

Supporting Information

Stabilizing Bi active Species via Constructing Bi-O-Ce Interface for Enhanced CO₂ Electroreduction to Formate

Xinya Ren, She Gong, Zhenze Han, Yu Wei* and Yan Gao*

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China. E-mail: weiyu@dlut.edu.cn; dr.gaoyan@dlut.edu.cn

Experimental

Chemicals and reagents

All chemical reagents, including bismuth acetate (C₆H₉BiO₆, 99.9%), cerium (III) nitrate hexahydrate (Ce(NO₃)₃·6H₂O, 99.5%), hexamethylenetetramine (C₆H₁₂N₄, 99.9%), absolute ethanol (C₂H₅OH, 99.9%), ethylene glycol (C₂H₆O₂, 99.9%), and potassium bicarbonate (KHCO₃, 99.5%), were of analytical grade and used as received without further purification.

synthesis of CeO₂@BOC

The CeO₂@BOC catalyst was synthesized via a one-step hydrothermal method. Typically, 1 mmol of bismuth acetate, 0.05 mmol of cerium nitrate hexahydrate, and 125 mg of hexamethylenetetramine (HMT) were dispersed in a mixed solvent system containing 14 mL of ethanol and 14 mL of ethylene glycol under continuous magnetic stirring at 1000 rpm until a clear solution was obtained. The resulting mixture was then transferred into a 50 mL Teflon-lined stainless steel autoclave and heated in an oven at 170 °C for 8 h. After the autoclave cooled down to room temperature naturally, the resulting precipitate was collected and washed thoroughly with ethanol and deionized water three times each via centrifugation. The final product was dried in a vacuum oven at 70 °C for 2 h, yielding a light-yellow powder denoted as CeO₂@BOC.

A series of x% CeO₂@BOC electrocatalysts (where x represents the molar ratio of Ce/(Ce+Bi)) were prepared using the identical procedure by varying only the amount of cerium nitrate precursor.

synthesis of BOC

The control sample, denoted as BOC, was prepared using an identical procedure to that of CeO₂@BOC, with the only exception that no cerium source was added. The resulting product was an off-white powder.

synthesis of CeO₂

The CeO₂ control sample was prepared using an identical procedure to that of CeO₂@BOC, with the only exception that no bismuth source was added. The resulting product was a light-yellow powder.

Fabrication of the electrodes

5 mg of catalysts, and 20 μ L of 5wt% Nafion solution was dispersed into 1 mL isopropyl alcohol, followed by sonication for 60 min to form a homogeneous solution. Then 100 μ L of the as-prepared solution was dropped onto a carbon paper with the area of 1 \times 1 cm² and dried at 60°C for 0.5h to obtain the catalytic electrode.

Materials characterizations

The morphology and dimension of as-prepared materials were characterized by Nova Nano SEM 450 equipment. The microstructures of the samples were characterized by TEM (FEI TF30). X-ray diffraction (XRD) pattern was collected by a D/max-2400 diffractometer (Japan Rigaku Rotaflex) using Cu K α radiation ($\lambda = 154.1$ nm). X-ray photoelectron spectroscopy (XPS) measurement was performed on a Thermo ESCALAB XI+ instrument. The binding energy (BE) was calibrated with respect to the C 1s level (284.8 eV) of adventitious carbon. Fourier Transform Infrared (FT-IR) spectroscopy was performed using the standard KBr pellet method to characterize the vibrational modes of the chemical bonds. Meanwhile, Electron Paramagnetic Resonance (EPR) spectroscopy was utilized to determine the presence of unpaired electrons by detecting paramagnetic signals, with the powder sample contained in a quartz tube for analysis.

Electrochemical measurements

All electrochemical measurements were run on a CHI 760E electrochemical workstation. The H-type cell was composed with two chambers separated by Nafion 117 membrane. The prepared electrode was subjected as the cathode in the catholyte chamber and a platinum wire as the counter electrode in the anolyte chamber. Saturated Ag/AgCl electrode was employed as the reference electrode, and CO₂ saturated 0.5 M KHCO₃ with a pH of 8.34 was used as the electrolyte. Solution resistance and charge transfer resistance were determined by electrochemical impedance spectroscopy at frequency ranges from 0.1 Hz to 100 KHz. All potentials measured against Ag/AgCl were converted to RHE scale using the formula:

$$E_{RHE} = E_{Ag/AgCl} + 0.198 + 0.0591pH \quad (16)$$

The flow cell consists of a gas chamber, a catholyte chamber, and an anolyte chamber. Each chamber has an inlet and outlet for the feed of CO₂ gas or for the circulation of electrolyte. The exposed window for electrode is 1 \times 1 cm². 1 M KOH aqueous solution was used as both anolyte and catholyte and the two chambers were separated with Nafion 117 membrane. An electronic flowmeter was employed to control the flow rate of CO₂ gas. A gas diffusion layer (YLS-30T) was

used, and the mass loading is around 1 mg cm⁻².

