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Computational Methods. All structural optimization calculations were performed using the
Vienna Ab initio Simulation Package (VASP5.4.4)!. Electronic exchange-correlations were
described using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional? within
the Generalized Gradient Approximation (GGA), while electron-ion interactions were treated
using the Projector Augmented Wave (PAW) method?. The parameters for structural relaxation
calculations were set as follows: the energy cutoff for the plane-wave basis set was set to 400
eV; the Brillouin zone was sampled using a 2 x 2 x 1 Monkhorst-Pack grid; and the convergence
criteria for energy and force were 1 x 10+ eV/atom and 0.01 eV/A, respectively. Grimme’s
DFT-D3* correction was employed to account for van der Waals forces, ensuring the accuracy
of interfacial interactions. When handling systems containing explicit water molecules at the
interface, this study utilized a method termed the “Constant Potential Hybrid Solvation
Dynamics Model” (CP-HS-DM) > ¢ to calculate energy barriers under constant potential
conditions. In this model, electrons are coupled to a fictitious potentiostat, allowing the Fermi
level of the system to fluctuate around a constant value, while the number of electrons evolves
according to a grand canonical distribution at the preset electrode potential. To maintain the
electrical neutrality of the system, net charges are balanced by ionic charges in the implicit
solvent. For constrained Ab Initio Molecular Dynamics (AIMD) simulations, the “slow

growth” method was adopted, wherein the reaction coordinate transitions gradually from the



initial state to the final state. For each value of the reaction coordinate, the corresponding mean
force acting on the reaction coordinate is extracted. By integrating the mean force with respect
to the reaction coordinate, the free energy curve is obtained, from which the activation energy
value is determined. The slow growth process calculations employed PBE-D3 with Becke-
Jonson damping to describe van der Waals interactions, with a plane-wave basis set energy

cutoff of 400 eV and a Brillouin zone sampling of a 1 x 1 X 1 Monkhorst-Pack grid.

The formation energy (Ey) is calculated as:
Ef= Epy_sup = My — Egup (D

E E

, where “M - sub represents the energy of the clean substrate, ~subis the total energy of structure

without metal, ¥ is the energy of a single metal atom in the bulk phase.

The dissolution potential Uy, of metal atom is calculated by the following formula:

0
Ugiss = Udiss(metal,bulk) - AEf/ne )

0
, Where Udiss(metalbutk) is the standard dissolution potential of the bulk metal, n is the number of

electron transferred during dissolution. Only catalysts with £¢ < 0eV and Uy > OV vs. SHE

are considered to be both thermodynamically and electrochemically stable’.

The ORR process was evaluated using the computational hydrogen electrode (CHE) model.
The changes of Gibbs free energy (AG) for each ORR step can be calculated as

AG = AE + AZPE -TAS + AG,; + AGy,

where AE, AZPE, and AS are the changes of the total energy that can be directly obtained from
DFT calculations, the difference of zero-point energy, and the change of entropy, respectively.
AG,yis the free energy change caused by the variation of the H* ion concentration, and the pH
value was set to be 0. The temperature (7) was assumed to be 298.15 K in this work, and AGy, =
—neU, where n and U are the transferred electron numbers for each step and the electrode

potential, respectively.

The zero-point energy and entropy of the free H, and H,O molecules were obtained according

AZPE, , TAS, ,
to the NIST database. Then, the calculated results are 2 =0.57 ¢V, 2°=0.58 ¢V,

AZPE, TAS), . , , .
2=0.27eV,and 2=(0.45 eV. Given the difficulty in the calculation of the free energy

of H,O(1), we adopted a correction of 0.09 eV under 0.035 bars as the reference state because,
at this pressure, the liquid and gas phases of H,O can reach equilibrium at 298.15 K. Thus, the
final entropic term of H,O(I) was 0.67 eV (0.58 + 0.09 = 0.67 eV).

The detailed pathway for 2e mechanism in ORR was adopted in our work as the following two

steps:



0,+H" +e > x00H
*xOOH+H' +e > *+ H,0,
the reaction free energy can be calculated by:

AGy =G, goy = 156Gy -G +eU

Owing to the high-spin ground state of the O, molecule, it is poorly described in DFT

computations. To avoid calculating the energy of O,, we first calculated reaction free energy of

equations

Then, the reaction free energy can be defined as:

AG , oo = 156y + G . oo =26y oG,

*+ 2H,0— * O0H + 3/2H,
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Fig.S1 Metal atomic formation energy (£y) (a) and dissolution potential (Uy;ss) (b) of pyridine-

nitrogen coordinated single-atom catalysts.
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Fig.S2 Metal atomic formation energy (Ey) (a) and dissolution potential (Uys) (b) of pyrrole-

nitrogen coordinated single-atom catalysts.
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Fig.S3 Free energy diagrams of the two-electron pathway of 54 single-atom catalysts screened

at the equilibrium potential of 0.7 V.
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Fig.S4 The COHP plots and ICOHP values of Ni-N (a) in pyridine-type NiN, and Ni-C (b) in
pyrrole-type NiN;C;.
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Fig.S5 Partial density of states (PDOS) diagrams of metal Ni and O in (a) pyridine-type
NiN4*OOH and (b) pyrrole-type NiN;C;*OOH. COHP plot of metal Ni and O in (c¢) pyridine-
type NiN,*OOH and (d) pyrrole-type NiN;C,;*OOH.
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Fig.S6 The charge density difference plot and the charge transfer of pyridine-type NiN,*OOH
and pyrrole-type NiN;C;*OOH.
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Fig.S7 (a) The snapshot structures of pyrrolic-type NiN;C,; after 10 ps MD simulations; (b) MD

energy and temperature profiles for pyrrolic-type NiN;C, during 10 ps AIMD simulations.
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