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1. General Procedure

All operations were performed under a N> atmosphere using standard Schlenk techniques or
in a glove box, unless otherwise specified. Reagents and other chemical materials were
purchased from Energy Chemical and Bide Pharmatech, and were used without further
purification unless noted. Dichloromethane, n-hexane, tetrahydrofuran, and toluene were dried
and degassed using a solvent purification system (Innovative Technology).

Flash chromatography was carried out utilizing silica gel (100-300 mesh). 'H NMR, !*C
NMR and F NMR spectra were recorded at room temperature on a JEOL 400 MHz
spectrometer. The chemical shifts are reported in ppm relative to either the residual solvent peak
or tetracthylsilane as an internal standard. Coupling constants (J) were reported in Hz.
Attribution of peaks were performed by using the multiplicities and integrals of the peaks.
Coupling patterns are indicated as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), td
(triplet of doublet), or m (multiplet). Mass spectral analyses were done in Bruker micrOTOF-Q II
Spectrometer. For thin-layer chromatography (TLC) analysis, Merck precoated TLC plates
(silica gel 60 F254/ 0.25 mm) were used. Visualization was accomplished by UV light (254 and
365 nm).

2. General Procedures for Synthesis of W-1 and W-2

Synthesis of W-1: Compound W-1 was prepared by a modification of the published
procedure.! A solution of hexamethyldisiloxane (21.49 g, 132 mmol, 2.1 equiv.) was added
dropwise to the solution of tungsten hexachloride (25.00 g, 63.0 mmol) in 250 mL of
dichloromethane. A solution of dimethoxyethane (13.06 g, 145 mmol, 2.3 equiv.) was added.
The mixture was stirred for 2 h at room temperature, during which time it became dark blue and
contained a suspended precipitate. A pale blue solution was obtained after filtration of the
mixture through Celite. A solution of 4,4'-di-tert-butyl-2,2'-bipyridyl (17.75 g, 66.1 mmol, 1.05
equiv.) in 30 mL of dichloromethane was added, and the mixture was stirred for 30 min. The
precipitate was isolated by filtration, washed twice with 50 mL of dichloromethane, and dried

under vacuum. The white powder W-1 was collected, in 90% yield. '"H NMR (400 MHz,
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Chloroform-d) ¢ 9.45 (d, J = 5.4 Hz, 2H), 8.11 (s, 2H), 7.68 (d, J = 5.5 Hz, 2H), 1.42 (s, 18H).
BC {'H} NMR (101 MHz, Chloroform-d) & 166.50, 152.41, 150.66, 124.87, 119.52, 36.07,
30.57.

Synthesis of W-2: 4 4'-di-tert-butyl-2,2'-bipyridyl (86 mg, 0.32 mmol, 1 eq.), norbornene
(61 mg, 0.64 mmol, 2 eq.) were added to WClg (127 mg, 0.32 mmol, 1.0 eq.) in a dry toluene (15
mL) solution. The mixture was stirred at room temperature for 1 hour. After the reaction, the
yellow supernatant was removed. The system was washed with n-hexane until the supernatant
became colorless, and the residue was dried under reduced pressure. The residue was dissolved
in methanol, and a small amount of diethyl ether was added as a poor solvent. After volatilization
in air overnight until it turned blue-black, the mixture was concentrated under reduced pressure.
It was then dissolved in acetonitrile and reacted with 30% H:0- (5.0 eq.) at 60 °C until it turned
colorless. Diethyl ether was slowly diffused into the saturated acetonitrile solution at -25 °C to
afford a white solid, W-2, in 65% yield. '"H NMR (400 MHz, DMSO-ds) 6 8.79 (d, J = 5.2 Hz,
2H), 8.72 (s, 2H), 7.88 (d, J = 5.3 Hz, 2H), 1.42 (s, 18H). 13C {'H} NMR (101 MHz, DMSO-ds)
0 167.1, 148.6, 146.8, 124.2, 121.5, 36.4, 30.5. HRMS [ESI-TOF] mvz: [M+H]" caled for CisHaaN2OsW

