Supplementary Information (SI) for ChemComm.

This journal is © The Royal Society of Chemistry 2025

Supporting Information

Tuning the Performance of Zinc Hexacyanoferrate Cathodes via Ferrocyanide/Ferricyanide Precursor Selection for High-Efficiency Zinc-Ion Storage

Jiayao Wang,^a Zewei Hu,^a Qingqing Zheng,^a Xin Wang,^a Haiying Lu,^a Yuju Qi,^a Fuliang Chen,^a Chao Han,^b Chandrasekar M Subramaniyam,^c Weijie Li*^a

1. Experimental Section

Materials Synthesis:

All materials in this work are of analytical grade and have not undergone further purification. K_3 was prepared by a co-precipitation method at room temperature. Typically, Solution A was made by dissolving 3 mmol ZnSO₄·H₂O in 20 mL deionized water. Solution B was made by dissolving 2 mmol K_3 Fe(CN)₆ in 20 mL deionized water. Then, solution A was added dropwise to solution B water under constant stirring. After stirring at room temperature for 4 hours, the precipitate was centrifuged with deionized water and anhydrous ethanol and then vacuum-dried at 80 °C for 12 hours. The synthesis of Na₄ and K_4 followed the same procedure as that of K_3 , except that K_3 Fe(CN)₆ was replaced by equal amounts of Na₄Fe(CN)₆ and K_4 Fe(CN)₆.

Material Characterization:

X-ray diffraction (XRD) was performed using a Bruker D8 (Cu Kα radiation). Water content was determined by Thermogravimetric analysis (TG 209 F1 Libra), while the element composition was obtained by ICP-OES (SPECTRO BLUE). The microstructure was examined via Scanning electron microscopy (SEM, JEOL JSM-7100F) with an energy dispersive X-ray spectrometer (EDS). The valence states were analyzed by X-ray photoelectron spectroscopy (XPS) with a Thermo Fisher Scientific Escalab 250 Xi. The Raman spectra were collected from a Raman spectrometer (Renishaw in Via) using an excitation wavelength of 532 nm.

Electrochemical Measurements:

The working electrode was composed of 70 wt% active materials (K₃, Na₄, K₄), 20 wt% Ketjen black and 10 wt% polytetrafluoroethylene. The mixture was ground for 30 minutes to form a suitable consistency slurry. The slurry was evenly applied onto a 10 mm-diameter circular graphite foil and then dried under vacuum at 80 °C for 12 hours. A zinc foil was used as anode. The electrolyte for electrochemical performance test was 3 M Zn(CF₃SO₃)₂. The CR2032 coin-type battery was manufactured by assembling the electrodes, separator, and electrolyte in the air environment. All

assembled cells were left to stand for 6 h before testing. A Neware battery test system (CT-4008Tn-5V10mA-HWX, Shenzhen, China) was used to evaluate the electrochemical performance of the cells. Galvanostatic charge/discharge (GCD) measurements were carried out within the voltage range of $0.7\sim1.9~\rm V$ (vs. Zn²⁺/Zn). For anode-less battery, zinc-deposited copper was used as the anode, with a deposition current of 1 mA/cm². Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were conducted using a Gamry Interface 1010E electrochemical workstation. The frequency range of EIS was $0.01~\rm Hz$ to $100000~\rm Hz$. The galvanostatic intermittent titration technique (GITT) testing was conducted at a specific current of 20 mA g⁻¹, in which the cell was alternately charged/discharged for $600~\rm s$ followed by $3600~\rm s$ of rest. The Zn²⁺ diffusion coefficient can be calculated using the equation: $D = \frac{4}{\pi\tau} (\frac{m_B V_M}{M_B S})^2 (\frac{\Delta E_s}{\Delta E_t})^2$, where m_B , V_M , and M_B represent the mass, molar volume, and molar mass of the active materials; τ is the testing time in each step; S is the electrode contact area; ΔE_s is the voltage change before and after the titration; and ΔE_t is the voltage change during the titration.

Computational method:

Density functional theory (DFT) calculations were performed using the Vienna Ab initio Simulation Package (VASP), which employs a plane-wave basis set and the projector augmented wave (PAW) method. The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional within the generalized gradient approximation (GGA) was used. Atomic positions were fully relaxed until the forces on all atoms were below 0.05 eV/Å, with an electronic iteration convergence criterion of 10⁻⁵ eV. The plane-wave kinetic energy cutoff was set to 520 eV. Brillouin zone integrations were performed using a Gamma-centered k-points mesh with density of about 0.03 Å⁻¹. The diffusion barriers were calculated using the climbing image nudged elastic band (CI-NEB) method.

