

1

Supplementary Material

2

For

3

Off-line catalytic behavior in the preparation of FDCA from 4 biomass and CO₂

5

Xu Wu ^a, Heqin Guo ^{a*}, Litao Jia ^a, Debao Li ^{a*}

6 ^a *State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of
7 Sciences, Taiyuan, Shanxi 030001, People's Republic of China*

8

* Corresponding author. E-mail address: guoheqin@sxicc.ac.cn (H. Q. Guo); dbli@sxicc.ac.cn (D. B. Li)

9 1. Experimental part

10 Manganese sulfate monohydrate ($\text{MnSO}_4 \cdot \text{H}_2\text{O}$), potassium permanganate
11 (KMnO_4), cesium carbonate (Cs_2CO_3), iron(III) hydroxide, furfural, and furoic acid
12 were purchased from MACKLIN and employed in catalyst synthesis.

13 1.1.1 Preparation of $\delta\text{-MnO}_2$

14 $\delta\text{-MnO}_2$ was synthesized hydrothermally by adding KMnO_4 (0.024 mol) and
15 $\text{MnSO}_4 \cdot \text{H}_2\text{O}$ (0.004 mol) to deionized water (140 mL) under stirring for 30 min. The
16 homogeneous solution was transferred to a 200 mL polytetrafluoroethylene-lined
17 autoclave and maintained at 160 °C for 12 h. After cooling to room temperature, the
18 precipitate was collected by filtration, washed thoroughly with deionized water, and
19 dried at 80 °C for 12 h. The resulting material was designated as $\delta\text{-MnO}_2$.

20 1.1.2 Preparation of FeFDCA

21 2 mmol of FDCA was mixed with 0.67 mmol of Fe(OH)_3 , followed by the addition
22 of 2 mL of deionized water. The mixture was magnetically stirred for 30 min. The
23 completion of the acid-base reaction was determined by monitoring the pH value of the
24 solution. Once the pH value stabilized at approximately 6, the resulting mixture was
25 transferred to an oven and dried at 120 °C for 2 h to completely remove the residual
26 water. The resulting powder was identified as FeFDCA.

27 1.2 Evaluation of the catalyst

28 1.2.1 Furfural oxidation to furfuryl acid

29 Catalyst evaluation was performed in a 100 mL batch autoclave reactor. In a
30 standard procedure, furfural (50 mg), deionized water (10 mL), and catalyst (200 mg)

31 were charged into the reactor. The system was purged with pure O₂ (5×) and pressurized
32 to 1 MPa with O₂. Reactions were conducted at 100 °C for 1 h with continuous stirring
33 (500 rpm). Parametric studies examining variable effects are detailed in subsequent
34 sections. Following reaction completion, the reactor was rapidly cooled to ambient
35 temperature. The product mixture was filtered through a 22 μm PTFE membrane
36 syringe filter, diluted appropriately, and analyzed by high-performance liquid
37 chromatography (HPLC) under these conditions: the column was a C₁₈ column from
38 Waters, the flow ratio was acetonitrile:water=1:1, the flow rate was 1 ml/min, the
39 detection wavelength was 220 nm, and the column temperature was constant at 30 ° C.
40 The reaction was carried out at a constant temperature of 30 ° C. The reaction was
41 carried out at a constant temperature of 30 °C. The carbon equilibrium of the reaction
42 was calculated by using the configured standard solution.

43 The formulae for furfural conversion, furfuryl acid selectivity, reaction rate and
44 carbon balance of the furfural oxidation-to-acid reaction in this study were as follows:

$$45 \text{Conver.FF} = \frac{n_{FF \text{ in}} - n_{FF \text{ out}} \text{ (by HPLC)}}{n_{FF \text{ in}}} \times 100\%$$

$$46 \text{Select.FA} = \frac{n_{FA} \text{ (by HPLC)}}{n_{\text{product}} \text{ (by HPLC)}} \times 100\%$$

$$47 \text{Reaction rate} = \frac{n_{FF \text{ in}} \times \text{Conver.FF} \times \text{Select.FA}}{m_{\text{cat.}} \times t} \times 100\%$$

$$48 \text{Carbon balance} = \frac{n_{FF \text{ out}} \times n_{FA \text{ out}}}{n_{FF \text{ in}}} \times 100\%$$

49 where Conver._{FF} denotes furfural conversion, Select._{FA} denotes furfuryl acid
50 selectivity; n_{FF} in denotes the feed molar amount of furfural, n_{FF} out denotes the molar
51 amount of furfural in the product detected by HPLC; n_{FA} denotes the molar amount of

52 furfuryl acid in the product detected by HPLC, nproduct denotes the total molar amount
53 of the product detected by HPLC; mcat. denotes the total mass of catalyst and t denotes
54 the reaction time.