533.1273; found, 533.1270.
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Figure S1. HRMS analysis of W-2.
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3. Experimental Procedures

3.1 Experimental Procedures for 1° 2° carboxylic acids and Drug molecules
Decarboxylative Oxygenation

A 10 mL crimp cap vial equipped with a magnetic stir bar was charged with W-1 (5 mol%
relative to 0.2 mmol substrate), Na.CO3 (0.24 mmol, 25.4 mg, 1.2 equiv.), the corresponding
carboxylic acid (0.2 mmol, 1.0 equiv.), and acetonitrile (2 mL, 0.1 M). All solid reagents were
added prior to sealing the vial, while liquid reagents were introduced via syringe after placing the
sealed vial under an O: atmosphere (highly viscous liquids were also added before capping). The
reaction mixture was stirred under 1 bar of Oz (supplied by an O»-filled balloon) with irradiation
from a 365 nm 15W blue LED and fan cooling at room temperature for 12 hours. The crude
product was either analyzed by "H NMR spectroscopy using tetramethylsilane as an internal
standard for yield determination, or purified by automated flash column chromatography using a

petroleum ether/ethyl acetate gradient.
3.2 Experimental Procedures for 3°(cyclic) carboxylic acids Decarboxylative Oxygenation

A 10 mL crimp cap vial equipped with a magnetic stir bar was charged with W-1 (5 mol%
relative to 0.2 mmol substrate), Na.CO3 (0.24 mmol, 25.4 mg, 1.2 equiv.), the corresponding
carboxylic acid (0.2 mmol, 1.0 equiv.), and acetonitrile (2 mL, 0.1 M). All solid reagents were
added prior to sealing the vial, while liquid reagents were introduced via syringe after placing the
sealed vial under an air atmosphere (highly viscous liquids were also added before capping). The
reaction mixture was stirred under 1 bar of air (supplied by an air-filled balloon) with irradiation
from a blue 410 nm or 365 nm 15W LED and fan cooling at room temperature for 12 hours. The
crude product was either analyzed by 'H NMR spectroscopy using tetramethylsilane as an
internal standard for yield determination, or purified by automated flash column chromatography

using a petroleum ether/ethyl acetate gradient.
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4. Optimization of Reaction Conditions
Table S1. Screening of Reaction Conditions. ?

cat. (5 mol%)
COOH > o
oxidant, base, solvent

LEDs
1a 2a

entry cat. (x mol%) solvent oxidant LEDs(nm) NaxCOs(xeq) 2a yield(%)°

1 W-1 CH3CN 0, 365 1 65
2 W-2 CH3CN 0, 365 1 53
3 W-110mol%)  CHsCN 0, 365 1 68
4 wW-1 CH5CN Oz 365 1.2 91
5 W-1 CH3CN 0, 390 1.2 27
6 wW-1 CH5CN Air 365 1.2 50
7 W-1 CHsCOCH; 0O, 365 1.2 86
8 - CH3CN 0, 365 1.2 N.D.
9 W-1 CH3CN 0, 365 0 17
10  W-1(10 mol%)  CH3CN 0, 365 1.2 87
11 W-1 THF 0, 365 1.2 57
12 W-2 CH3CN 0, 365 1.2 77
13 W-1 CH5CN 0, no 1.2 N.D.
14 wW-1 CH5CN N, 365 1.2 N.D.
15 W-2 CH3CN 0, - 1.2 N.D.
16 W-2 CH3CN N, 365 1.2 N.D.

“ Reaction condition: 1a (0.2 mmol), cat. (5 mol%), Na>COs (1.2 eq), | bar Oz, solvent (2 mL), 12 h under
365 nm, 15 W, isolated yield. ? Yields were determined by '"H NMR using tetraethylsilane as an internal
standard. N.D. = not detected.
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Table S2. Screening of Reaction Conditions. ?