The calculation of electrochemical surface area (ECSA)

All ECSA measurement ranges in this paper are within the non-Faradaic range -0.1 V to -0.2 V. The ECSA was derived from the double layer capacitance (C_{dl}), where the double layer capacitance can be obtained by conducting cyclic voltammetry (CV) at various scan rates in the non-faradaic region. The calculation formula is as follows:

$$C_{dl} = [\Delta(j_a - j_c)] / 2\Delta V \quad (17)$$

Where C_{dl} represents double layer capacitance, j_a represents anodic current at a specified potential, j_c represent cathodic current at the same potential, ΔV represents the difference of scan rates¹.

Determination of gaseous products and liquid products

The gas products were analyzed with an online gas chromatography (Fuli 9720plus) equipped with a thermal conductivity detector for H₂ detection, and a flame ionization detector for CO detection. Each quantitative sampling was performed for three times to achieve accurate results. Liquid products are detected by ion chromatograph (Shenghan CIC-D100).

The Faradaic efficiency (FE) of H₂ or CO is calculated with the following formula:

$$FE = \left(\frac{Q}{Q_{total}} \right) \times 100\% = A \times R \times V_g \times t \times F \times 2 / V_M \quad (18)$$

where A is the area of H₂ or CO from GC data, R is the correction factor, V_g is the flow rate of gas, t is the period of electrolysis, F is the Faraday constant of 96485 C mol⁻¹, and V_M of 24500 ml mol⁻¹ represents the volume of gas per mole under test conditions. The formate FE (FE_{Formate}) is calculated with the following formula :

$$FE_{formate} = 2nF/Q \quad (19)$$

where 2 represents the number of transferred electrons during the reaction; n represents ERCO₂ to form formate; F is the Faraday constant (96500C mol⁻¹); and Q is the total amount of reaction charge².

In situ Raman measurements

The measurement was carried out by utilizing a home-made spectro-electrochemical flow cell through a quartz window to detect the cathode GDL. A piece of catalysts supported on GDL (2 × 2 cm², loading mass: 1.0 mg cm⁻²) was inserted through the wall of the cell to keep the plane of the working electrode perpendicular to the incident laser. The reference electrode was Ag/AgCl

(saturated KCl) placed in the cathodic compartment; the counter electrode was a graphite rod placed in the anodic compartment. A syringe pump was used to pump 0.5 M KHCO₃ at a constant flow rate of 5 mL min⁻¹ over the GDL. Investigate the influence of electrolysis time on the structural changes of the material: Record the spectra after electrolysis for 30 seconds, 1 min, 2 min, 3 min, 10 min, and 20 min at -0.9 V vs. RHE. Investigate the influence of electrolysis potential on the structural changes of the material: Collect the spectra after electrolysis for 10 minutes at various set potentials ranging from -0.7 to -1.2 V vs. RHE. Investigate the influence of the reaction intermediate on changes with electrolysis potential: Collect the spectra after electrolysis for 10 min at OCP and at various set potentials ranging from -0.6 to -1.2 V vs. RHE.

Supplementary Figures

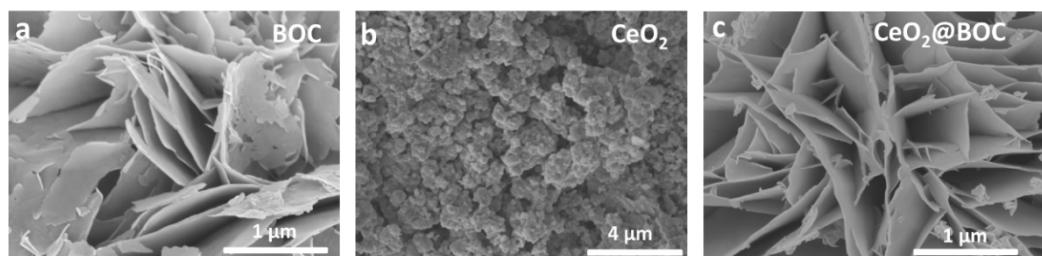


Figure S1. SEM image of (a) BOC, (b) CeO₂ and (c) CeO₂@BOC.

As shown in the figures, BOC exhibits well-defined and smooth nanosheet structures (Fig. S1a), while CeO₂ presents irregular nanoparticle morphologies (Fig. S1b).

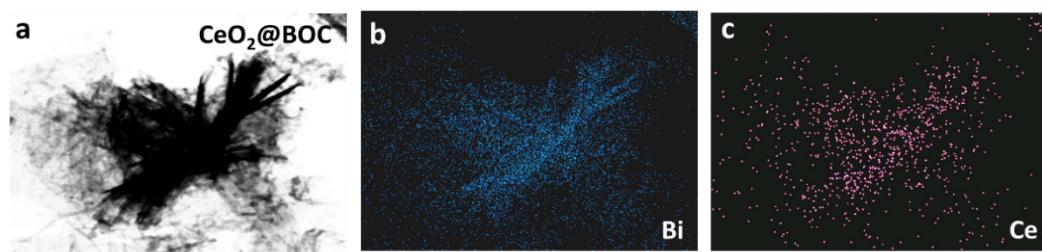


Figure S2. (a-c) EDS elemental mapping of CeO₂@BOC.