55 1.2.2 Evaluation of direct carboxylation performance of furoic acid/furoate with
56 CO₂

57 A mixture of furoic acid (2 mmol) and hydroxide (1 mmol) in deionized water (2
58 mL) was magnetically stirred for 5 min. Cesium carbonate (Cs₂CO₃, 1.2 mmol) was
59 subsequently added, followed by magnetic stirring for 15 min. The resulting mixture
60 was dehydrated at 150°C for 2 h. The dried powder was transferred to a 100 mL batch
61 reactor with magnetic stirring. The system was purged with CO₂ (5×), pressurized to 2
62 MPa, and heated to 230°C. The reaction proceeded for 12 h at 300 rpm.

63 Control experiment: Furoic acid was directly mixed with Cs₂CO₃ in deionized
64 water (2 mL), stirred for 20 min, dried, and reacted under identical conditions.

65 The above reaction products were analyzed in the following two ways:

66 High Performance Liquid Chromatography (HPLC): the above obtained solid was
67 dissolved in the mobile phase and filtered using a 0.2 µm PTFE filter membrane and
68 then the above filtrate was analyzed by HPLC. The chromatographic detection
69 conditions were as follows: the chromatographic column was a Waters C₁₈ column, the
70 mobile phase ratio was acetonitrile: water = 1:9, the flow rate was 1 ml/min, the
71 detection wavelength was 254 nm, and the column temperature was constant at 40 °C.

72 The chromatographic detection conditions were as follows.

73 The conversion of furoic acid in this study, the FDCA selectivity was calculated

74 as follows:

$$75 \quad \text{Conver.FA} = \frac{n_{\text{product}}(\text{by HPLC})}{n_{\text{product}}(\text{by HPLC}) + n_{\text{FA out}}(\text{by HPLC})} \times 100\%$$

$$76 \quad \text{Select.FDCA} = \frac{n_{\text{FDCA}}(\text{by HPLC})}{n_{\text{product}}(\text{by HPLC})} \times 100\%$$

77 Where Conver._{FA} denotes the conversion of furoic acid, Select._{FDCA} denotes the
78 selectivity of FDCA, n_{product} (HPLC) denotes the total molar amount of the product
79 detected by HPLC, n_{FA out} denotes the molar amount of unreacted furfural detected by
80 HPLC, and n_{FDCA} denotes the molar amount of furandicarboxylic acid in the product
81 detected by HPLC.

82 1.3 Catalyst characterization

83 XRD: The crystalline phase and growth direction of the samples were
84 characterized using an X-ray diffraction (XRD) analyzer (PANalytical X'pert3) with
85 Cu target, K α ($\lambda = 1.54056 \text{ \AA}$), 40 kV tube voltage and 40 mA tube current as the
86 parameters tested.

87 SEM: Scanning electron microscope (JSM-7001F) was utilized to observe the
88 morphology of the samples.

89 Furfural-IR: Furfural-IR experiments were performed on a Nicolet iS10 infrared
90 spectrometer. The catalyst was first purged under argon atmosphere at 80°C for 30 min
91 and sample spectra were collected. The furfural was then bubbled with argon gas into
92 the in situ cell until the catalyst was saturated with adsorption. After the catalyst is
93 saturated with adsorption, argon gas is switched to remove the physically adsorbed
94 furfural for 30 min, and finally oxygen or argon is switched to start the oxidation

95 reaction for 30 min.

96 FA-DRIFTS: The in situ infrared experiments of furoate were carried out on a
97 Nicolet iS10 infrared spectrometer with the following procedure: a mixture of
98 appropriate amount of furoate and carbonate (mixing ratio of furoate: carbonate = 1:1.2,
99 mixed and fully ground) was placed in a reaction cell, and the temperature was raised
100 from room temperature to 120 °C at a rate of 10 °C/min in an Ar gas atmosphere, and
101 held for 60 min. The water was removed in 60 min. The temperature was then raised from
102 120 °C to 230 °C, and the gas was switched from nitrogen to CO₂ to allow the
103 carboxylation reaction to occur, and the time-dependent infrared spectral changes were
104 recorded over a period of 30 min.

105 In order to clarify the reaction mechanism of carboxylation, the in situ IR of
106 furfurylates was carried out in Ar gas atmosphere, and the specific experimental
107 procedure was as follows. A mixture of appropriate amount of furoate and carbonate
108 (mixing ratio of furoate: carbonate = 1:1.2, mixed and ground thoroughly) was placed
109 in a reaction cell, and the temperature was increased from room temperature to 120 °C
110 at a rate of 10 °C/min in Ar gas atmosphere, and kept for 60 min to remove water. The
111 temperature was then raised from 120 °C to 230 °C in an Ar gas atmosphere to allow
112 carboxylation to take place, and the time-dependent changes in the IR spectra were
113 recorded over a period of 30 min.

