC50_nM = KinM = (1 + hot_ligand_conc / kd_nm)

Where Y is the signal of the radioligand, Bottom is the estimated bottom plateau value, Top is the estimated
Top plateau value, log_conc is the logarithm of the competitor concentration, logIC50 is the log of the IC50
value for a given competitor, Ki nM is the K; in nanomolar, hot ligand conc is the concentration of hot
ligand in the assay, and kd nm is the K4 of the radioligand. Scipy was used to optimize the curve fit over
50000 iterations. After the initial fit, if the curve had datapoints that were beyond 2c from the initial fit, the
outliers were removed, and the curve was refit. For compounds with low uncertainty for various parameters
(See Github for more information), these were defined as good. The hill slope of good was imputed on
those with poorly defined parameters and the curve fit process was repeated. For curves with yet still
undefined Bottoms, determined as having a Bottom estimation with high uncertainty, they were reclassified

as non-binding. In total, 12 ligands changed their binding class for the final machine learning dataset.

S4



Structure of HY-2-15

HY-2-15 is a structural analog of M503.

HY-2-15
o
DA

Fig. S1. Chemical structure of HY-2-15.
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Machine Learning Datasets

A total of 315 binding measurements were collected. The dataset exhibits reasonable class balance,
comprising 138 BF-2846/M503 class compounds, 121 BV-21 class compounds, and 56 TZ61-84 class
compounds. A quantitative visualization of the 3D similarity between the complete compound set and each
of the three class parents, as well as BF-2846, is presented in Figure S2. 3D Tanimotos were computed
according to maximal molecular overlap obtained after running a greedy minimization algorithm. The entire

dataset was subjected to the same procedure for all four parent compounds to produce the data in Figure

S2.
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Fig. S2. Data set distribution shown by 3D Tanimoto histograms compared to the structural classes: (A) 3D
Tanimoto histogram compared to BF2846; (B) 3D Tanimoto histogram compared to M503; (C) 3D
Tanimoto histogram compared to BV21; D) 3D Tanimoto histogram compared to TZ61-84.

We allocated around 85% of the data for model training with five-fold cross-validation and reserved around
15% as an independent test set. To maintain representative class proportions, stratified splitting was applied,

resulting in a binder ratio of approximately 20% in both training and test datasets. Table S1 summarizes the
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training and test datasets, detailing the number and proportion of binder and non-binder data points in each

set. These datasets are available at: https://github.com/ejp-

lab/EJPLab_Computational Projects/tree/master/%CE%B1-SynucleinBinder/Data.

Table S1. Statistics of machine learning sets measured by [*H]BF-2846 displacement assays

Binder NOH- Binder NOH-

Set Datapoints _ 0inder Ratio  inder
P Datapoints Ratio

Train 55 216 0.20 0.80
Test 9 35 0.20 0.80
Total 64 251 N/A N/A

Model Training

Given the limited training dataset size (271 datapoints), we chose algorithms with inherently higher bias
and lower variance: logistic regression, k-nearest neighbors, and decision tree classifier models. Molecules
were featurized using Morgan fingerprints and Mordred descriptors, which capture structural and
substructural information relevant to molecular similarity and physicochemical properties™ . Model
performance was optimized through hyperparameter tuning and feature selection using five-fold cross-
validation, targeting the macro F1 score. Cross-validation was employed rather than allocating a separate
validation set to ensure maximal use of the available data for both training and evaluation. The final models
were selected from the best trial of Bayesian hyperparameter searching with the TPE sampler in the Optuna
Python library*. We trained logistic regression, k-nearest neighbors, and decision tree classifier models.
The classification reports of the best-performing models during cross-validation are presented in Tables
S2-S4 for the logistic regression, k-nearest neighbors, and decision tree classifiers, respectively. To

establish an intuitive point of reference, we constructed a straightforward similarity-based baseline
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classifier grounded in cheminformatics practices. Specifically, we generated circular Morgan fingerprints

(radius = 3, 1024-bit vectors) for every compound in the dataset using RDKit. For each test molecule, we

computed its pairwise Tanimoto similarity against all training-set binders only. Each molecule was assigned

a binder or non-binder label based on whether its maximum Tanimoto similarity to any training-set binder

exceeded a threshold 1. We selected T = 0.5 because thresholds substantially higher than this approach near-

identity similarity and therefore do not provide a meaningful predictive baseline. The classification report

for the similarity-based baseline classifier is shown in Table S5.