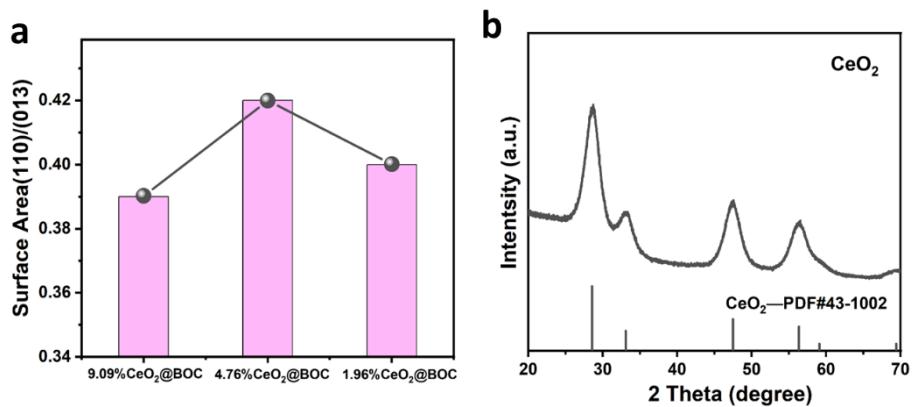


Figure S3. (a) Area ratio of (110) crystal plane and (013) crystal plane of the catalysts prepared under different reaction conditions; (b) XRD pattern of CeO₂.

No distinct CeO₂ diffraction peaks are observed in CeO₂@BOC, likely due to the low content and the similar lattice parameters of CeO₂ and BOC. As shown in Fig. S3b, the XRD pattern of pure CeO₂ displays characteristic peaks at 28.554°, 33.081°, and 47.478°, corresponding to the (111), (200), and (220) planes of CeO₂, respectively³.

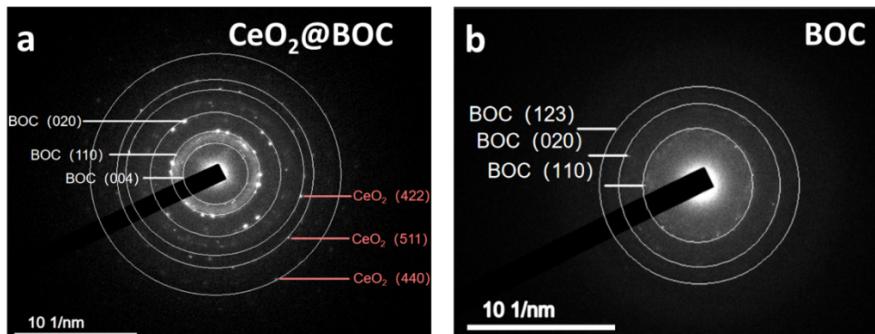


Figure S4. (a) SAED pattern of CeO₂@BOC and (b) BOC

The SAED patterns of CeO₂@BOC and BOC show symmetrical diffraction spots assigned to the (110) and (020) planes of BOC. In the SAED pattern of CeO₂@BOC, additional spots corresponding to the CeO₂ (422) and (511) planes are also detected.

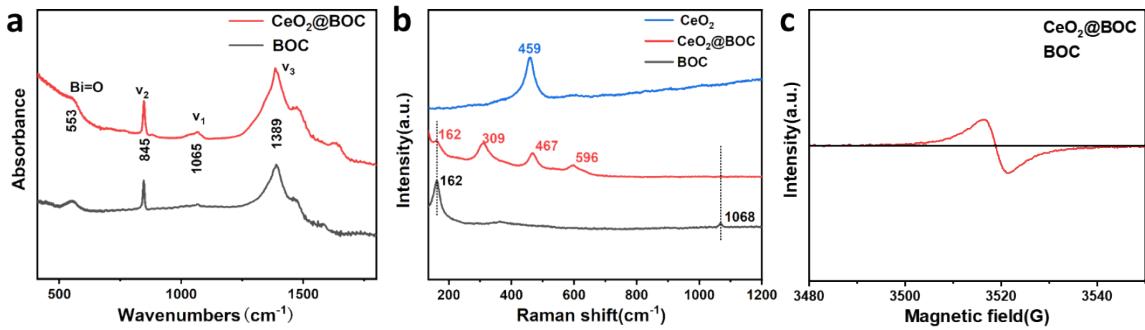


Figure S5. (a) FTIR spectra of CeO₂@BOC and BOC; (b) Raman spectra of CeO₂@BOC, BOC, and CeO₂; (c) EPR spectra of CeO₂@BOC and BOC.

The FTIR spectra of BOC and CeO₂@BOC (Fig. S5a) exhibit an absorption peak at 1389 cm⁻¹ corresponding to the antisymmetric vibration (v₃) of CO₃²⁻, while the peak at 845 cm⁻¹ is assigned to the out-of-plane bending vibration (v₂) of CO₃²⁻. The peak at 1065 cm⁻¹ originates from the symmetric stretching vibration (v₁) of CO₃²⁻, and the band at 553 cm⁻¹ is attributed to the stretching vibration of the Bi=O bond. The Raman spectra (Fig. S5b) show two characteristic peaks at 162 and 1068 cm⁻¹, confirming the formation of BOC, and the strong peak at 1068 cm⁻¹ is assigned to the v₁ vibration of chemisorbed carbonates⁴. In the Raman spectrum of CeO₂@BOC, the peak at 467 cm⁻¹ is attributed to the F_{2g} vibrational mode of fluorite-structured CeO₂⁵. The feature at 596 cm⁻¹ corresponds to defect-induced oxygen vacancies⁶. Furthermore, EPR analysis (Fig. S5c) provides additional evidence for the presence of oxygen vacancies in CeO₂@BOC.