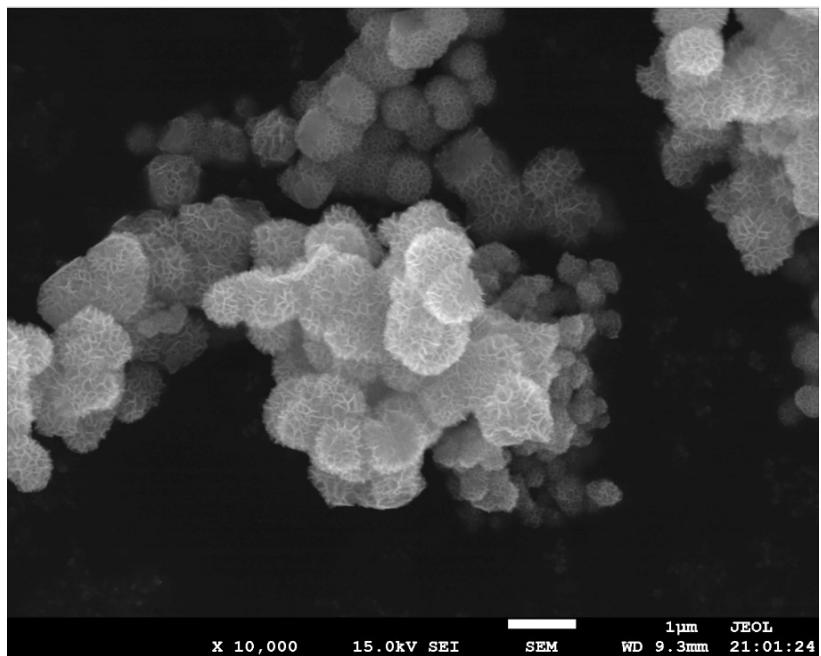
114

115 **2. The characterization results.**

116 **Fig. s1.** SEM image of δ -MnO₂.

117 **Fig. s2.** XRD pattern of δ -MnO₂.

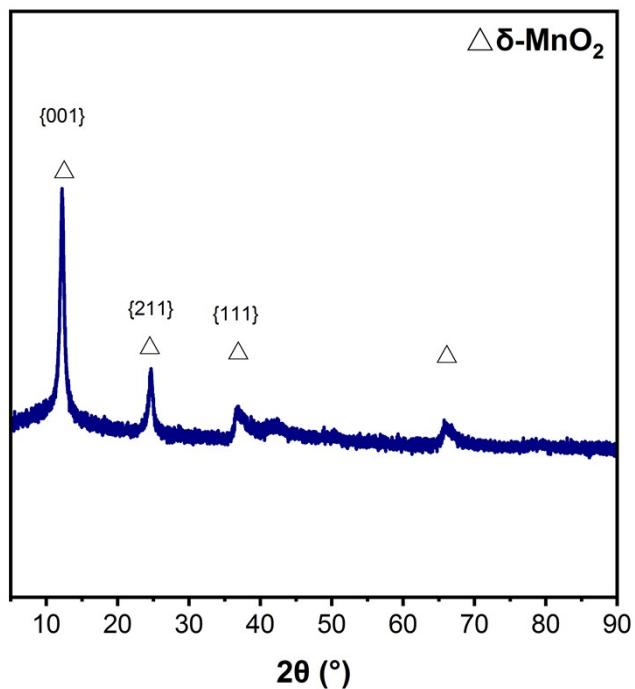
118 **Fig. s3.** Carboxylation properties of ferric furoate in different atmospheres.


119 **Fig. s4.** In situ ¹H NMR spectra of furoic acid (left) and iron furoate (right) dissolved

120 in CD₃CN after the addition of D₂O.