Table S2. Classification report of the best-performing model during cross-validation of the logistic

regression model

Precision Recall F1
Non-binder 0.94 0.76 0.84
Binder 0.47 0.82 0.60
Accuracy 0.77
Macro 0.70 0.79 0.72
Weighted 0.84 0.77 0.79
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Table S3. Classification report of the best-performing model during cross-validation of the k-nearest
neighbors model

Precision Recall F1
Non-binder 0.87 0.95 0.91
Binder 0.71 0.44 0.54
Accuracy 0.84
Macro 0.79 0.69 0.72
Weighted 0.83 0.84 0.83

Table S4. Classification report of the best-performing model during cross-validation of the decision tree
classifier model

Precision Recall F1
Non-binder 0.93 0.77 0.84
Binder 0.47 0.78 0.59
Accuracy 0.77
Macro 0.70 0.77 0.71
Weighted 0.83 0.77 0.79
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Table S5. Classification report for the similarity-based baseline classifier

Precision Recall F1
Non-binder 1.00 0.46 0.63
Binder 0.32 1.00 0.49
Accuracy 0.57
Macro 0.66 0.73 0.56
Weighted 0.86 0.57 0.60

Model selection for predicting the prospective set was based on test set performance. The test metrics for
the k-nearest neighbors and decision tree classifiers are provided in Tables S6-S7, while those for the
logistic regression model are reported in the main text. Among all models, the logistic regression model

achieved the best overall performance on test set. A confusion matrix plot for the test set is shown in Fig.

S3.

Table S6. Classification report of the hyperparameter-tuned k-nearest neighbors model on test set

Precision Recall F1
Non-binder 0.84 0.91 0.87
Binder 0.50 0.33 0.40
Accuracy 0.79
Macro 0.67 0.62 0.64
Weighted 0.77 0.79 0.77
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Table S7. Classification report of the hyperparameter-tuned decision tree classifier model on test set

Precision Recall F1
Non-binder 0.96 0.68 0.79
Binder 0.42 0.89 0.57
Accuracy 0.72
Macro 0.69 0.78 0.68
Weighted 0.85 0.72 0.75

The best parameters of the logistic regression model are shown in Table S8. The optimized model can be
directly applied for a-synuclein fibril binding prediction, and its configuration file is available for download

at: https://github.com/ejp-lab/EJPLab_Computational Projects/blob/master/%CE%BI1-

SynucleinBinder/Model/cv_selected logistic_regression.joblib. The selected features are available at:

https://github.com/ejp-lab/EJPLab_Computational Projects/blob/master/%CE%B1-

SynucleinBinder/Model/cv_selected features.joblib.

Table S8. Best hyperparameters obtained by Optuna Bayesian optimization

Set C Class_weight max iter random_state solver tol

Prospective  45.52397795434362, balanced 1000 42 saga 0.01
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Fig. S3. Confusion matrix plot for test set using optimal logistic regression model

Feature Analysis

To gain insight into which features the classifier relies on, we examined the coefficients of the final logistic
regression model trained on selected Morgan fingerprints and Mordred descriptors. For each feature, we
extracted the corresponding model coefficient and computed its absolute value as a measure of feature
importance. The sign of the coefficient indicates whether the presence of that feature increases (positive
sign) or decreases (negative sign) the log-odds of a compound being classified as an a-synuclein fibril

binder.

The distribution of the top 40 logistic regression coefficients (Fig. S4) provides a clear view of the
molecular features that most strongly influence the model’s predictions. The model relies primarily on
Morgan (ECFP) bits that encode local atom environments. In addition, several Mordred descriptors also
appear among the highest-ranked features, including ATSC, AATS, and GATS autocorrelation descriptors
(capturing how atomic properties are distributed across the molecular graph), bonding and unsaturation

descriptors such as C1SP2, nBondsM, and nBondsKD, and graph-connectivity indices such as VAdjMat
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(explanations of these descriptors are given in Table S9). For completeness, the full list of selected features

and their corresponding coefficients is provided in our GitHub repository (https:/github.com/ejp-

lab/EJPLab_Computational Projects/tree/master/%CE%B1-SynucleinBinder/Model), enabling readers to

examine the learned structure—activity relationships in detail.
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Fig. S4. Top 40 features ranked by logistic regression coefficients
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Table S9. Mordred descriptors for key features in logistic regression model

Descriptor Explanation
ATSC8p Centered Broto—Moreau autocorrelation at lag 8 weighted by polarizability; measures how atomic
polarizabilities correlate across bonds 8 steps apart.