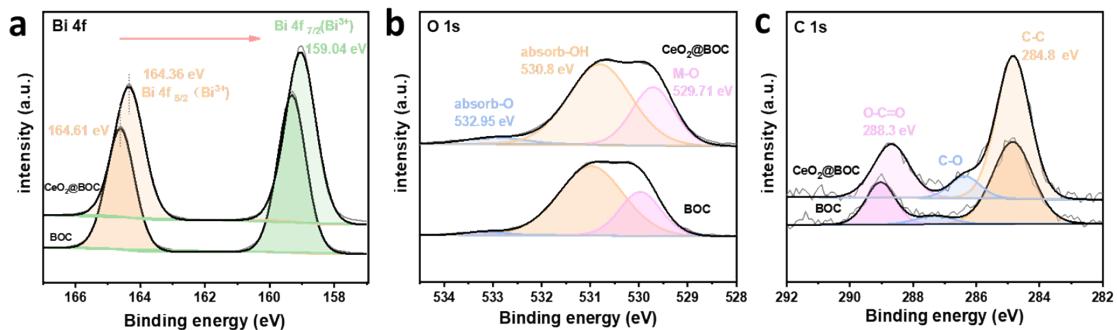


Figure S6. XPS spectrum of CeO₂@BOC and BOC: (a) Bi 4f, (b) O 1s and (c) C 1s.

The signals of Bi, O, Ce, and C are all detected in the synthesized samples. In the Bi 4f spectrum, the characteristic peaks at 159.04 eV and 164.35 eV correspond to the Bi 4f_{7/2} and Bi 4f_{5/2} orbitals of Bi³⁺. The O 1s spectra exhibit peaks corresponding to lattice oxygen and surface-adsorbed

oxygen species⁷. In the C 1s spectra, the peaks at binding energies of 284.8 eV, 286.3 eV, and 288.3 eV can be assigned to C-C, C-O, and O-C=O species, respectively⁸. The peaks at 288.3 eV and 284.8 eV correspond to carbonates and amorphous carbon, respectively⁹.

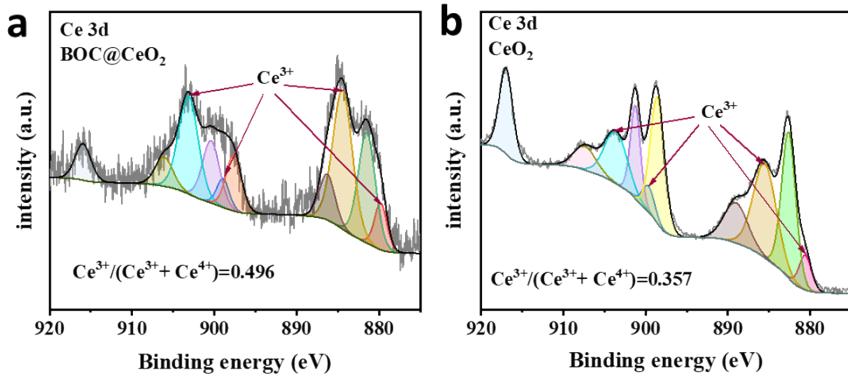


Figure S7. XPS spectra of BOC(a) and CeO₂@BOC(b): Ce 3d.

The Ce 3d spectrum¹⁰ contains two sets of spin-orbit doublets corresponding to Ce 3d_{3/2} (u) and Ce 3d_{5/2} (v). The u' and v' peaks are characteristic of Ce³⁺, while the peaks u, u'', u''', v, v'', and v''' are associated with Ce⁴⁺. Based on this, the peaks for Ce³⁺ have been labeled in the figure, enabling integration calculations to determine Ce³⁺/ (Ce³⁺+ Ce⁴⁺) proportion.

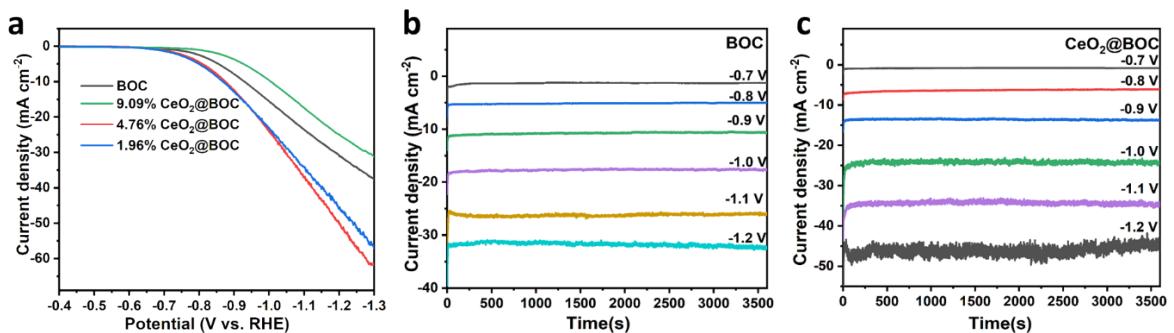


Figure S8. (a) Linear sweep voltammograms of catalysts with different cerium-bismuth ratios under saturated carbon dioxide conditions; Current-time curves of (b) BOC and (c) CeO₂@BOC at different voltages.