W-1 (5 mol%)

HO0q Na,CO; (1.2 eq) o i
> ~o
LEDs solvent oxidant
3a 4a 4a’
entry LEDs time/h solvent oxidant  Yield(4a)%" Yield(4a")%"

1 470nm/15W 16 CH3;CN/4mL Air N.D. N.D.
2 450nm/15W 16 CH3;CN/4mL Air 26 N.D.
3 430nm/15W 16 CH3;CN/4mL Air 37 N.D.
4 410nm/15W 16 CH3;CN/4mL Air 48 N.D.
5  410nm/15W 16 CHACN/4mL 0, 43 15
6 410nm/15W 16 CH3;CN/2mL Air 47 19
7 390nm/10W 16 CH3;CN/4mL Air 45 44
8 390nm/10W 16 CH3CN/2mL Air 34 22
9 365nm/15W 12 CH3;CN/2mL Air 5 28
10 410nm/15W 12 THF/2mL Air 4 34
11 410nm/15W 12 CH3;COCH3/2mL Air 43 N.D.
12 410nm/15W 24 CH3;CN/4mL Air 47 9
13 -- 16 CH3CN/4mL Air N.D. N.D.
14 410nm/15W 16 CH3;CN/4mL N, N.D. N.D.

@ Reaction condition: 3a (0.2 mmol), W-1 (5 mol%), 1.2 eq Na,COs, solvent, under The LEDs. N.D. = not

detected. ? Yields were determined by 'H NMR using tetraethylsilane as an internal standard.

S6



5. Mechanistic Experiments

5.1 General Procedures for Synthesis of Intl

tBu

COOK

Inside a N»-filled glovebox, to an oven-dried reaction vial equipped with a magnetic stir bar
was added W-1 (55.4 mg, 0.10 mmol, 1.0 equiv.), 2-(4-fluorophenyl)acetic acid (32 mg, 0.20
mmol, 2.0 equiv.), K2CO; (26 mg, 0.20 mmol, 2.0 equiv.), and MeOH (1.0 mL, 0.1 M). The
reaction mixture was stirred for 12 h at 60 °C and 1-fluoro-4-methylbenzene (22 pL, 0.2 mmol,
2.0 equiv.) was added as an internal standard (Figure S2). The resulting white mixture was
filtered through a packed pad of oven-dried Celite (ca. 20 mg). The white solid Intl (75 mg,
95%) was obtained by separation. 'H NMR (400 MHz, Methanol-d4) & 8.53 (dd, J = 5.3, 0.8 Hz,
2H), 8.32 (dd, J = 2.0, 0.7 Hz, 2H), 7.47 (dd, J = 5.3, 2.0 Hz, 2H), 7.26 (dd, J = 8.8, 5.4 Hz, 4H),
6.97 (t, ] = 8.8 Hz, 4H), 3.49 (s, 4H), 1.38 (s, 18H). '3C NMR (101 MHz, Methanol-d4) § 176.51,
162.95, 162.06, 160.54, 155.90, 148.75, 132.52, 132.48, 130.69, 130.61, 121.14, 118.66, 114.59,
114.37,41.98, 34.74, 29.54. '’F NMR (376 MHz, Methanol-d4) & -118.48. HRMS (ESI-MS): m/z:
[M+Na] * caled for C34H3sF2N2OsW: 813.1951; Found: 813.1951.
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Figure S2: '°F NMR of representative compounds in MeOH.
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Figure S4. 1*C NMR spectrum of Intl (400 MHz, Methanol-ds).
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Figure S5. '°F NMR spectrum of Intl (376 MHz, Methanol-ds).
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5.2 Decarboxylative LMCT Experiments with Intl.

tBu

COOH 0}

Int1 5 mol% )\/©)J\
Na,CO3 (1.2eq)

MeCN (2 mL), Oy, 365 nm, 15W, 12 h 2a
Yield: 84%

1a
0.2 mmol

Reactions were performed 2-(4-isobutylphenyl) propanoic acid (1a) (41 mg, 0.2 mmol, 1.0
equiv.) and Na>xCOs3 (25 mg, 0.24 mmol, 1.2 equiv.), with Intl (5 mol% based on 1a) as the
catalyst and MeCN (2 mL, 0.1 M) as the solvent. The reaction mixture was stirred under 1 bar of
air (supplied by an air-filled balloon) with irradiation from a blue 365 nm 15 W LED and fan
cooling at room temperature for 12 hours. NMR yields of 2a (Figure S6) were determined by 'H
NMR spectroscopy of the crude reaction mixture using tetracthylsilane as the internal standard.
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Figure S6. 'H NMR spectroscopy of 2a crude reaction mixture. (400 MHz, MeCN).
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COOH o}
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MeCN (2 mL), O, 365 nm, 15 W, 12 h 2a
1a .
0.2 mmol Yield: 17%