AATS3se  Average Moreau—Broto autocorrelation at lag 3 weighted by Sanderson electronegativity; shows
electronegativity correlation over 3-bond distances.

C1SP2 Count of sp? carbon atoms with exactly one substituent (terminal sp? carbons).

ATSCo6i Centered autocorrelation at lag 6 weighted by ionization potential; reflects how ionization energies vary across
atoms 6 bonds apart.

VAdjMat Topological descriptor derived from the adjacency matrix; measures structural branching/complexity based on
eigenvalues or matrix variance.

ATSC4p Centered autocorrelation at lag 4 weighted by polarizability.

ATSC4v Centered autocorrelation at lag 4 weighted by van der Waals volume (VdW volume correlation at 4-bond
separation).

nBondsM Number of multiple bonds (double, triple, aromatic).
Mpe Mean atomic polarizability of the molecule.
nBondsKD  Number of Kier—Hall delocalized bonds, indicating resonance/delocalization.

GATS3se  Geary autocorrelation at lag 3 weighted by Sanderson electronegativity; reflects electronegativity variation
across 3-bond separations.

Analysis of Training/Test Data Set Diversity

To illustrate the diversity within our 315 compound test and training data sets, in Fig. S5, we show each of
the three parent compounds (M503, BV-21, and TZ61-84) with examples of compounds with high (>0.5)
and low (0.5-0.2) 2D Tanimoto similarity scores relative to their assigned parent compound class, and low
scores relative to the other two compound classes. It also shows an example of an M503/BV-21 hybrid and
a BV-21/TZ61-84 hybrid (compounds with 2D Tanimoto scores >0.2 in two categories and less than 0.2 in
the other). Finally, Fig. S4 shows examples of alternative scaffold compounds (2D Tanimoto scores <0.2
in all categories). Of the 315 compounds in the test and training data sets, 99 are considered alternative

compounds by this criterion, a quantitative measure of diversity in the library.

This figure also provides a visual representation of the degree of similarity represented by certain

ranges of 2D Tanimoto scores to allow for an intuitive understanding of the quantitative data. For example,
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a single atom substitution of Cl for I in BV-21 accounts for a Tanimoto score of 0.759. Even the low
similarity compounds might be viewed as recognizably similar to their parent compounds. However, those
compounds classified as alternative scaffolds are significantly different while still sharing general features
such as multiple aromatic rings and >5 heteroatoms. We note that the range of scores in the 3D Tanimoto
analysis of these compounds (Fig. S2) is more compressed. This may be due in part to similar placement
of functional groups in 3D conformers in the molecules that is not accounted for in 2D analysis, but caution

should be used in comparing the two analyses, as the range of 3D Tanimoto scores is inherently different.
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Fig. S5. Illustration of 2D Tanimoto scores for select train/test set compounds. Parent compounds are shown
with examples of compounds with High (>0.5) and Low (0.5-0.2) 2D Tanimoto similarity scores relative
to their assigned parent compound class, as well as Hybrid compounds (2D Tanimoto scores >0.2 in two
categories) and Alternative scaffold compounds (2D Tanimoto scores <0.2 in all categories). Beneath each
structure is shown the compound name and its 2D Tanimoto scores relative to the three class parents.
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Binder Detection from Mcule library