To further assess the product selectivity, 1 h chronoamperometry tests were carried out in CO₂-saturated electrolyte at potentials ranging from -0.7 to -1.2 V vs. RHE. The I-T curves (Figure S4b-c) show that both BOC and CeO₂@BOC maintain stable electrolysis throughout the test.

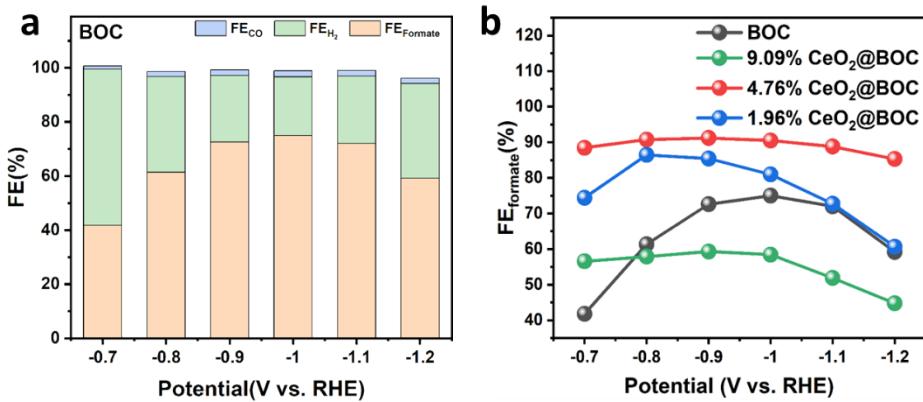


Figure S9. (a) Faradaic efficiencies of various products for BOC; (b) Methanation Faraday efficiencies of catalysts with different cerium-bismuth ratios at different voltages

The formate Faradaic efficiency of BOC but remains below 75% across the entire potential range.

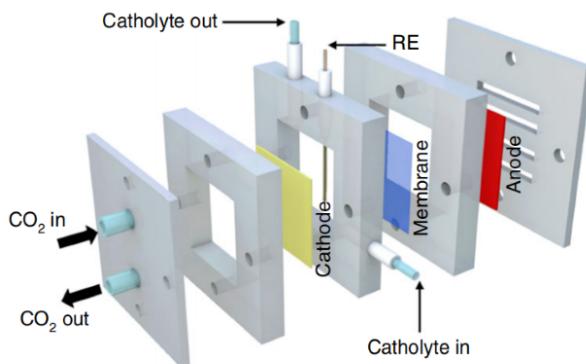


Figure S10. The schematic illustration of the flow-cell configuration

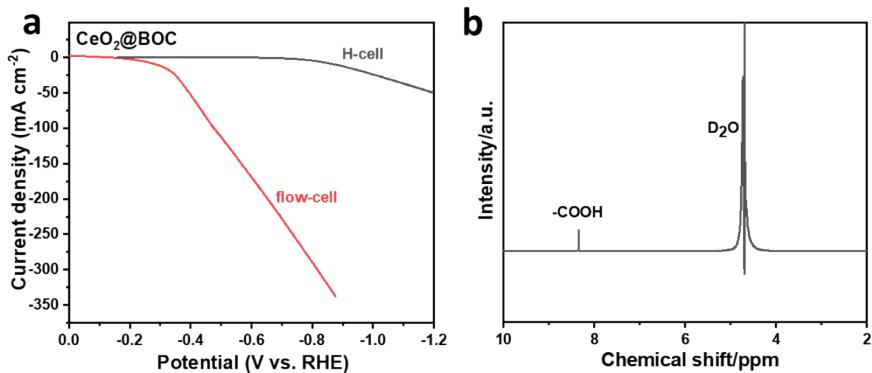


Figure S11. (a) LSV curves of CeO₂@BOC in an H-cell and a flow cell; (b) NMR spectra of the liquid products at high current density

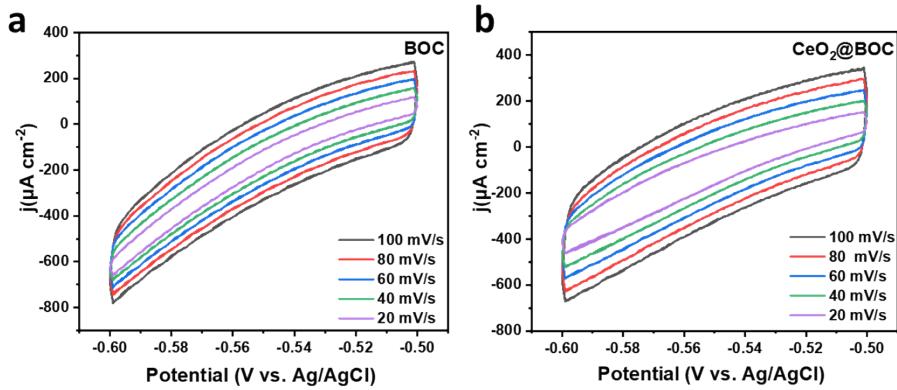


Figure S12. Cyclic voltammograms of BOC(a) and CeO₂@BOC(b) in the non-Faradaic potential region, at scan rates of 20, 40, 60, 80, and 100 mV s⁻¹.