2. Supplementary Figures

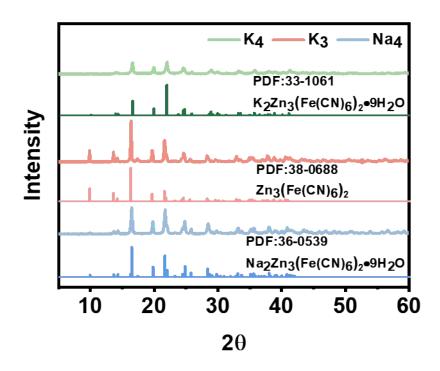


Figure S1. XRD pattern of Na_4 , K_3 , and K_4 .

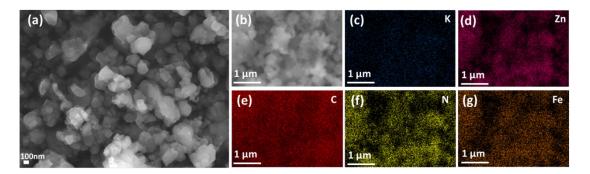


Figure S2. SEM images of K₃ and corresponding elemental mapping images.

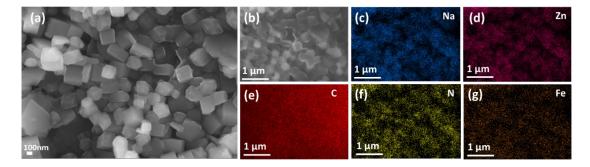


Figure S3. SEM images of Na₄ and corresponding elemental mapping images.

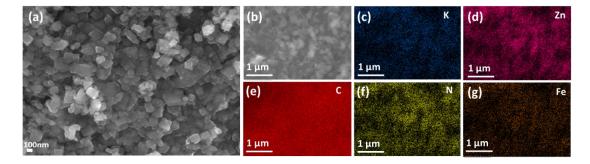


Figure S4. SEM images of K₄ and corresponding elemental mapping images.

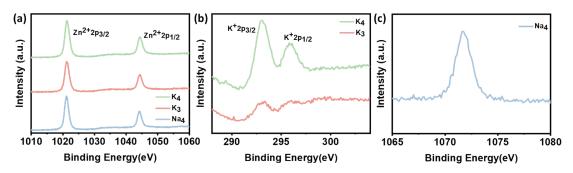


Figure S5. (a) Zn 2p XPS spectra of Na₄, K_3 , and K_4 . (b) K 2p XPS spectra of K_3 and K_4 . (c) Na 1s XPS spectra of Na₄.

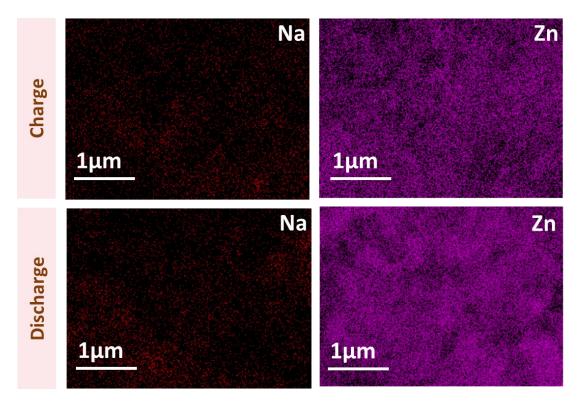


Figure S6. Elemental mapping images of Na₄ under the states of first-cycle charge and first-cycle charge-discharge.

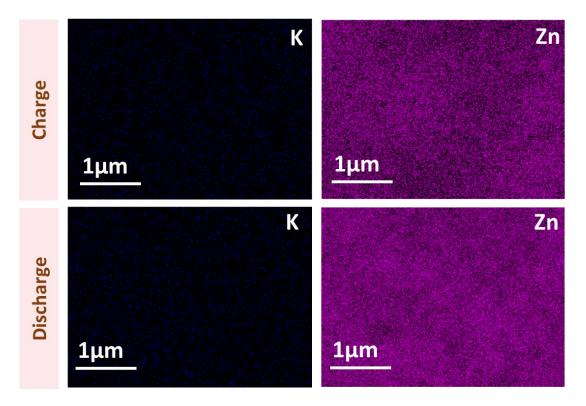


Figure S7. Elemental mapping images of K₄ under the states of first-cycle charge and first-cycle charge-discharge.

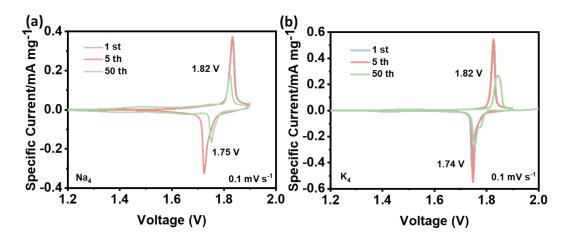


Figure S8. CV curves of (a) Na_4 and (b) K_4 .