Reactions were performed 2-(4-isobutylphenyl) propanoic acid (1a) (41 mg, 0.2 mmol, 1.0
equiv.), with Intl (5 mol% based on 1a) as the catalyst and MeCN (2 mL, 0.1 M) as the solvent.
The reaction mixture was stirred under 1 bar of air (supplied by an air-filled balloon) with
irradiation from a blue 365 nm 15 W LED and fan cooling at room temperature for 12 hours.
NMR yields of 2a (Figure S7) were determined by '"H NMR spectroscopy of the crude reaction

mixture using tetraecthylsilane as the internal standard.
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Figure S7.'H NMR spectroscopy of 2a crude reaction mixture. (400 MHz, MeCN).
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TEMPO (3 eq)

MeCN (0.01 M)
365 nm, 15 W LED, 2 h

2¢c-TEMPO
24% by '°F NMR

In a N»-filled glovebox, a 10 mL crimp cap vial equipped with a magnetic stir bar was
charged TEMPO (4.7 mg, 30 umol, 3.0 equiv.) and a solution of dicarboxylate complex Intl in
MeCN (0.01 M, 1.0 mL, 10 umol, 1.0 equiv.). The reaction mixture irradiation from a blue 365
nm 15 W LED and fan cooling at room temperature. After 2 hours, the vial was removed from
the photoreactor, the resulting mixture was filtered through a packed pad of oven-dried Celite (ca.
20 mg), and concentrated in vacuo with the aid of a rotary evaporator. 2¢-TEMPO (Figure S8)

was detected by '’F NMR spectroscopy using CDCls as the solvent.
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Figure S8. '°F NMR spectroscopy of 2¢-TEMPO crude reaction mixture. (376 MHz, CDCI;).
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An analytically pure sample of 2¢-TEMPO was purified by preparatory thin-layer

chromatography (10% EtOAc in hexanes) to yield 2¢-TEMPO as a colorless solid.

1-((4-fluorobenzyl) oxy)-2,2,6,6-tetramethylpiperidine (2c-TEMPO)

ok

2¢-TEMPO

'H NMR (400 MHz, CDCls) § 7.33 - 7.30 (m, 2H), 7.03 - 6.99 (m, 2H), 4.76 (s, 2H), 1.59 - 1.49

(m, 6H), 1.24 (s, 6H), 1.13 (s, 6H). 3C NMR (101 MHz, CDCL) & 163.45, 161.01, 134.07,

134.04, 129.35, 129.27, 115.27, 115.05, 78.09, 60.10, 39.76, 33.18, 20.37, 17.18. °F NMR (376

MHz,CDCl3) § - 115.17.
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Figure S9. 'H NMR spectrum of 2¢-TEMPO (400 MHz, Chloroform-d).
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6. UV-vis experiments

The UV-Vis measurements were carried out using a UV-Vis spectrophotometer (ULN

2209003, MAPADA P6).

The spectra were aquired from 250 to 500 nm using 1.0 nm steps. All measurements were

performed in MeCN at the following concentrations: pure W-1 (0.1 mM).

0.20

0.154 —— W1

Absorbance (A.U.)
©
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o
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o
1

0.00

T T T T 1
250 300 350 400 450 500
Wavelength (nm)

Figure S12. UV-Visible spectra of a solution of pure W-1

Preparation of a stock solution (solution A): In a glass vial equipped with a teflon-coated
stirring bar and a septum, W-1 (5.5 mg, 0.01 mmol) and Na,COs3 (25 mg, 0.24 mmol) were
dissolved in MeCN (3 mL). Dilute 66 pL of the above solution to 6 mL to obtain solution A.