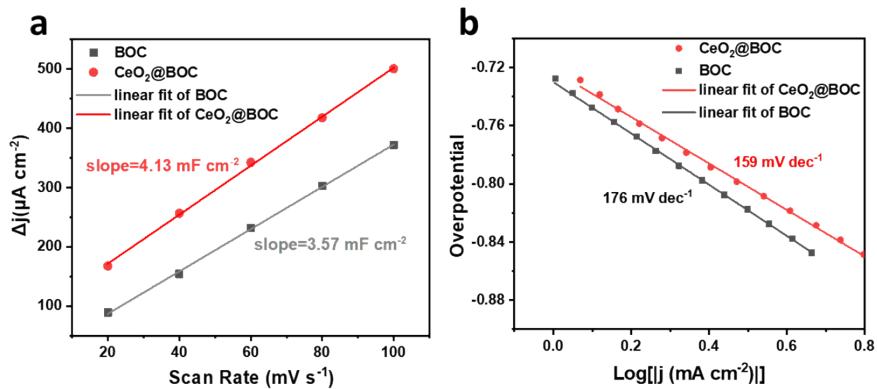


Figure S13. (a) C_{dl} fitting for BOC and CeO₂@BOC; (b) Tafel plots of CeO₂@BOC and BOC.

The Tafel plots (Fig. S13b) show that the Tafel slopes of all samples exceed 118 mV dec⁻¹, indicating that they share the same rate-determining step, namely the formation of the *CO₂⁻ intermediate¹¹.

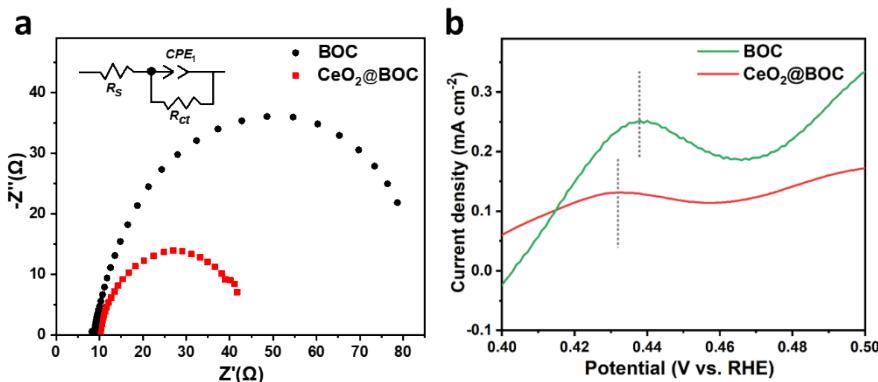


Figure S14. (a) EIS spectra of CeO₂@BOC and BOC; (b) OH⁻ adsorption measurements of

$\text{CeO}_2@\text{BOC}$ and BOC in Ar-saturated electrolyte. Therefore, single-oxidation LSV was performed in Ar-saturated 0.1 M NaOH to assess the OH- adsorption behavior

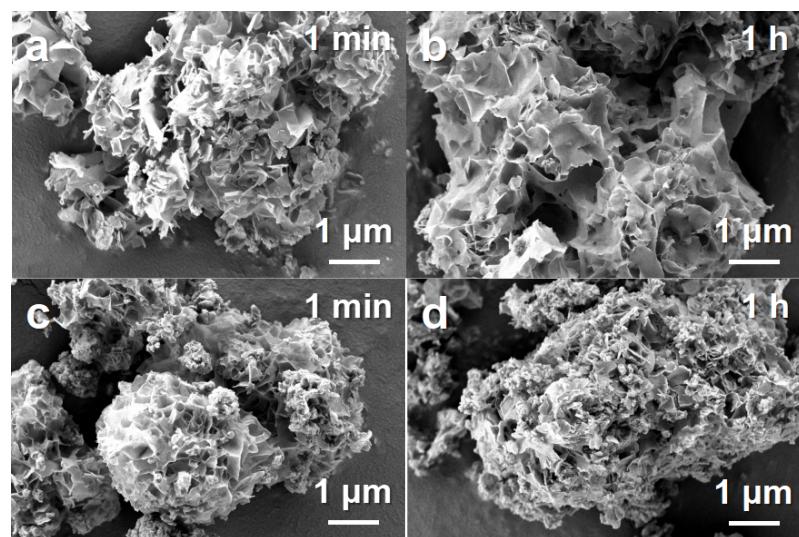


Figure S15. SEM images of $\text{CeO}_2@\text{BOC}$ after electrolysis for (a) 1 min and (b) 1 h, and of BOC after electrolysis for (c) 1 min and (d) 1 h.

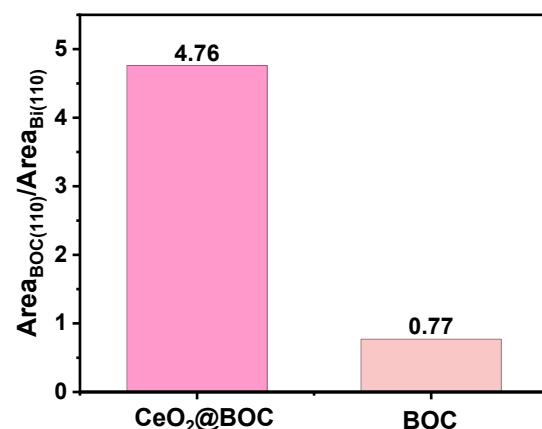


Figure S16. Relative proportions of the Bi (110) metallic phase and the BOC (110) facet in $\text{CeO}_2@\text{BOC}$ after the reaction.