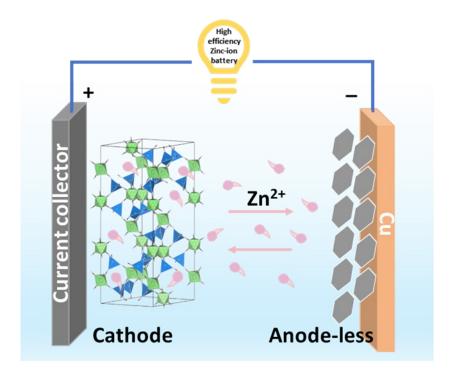


Figure S9. Schematic illustration of the Anode-less battery.

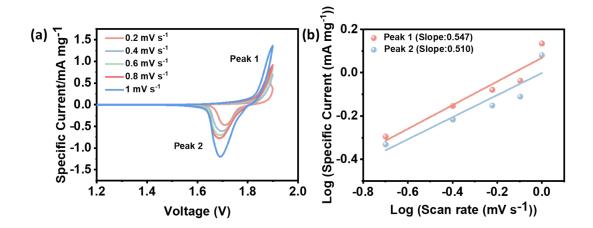


Figure S10. (a) CV curves at different scan rates from 0.2 to 1 mV s $^{-1}$ of Na₄ and (b) the corresponding linear fitting of log (i) and log (v) plots.

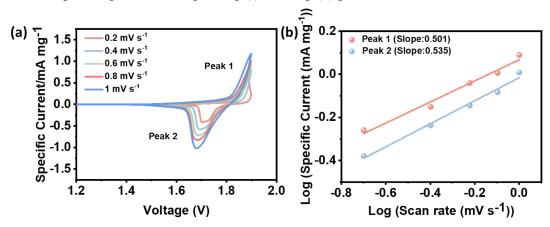


Figure S11. (a) CV curves at different scan rates from 0.2 to 1 mV s⁻¹ of K_4 and (b) the corresponding linear fitting of log (i) and log (v) plots.

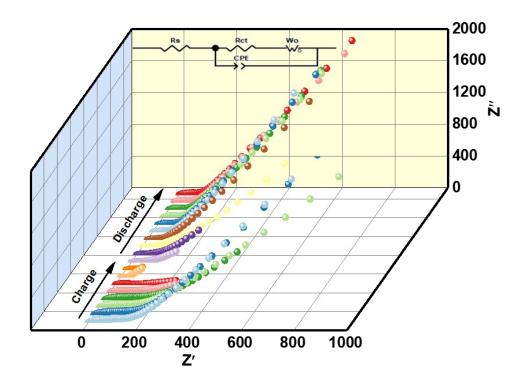


Figure S12. In-situ EIS curves of Na₄.

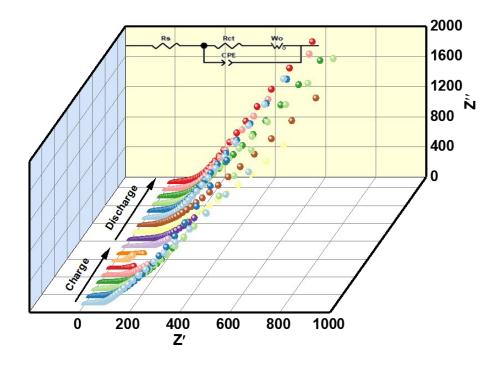


Figure S13. In-situ EIS curves of K_4 .

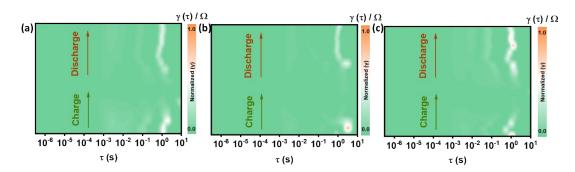


Figure S14. DRT results of (a) Na_4 , (b) K_3 , and (c) K_4 .

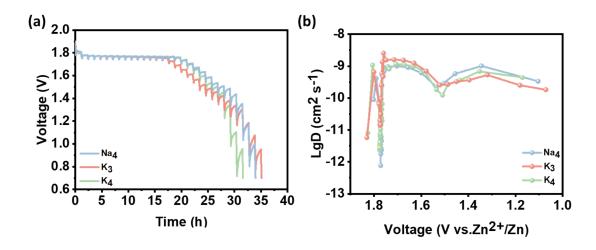


Figure S15. (a) GITT curves and (b) the calculated Zn²⁺ diffusion coefficients.