We curated a prospective dataset from the full Mcule library (downloaded August 04, 2025), comprising
139,655,928 compounds, using a scaffold-aware workflow”. The library was obtained from the Mcule
website(https://mcule.com/database/). Prior structure-activity relationship (SAR) analysis has focused on
three chemotypes for a-synuclein binders, exemplified by BV-21, M503/BF-2846, and TZ61-84"%°. We
assigned each library molecule to its nearest reference scaffold using the Tanimoto similarity coefficient,
thereby quantifying structural relatedness between Mcule compounds and predefined parental chemotypes.
Each molecule was mapped to the scaffold for which it exhibited the highest Tanimoto similarity. This
scaffold-based mapping provided a structural landscape of the library in relation to known chemotypes,
highlighting both conserved and novel regions of chemical space. For prospective compound set selection,
we deliberately selected a small number of compounds that exhibited high Tanimoto similarity to the
reference scaffolds to ensure chemical continuity with validated cores, while also sampling compounds
across lower similarity ranges to introduce structural diversity. This balanced, scaffold-aware yet diversity-
oriented selection strategy enabled the design of a 30-compound prospective set that both preserved known
structural motifs and explored less-charted regions of the chemical space. Note: Due to lack of TZ61-84-
type compound availability, three novel compounds were included from in-house libraries. Some of the

compounds from Mcule libraries were also available through synthesis.
After selecting the prospective dataset, the final model was applied to predict potential binders within it.

Experimental confirmation of these predictions was obtained via [*H]BF-2846 displacement assays
(described above), with summary statistics reported in Table S10. The complete prospective set is publicly

available at https://github.com/ejp-lab/EJPLab_Computational Projects/tree/master/%CE%B]1-

SynucleinBinder/Data. Model classification metrics on this dataset are provided in Table S11.
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Table S10. Statistics of the prospective set obtained from Mcule library and measured by [*H]|BF-2846
displacement assays

Binder Non- Binder Non-
Set Datapoints binder Ratio binder
P Datapoints Ratio
Prospective 9 21 0.3 0.7

Table S11. Classification report of the hyperparameter-tuned logistic regression model on the prospective
dataset

Precision Recall F1
Non-binder 0.88 0.71 0.79
Binder 0.54 0.78 0.64
Accuracy 0.73
Macro 0.71 0.75 0.71
Weighted 0.78 0.73 0.74

Examples of binding data for four compounds are shown in Fig. S6 with the fitted curves used in
determining K. Note that differences in percent displacement of [’H]-BF2846 do not affect the K; values.
Table S12 presents all of the compounds in the prospective set, including their chemical structures, SMILES
strings, Mcule IDs, predicted binding classes, K; values, experimental binding classes, and Tanimoto scores
relative to BV-21, TZ61-84, and M503. They are sorted according to the highest Tanimoto score in any
class. Compounds below a Tanimoto score of 0.2 for any parent are determined to be alternative scaffolds.

This table is also provided as a csv file.
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Fig. S6. Example binding data in [’H]-BF2846 displacement assay. Curves were fit as described in Data
Fitting section to obtain K;. Red data points indicate outliers identified in fitting procedure.
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Table S12. Prospective compound set prediction, testing, and structural analysis data

Name

P07-A

P11-A

P06-A

P10-A

P17-A

P25-A
P02-A

P09-A

P16-A

P15-A

P26-A

P13-A

P14-A

P22-A

P29-A

P12-A

P19-V
P23-v

P24-M

P08-M

P18-Z

P04-V

POS-Z
PO1-V

P30-Z

P21-V

SMILES
CC=1C=C(N2CC(0)CC2C=3C=CC(F)=CC3)N4N
=CN=C4N1
C1CCN(C2=NC=C(C3N=C(C4CN5C(=CN=C5)CC
4)ON=3)C=C2)CC1
CCC1=CC=C(C=C1)NC(NC2=CNC3=CC=CC=C2
3)=0
C1(=NN=C(SCC(=O)NC2=CC=C3C(0CO3)=C2)N
10)C1C=COC=1C
C1C=1C=CN2N=C(NC(=0)NC=3C=NN(C3)C4CC
CCC4)N=C2Cl
CC1=CC=C(C2NC(SCC(NC3=CC4=C(C=CN4C)C
=C3)=0)=NN=2)C=Cl
NC1=NC(C2=CC=C(N(C)C)C=C2)=CS1
CC(CN(CC1)C(Ne(ce2)eec2C(C)=0)=0O)Nlclcec(
C)ccel
CC(C)NIC=C(NC(=O)NC=2C=CC3=C(0CC3(C)C
)C2)C=NI
CC(C)C1=NC=2C=C(NC(=0O)NC=3C=C(C=CN3)C
(FO)N(C)C)C=CC201
CC(C10C(C2=CC=CC=C2)=CN=1)NC(C(NC1=C
C2=C(N=C(02)C)C=C1)=0)=0
CC(C)NC=1C=CC(=CN1)C(=O)NC2=NN=C(S2)C
=3C=CN=CC3
O=C(NC1=NN=C(S1)C=2C=CN=CC2)C=3C=CC(
SC4CC4)=CC3
CCN(CC)C=1C=CC(=CC1)C(=0)NC2=NN=C(S2)
C=3C=CN=CC3
CC1=NNC(=N1)C=2C=CC(NC(=0)C3=CC=4C=N
C=CC403)=CC2
[O-
JIN+](=0)C=1C=CC(=CC1)C(=0)NC2=NN=C(S2)
C=3C=CN=CC3
O=C(C1=CC=C(C)C(C)=C1)NC(S2)=NN=C2C3=
CC=NC=C3
CCOc(ccl)cecl C(Nelnne(-c2eence2)s1)=0
COC1=CC=C(N=C(N2CCN(C3=NC=CC=N3)CC2)
S4)C4=C1