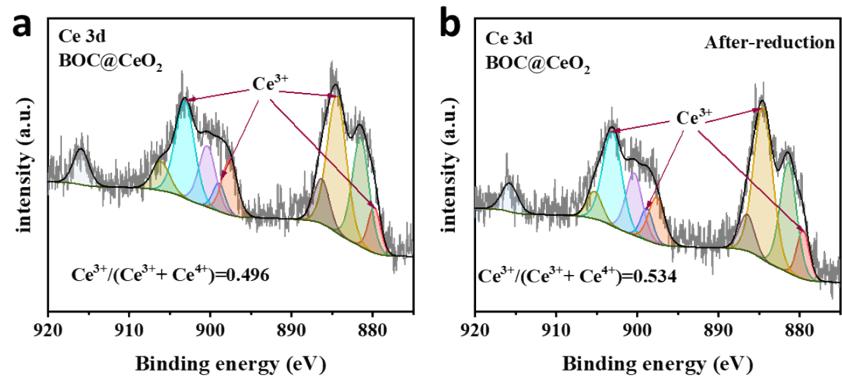


Figure S17. (a) XPS Ce 3d spectrum of $\text{CeO}_2@\text{BOC}$ before the reaction; (b) XPS Ce 3d spectrum of $\text{CeO}_2@\text{BOC}$ after the reaction.

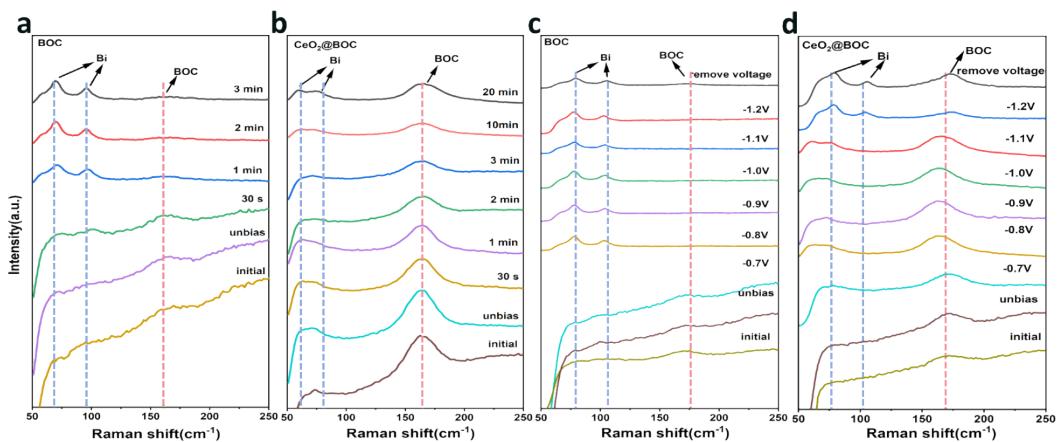


Figure S18. (a-b) operando Raman spectra of $\text{CeO}_2@\text{BOC}$ and BOC at different electrolysis durations and (b-c) operando Raman spectra of $\text{CeO}_2@\text{BOC}$ and BOC under different applied potentials.

Table S1. Performance and stability of similar catalysts reported in recent years.

Catalysts	FE% (Formate)	j (mA cm^{-2})	Stability (h)	Cell Type	Ref.
$\text{CeO}_2@\text{BOC}$	>90%	225	120	Flow-Cell	This work
BiNS	95%	24	10	H-cell	12
$\text{Bi}_2\text{O}_3/\text{BiO}_2$	95.4	220	30	H-cell	13
Bi MP	95	271.7	10	Flow-cell	14
In/Bi-750	90.82	200	13	Flow-cell	15
BiOBr	96	90	1.94	Flow-cell	16
BOC NFs	97	230	5	MEA	17
BBS	95	400	2.78	Flow-cell	18
Bi-ene	99.8	100	3	Flow-cell	19
$\text{Bi}_2\text{O}_3@\text{C-800}$	93	200	10	Flow-cell	20
$\text{Bi}_{0.1}\text{Sn}$	95	100	2400	Flow-cell	21

2D-Bi	99	17.3	10	H-cell	22
BOC-NSs	93	930	12	H-cell	23
CuO/F/C(w)	56.8	145	10	H-cell	24
Bi _{0.6} Cu _{0.4} NSs	99.23	260	400	H-cell	25
Cu ₂ -C-1100-4	63.4	180	14	MEA	26

We compared the performance and stability of our catalyst with similar catalysts reported in recent years. The results demonstrate that our catalyst simultaneously achieves >90% high Faradaic efficiency, a high catalytic current density of 225 mA cm⁻², and exceptional long-term stability of 120 hours. The comprehensive performance of these three indicators ranks among the top of all catalysts in the table.