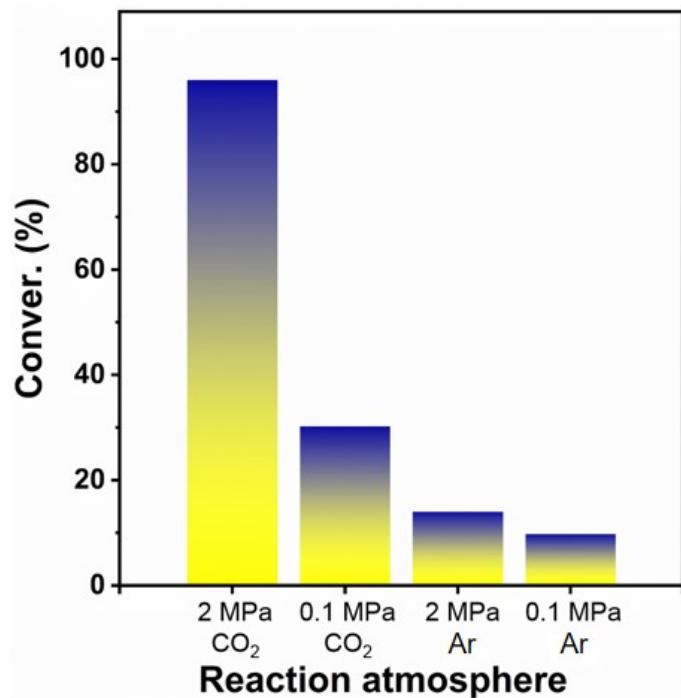
121 **Fig. s5.** (a) O₂-TPD profiles of δ -MnO₂, (b) Water signaling in the O₂-TPD process.

122


123

124

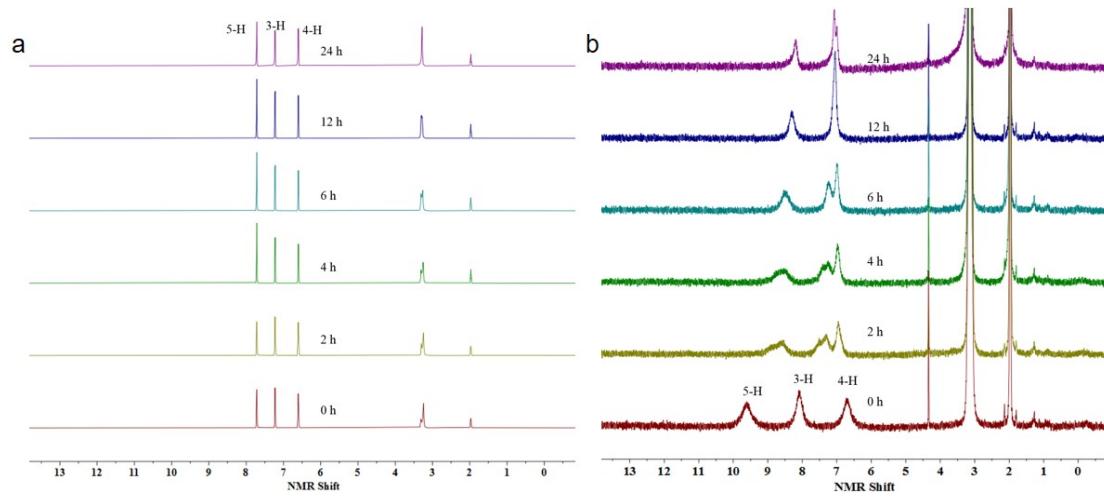
Fig. s1. SEM image of δ -MnO₂.


125

126

Fig. s2. XRD pattern of $\delta\text{-MnO}_2$.

127

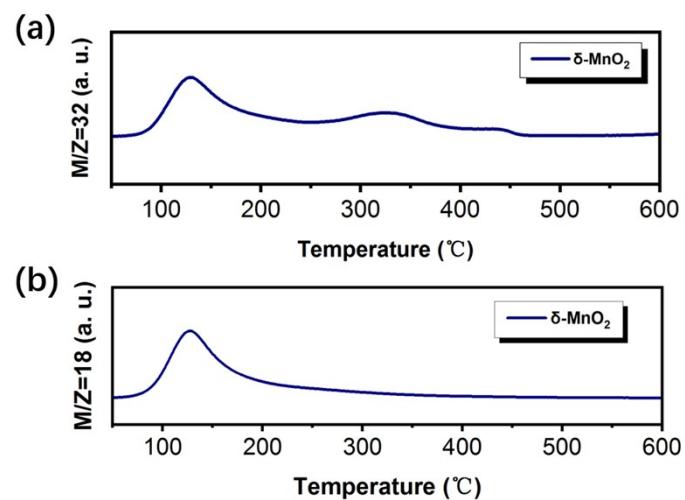

128

129

Fig. s3. Carboxylation properties of ferric furoate in different atmospheres.

130

131



132 Fig. s4. In situ ^1H NMR spectra of furoic acid (left) and iron furoate (right) dissolved in CD_3CN

133 after the addition of D_2O .

134 In-situ liquid-state NMR spectroscopy unambiguously demonstrates that the
135 introduction of Fe facilitates the deprotonation of the 5-H on the furan ring, thereby
136 promoting the insertion of CO_2 and consequently favoring the formation of 2,5-
137 furandicarboxylic acid (FDCA).

138

139

Fig. s5. (a) O₂-TPD profiles of $\delta\text{-MnO}_2$, (b) Water signaling in the O₂-TPD process.