Celnc(N(CC2)CCN2c2ncceee2)ne(CCC2)c1C2=0
CN(C)C1=CC2=CC=CC=C2N=CINC3=CN=C(OC
)C=C3
O=C(NC1=NN=C(C2=CC=NC=C2)S1)C3=CC=C(
0OC)C=C3
CN(C)C(C=C1)=CC2=C1IN=C(S2)NC3=CN=C(OC
)C=C3

NC1=CC(C2=CC=C(OC)C=C2)=NOl
COC1=CC=C(N=C(NC2=CC=C(0OC)C=C2)C=C3)
C3=C1
BrC1=CC=C(C2=NOC(NC(C3=CC=CC(OCC)=C3
)=0)=C2)C=Cl
CC1=CC=C(C2=NOC(NC(C3=CC=C(OCCC)C=C
3)=0)=C2)C=C1
O=C(C1=CN=C(N=C1)N2CCN(CC2)C3=NC=CC=
C3)NC4=CC=C(0C)C=C4
O=C(C(C=NC(N1CCN(CC1)C2=CC=C(0C)C=C2)
=N3)=C3N)NC4=CC=C(OC)C=C4
BrC1=CC=C(C2=NOC(NC(C3=CC=C(0OC)C=C3)=
0)=C2)C=C1

Mcule ID

MCULE-8208018033

MCULE-4759842239

MCULE-2241433376

MCULE-6909752187

MCULE-8621314498

MCULE-6496962235
MCULE-3640234203

MCULE-8493756119

MCULE-9820771788

MCULE-8008821641

MCULE-5206636263

MCULE-5266123310

MCULE-6206705061

MCULE-9236698514

MCULE-2019341366

MCULE-7388529879

MCULE-4854937769
MCULE-1488042594

MCULE-1195918550

MCULE-5461172863

TZ80-142

MCULE-4152335408

TZ80-84
MCULE-5879131729

TZ90-8

MCULE-1131491708

MCULE-6705203185

MCULE-1682064949

MCULE-2502940094

MCULE-5698809192

Pred.

1

Ki (nM)

NB

NB

&

NB

NB

NB

104

61.74

4.605

9414

617

12.7
10.36

30.524

NB

NB

479

257.6

22.12

9.87

4.25

44.78

16.62

FP BV-21

0.073

0.096

0.102

0.125

0.136

0.127
0.143

0.134

0.147

0.148

0.143

0.179

0.188

0.191

0.196

0.198

0.202
0.244

0.158

0.075

0.112

0.350

0.121
0.375

0.181

0457

0.583

0.227

0.221

0.783

FPTZ61-84

0.103

0.070

0.101

0.095

0.105

0.115
0.087

0.089

0.112

0.124

0.148

0.117

0.077

0.097

0.123

0.071

0.092
0.127

0.140

0.067

0.330

0.143

0.352
0.136

0.447

0.140

0.145

0.159

0.185

0.155

FPM503
0.118
0.127
0.127
0.136
0.128

0.138
0.106

0.145
0.137
0.138
0.171
0.153
0.111
0.113

0.189

0.096

0.108
0.164

0273
0.323
0.157
0.192

0.155
0.169

0.200
0.165
0.140
0.646
0.692

0.194
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