References

1. W. Zhang, Y. Hu, L. Ma, G. Zhu, P. Zhao, X. Xue, R. Chen, S. Yang, J. Ma, J. Liu and Z. Jin, *Nano Energy*, 2018, **53**, 808-816.
2. P. Su, W. Xu, Y. Qiu, T. Zhang, X. Li and H. Zhang, *ChemSusChem*, 2018, **11**, 848-853.
3. J. L. DiMeglio and J. Rosenthal, *J. Am. Chem. Soc.*, 2013, **135**, 8798-8801.
4. I. V. Chernyshova, P. Somasundaran and S. Ponnurangam, *Proc. Natl. Acad. Sci. U.S.A.*, 2018, **115**, 9261-9270.
5. S. Wu, M. Tian, Y. Hu, N. Zhang, W. Shen, J. Li, L. Guo, P. Da, P. Xi and C.-H. Yan, *Inorg. Chem.*, 2023, **62**, 4088-4096.
6. H. Sun, H. Wang and Z. Qu, *ACS Catal.*, 2023, **13**, 1077-1088.
7. S. Liu, Y. Fan, Y. Wang, S. Jin, M. Hou, W. Zeng, K. Li, T. Jiang, L. Qin, Z. Yan, Z. Tao, X. Zheng, C. Shen, Z. Liu, T. Ahmad, K. Zhang and W. Chen, *Nano Lett.*, 2022, **22**, 9107-9114.
8. L. Li, C. Lai, F. Huang, M. Cheng, G. Zeng, D. Huang, B. Li, S. Liu, M. Zhang, L. Qin, M. Li, J. He, Y. Zhang and L. Chen, *Water Res.*, 2019, **160**, 238-248.
9. Y. Lan, Z. Li, W. Xie, D. Li, G. Yan, S. Guo, C. Pan and J. Wu, *J. Hazard. Mater.*, 2020, **385**, 121622.
10. M. Konsolakis, *Appl. Catal. B Environ. Energy.*, 2016, **198**, 49-66.
11. J. Xue, X. Fu, S. Geng, K. Wang, Z. Li and M. Li, *J. Environ. Manag.*, 2023, **342**, 118354.
12. N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li and Y. Li, *Nat. Commun.*, 2018, **9**, 1320.
13. X. Feng, H. Zou, R. Zheng, W. Wei, R. Wang, W. Zou, G. Lim, J. Hong, L. Duan and H. Chen, *Nano Lett.*, 2022, **22**, 1656-1664.
14. C. Lin, Y. Liu, X. Kong, Z. Geng and J. Zeng, *Nano Res.*, 2022, **15**, 10078-10083.
15. Q. Wang, X. Yang, H. Zang, C. Liu, J. Wang, N. Yu, L. Kuai, Q. Qin and B. Geng, *Small*, 2023, **19**, 2303172.
16. S. Yang, H. An, S. Arnouts, H. Wang, X. Yu, J. de Ruiter, S. Bals, T. Altantzis, B. M. Weckhuysen and W. van der Stam, *Nat. Catal.*, 2023, **6**, 796-806.
17. P. F. Sui, M. R. Gao, S. Liu, C. Xu, M. N. Zhu and J. L. Luo, *Adv. Funct. Mater.*, 2022, **32**, 2203794.

18. L. Lv, R. Lu, J. Zhu, R. Yu, W. Zhang, E. Cui, X. Chen, Y. Dai, L. Cui, J. Li, L. Zhou, W. Chen, Z. Wang and L. Mai, *Angew. Chem. Int. Ed.*, 2023, **62**, e202303117.
19. C. Cao, D. D. Ma, J. F. Gu, X. Xie, G. Zeng, X. Li, S. G. Han, Q. L. Zhu, X. T. Wu and Q. Xu, *Angew. Chem. Int. Ed.*, 2020, **59**, 15014-15020.
20. P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman and B. Y. Xia, *Angew. Chem. Int. Ed.*, 2020, **59**, 10807-10813.
21. L. Li, A. Ozden, S. Guo, F. P. García de Arquer, C. Wang, M. Zhang, J. Zhang, H. Jiang, W. Wang, H. Dong, D. Sinton, E. H. Sargent and M. Zhong, *Nat. Commun.*, 2021, **12**, 5223.
22. C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang, E. Stavitski, H. N. Alshareef and H. Wang, *Nat. Energy*, 2019, **4**, 776-785.
23. T. Fan, W. Ma, M. Xie, H. Liu, J. Zhang, S. Yang, P. Huang, Y. Dong, Z. Chen and X. Yi, *Cell Rep. Phys. Sci.*, 2021, **2**, 100353.
24. X. Huang, X. Li, S. Yan, D. Wang, C. Long, Y. Ying, P. An, Z. Guo, Q. Li, C. Yang, S. Chen, J. Han, L. Chang, S. Lu and Z. Tang, *Sci. Adv.*, 2025, **11**, eads0609.
25. H. Liu, Y. Bai, M. Wu, Y. Yang, Y. Wang, L. Li, J. Hao, W. Yan and W. Shi, *Angew. Chem. Int. Ed.*, 2024, **63**, e202411575.
26. Y. Li, Z. Pei, D. Luan and X. W. Lou, *Angew. Chem. Int. Ed.*, 2023, **62**, e202302128.