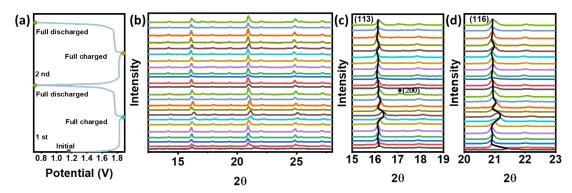


Figure S16. (a) GCD curve and (b-d) ex-situ XRD patterns of Na₄ at different states during the first two cycles.

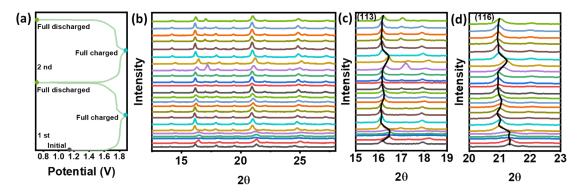


Figure S17. (a) GCD curve and (b-d) ex-situ XRD patterns of K_4 at different states during the first two cycles.

Supplementary Tables

Table S1. Detailed structural information of the Na₄ sample after Rietveld refinement.

Na₄. Space group R-3c, a=b=12.47846 Å, c=32.95311 Å, and α = β =90°, γ =120°, V= 4443.744 Å³. R_{wp}=6.1%.

Atom	X	у	z
Na1	0.3504	0.30629	0.3
Zn1	0.29063	0	0.25
Fe1	0	0	0.14802
C1	-0.01939	0.18106	1
C2	0.21481	0.21714	1
N1	-0.02356	0.20625	1
N2	0.14385	0.23694	1
O1	0.23177	0.28654	0.17
O2	0.2441	0.34011	0.15
O3	0.39194	0.31611	0.28
O4	0.36215	0.30109	0.56
O5	0.3102	0.2774	0.4

Table S2. Detailed structural information of the K_3 sample after Rietveld refinement.

 $K_3. \mbox{ Space group R-3c, a=b=12.54776 Å, c=32.83652 Å, and } \alpha=\beta=90^\circ, \gamma=120^\circ, \\ V=4477.343 ~\mbox{Å}^3. \mbox{ } R_{wp}=9.06\%.$

Atom	X	у	z
Zn1	0	0.29511	0.75
Fe1	0	0	0.14695
C1	0.02613	0.90449	0.18158
C2	0.01369	0.13415	0.37143
N1	0.04525	0.23969	0.71889

Table S3. Detailed structural information of the K_4 sample after Rietveld refinement.

 K_4 . Space group R-3c, a=b=12.57255 Å, c= 32.14694 Å, and α=β=90°, γ=120°, V=4400.653 ų. R_{wp} =6.55%.

Atom	X	у	z
K1	0.0188	0.20324	0.05928
Zn1	0.28567	0	0.25
Fe1	0	0	0.14675
C1	-0.00338	0.11652	0.17089
C2	0.14614	0.11962	0.11765
N1	0.06681	0.31386	0.22495
N2	0.2245	0.02418	0.01633
O1	0.40424	0.01171	0.04176
O2	0.22486	0.02204	0.00734
О3	0.07463	-0.03409	0.01506

Table S4. Mass ratio of each atom in Na_4 , K_3 and K_4 obtained by ICP-OES and elemental analysis.

Samples	Elements	Weight (wt.%)	Atomic ratio	Chemical formula
	Na	4.58	0.83	
Na_{4}	Zn	23.8	1.5	$Na_{0.83}Zn_{1.5}Fe(CN)_{6}\Box 4.29H_{2}O$
	Fe	13.2	1	
	K	0.97	0.1	
K_{3}	Zn	26.4	1.54	$K_{0.1}Zn_{1.54}Fe(CN)_{6}\Box 1.95H_{2}O$
	Fe	14.7	1	
	K	7.44	0.79	
K_{4}	Zn	24.5	1.54	$K_{0.79}Zn_{1.54}Fe(CN)_{6}\Box 3.63H_{2}O$
	Fe	13.3	1	

Table S5. Comparison of Key Characteristics of Na_4 , K_3 , and K_4 .

Key Characteristics	Na ₄	K_3	K ₄
Crystal structure	R-3c	R-3c	R-3c
Alkali metal ion			
content (per formula	$Na^{+} = 0.83$	$K^{+} = 0.1$	$K^+ = 0.79$
unit)			
Crystalline water	10.00	10.01	16.00
content (%)	19.00	10.01	16.09
F 1	Fe ²⁺ (single	Fe ²⁺ /Fe ³⁺ (mixed	Fe ²⁺ (single
Fe valence state	valence)	valence)	valence)
Rate capacity (mAh	22	35	33
g ⁻¹ , 1000 mA g ⁻¹)	22		
Capacity retention	/	70.5	/

after 800 cycles (%)			
Zn ²⁺ migration aenergy barrier (eV)	1.46	0.65	1.30
Phase transition during cycling	Irreversible (monoclinic phase)	Reversible (no phase change)	Irreversible (monoclinic phase)