UV-vis spectra were recorded after irradiation the cuvette solution with 15 W 365 nm LED

light.
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Figure S13. UV-Visible spectra contain a solution of W-1 with base after 365 nm LED

irradiation
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Preparation of a stock solution (solution B): In a glass vial equipped with a teflon-coated
stirring bar and a septum, W-1 (5.5 mg, 0.01 mmol) and 4-fluorophenylacetic acid (1¢) (32 mg,
0.2 mmol) were dissolved in MeCN (3 mL). Dilute 66 pL of the above solution to 6 mL to obtain

solution B.

UV-vis spectra were recorded after irradiation the cuvette solution with 15 W 365 nm LED
light.

0.20 W-1+acid
—0s
0.18 \ 30s

‘\. 40s
0.16 4 \ 60s
—~0144 \
2
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0.02-
000
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Wavelength (nm)

Figure S14. UV-Visible spectra contain a solution of W-1 with acid after 365 nm LED
irradiation

Preparation of a stock solution (solution C): In a glass vial equipped with a teflon-coated
stirring bar and a septum, W-1 (5.5 mg, 0.01 mmol), 4-fluorophenylacetic acid (1¢) (32 mg, 0.2
mmol) and Na;CO; (25 mg, 0.24 mmol) were dissolved in MeCN (3 mL). Dilute 66 pL of the

above solution to 6 mL to obtain solution C.
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20s 160s
——30s 180s
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Figure S15. UV-Visible spectra contain a solution of W-1 + acid + base after 365 nm LED

irradiation
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7.Kinetic Studies
7.1 Monitoring the Reaction Progress over Time

To a 10 mL screw-cap vial fitted with a magneton was added 1y (0.2 mmol), W-1 (5 mol%
based on the substrate), MeCN (2 mL), NaxCO3 (0.24 mmol,1.2 equiv.). The reaction tube is
charged with pure oxygen via a double-manifold operation and subjected to reaction under 365
nm, 15 W light irradiation. At 0 min, 10 min, 20 min, 30 min, 40 min, 50 min, 60 min, 70 min,
90 min, 120 min, 150 min, and so on, a 25 pL aliquot of the reaction mixture was removed under
N2 atmosphere, transferred into nuclear magnetic tube and add MeCN (0.8 mL). Yields were

determined by '°F NMR integration.

W-1 (5 mol%)
O COOH  \a,CO, (1.2 6) O 0
O F CH3CN(2 mL), O, 365nm, 15W O F

0.2 mmol

Table S3. Reaction Profile.
Entry Time (min) Yield 2y (%)

1 0 0
2 10 8
3 20 20
4 30 28
5 40 32
6 50 39
7 60 44
8 70 46
9 80 52
10 90 54
11 120 57
12 150 60
13 180 62
14 240 64
15 300 66
16 360 67
17 420 69
18 480 70
19 540 71
20 600 72
21 660 72
22 720 72
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Figure S16. Reaction profiles for synthesis of 2y.
7.2 Kinetic Experiments for the Decarboxylative Oxidation of 1y

We started the kinetic experiments to determine the overall order and the rate equation of
the decarboxylative C-O bond-forming reaction of 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic
acid (1y) with NaxCOs using W-1 as a catalyst under 1 bar O». Yields were determined by !°F
NMR integration. We started the investigation one by one: (i) the order of the oxidation reaction
with respect to 1y, (ii) the order of the oxidation reaction with respect to the catalyst W-1, and
(ii1) the order of the oxidation reaction with respect to Os.

7.2.1 Representative procedure for the 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y)
decarboxylative oxidation reaction carried out with various concentrations of
2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y)

Initial  rates  (kos) ~were  determined using  various  concentrations  of
2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y) (0.1 M, 0.2 M, 0.3 M, and 0.4 M) by
keeping the concentration of W-1 (0.005 M) and O (40.95x103 M) constant. We observed kobs
values of the reaction from [product] vs time plot, which was equal to the slope of the linear fit
lines (Table S4). The experimental procedure that has been used is described below.

To a 10 mL Schlenk tube fitted with a stir bar was added W-1 (0.005 M),
2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y) (in different concentrations, 0.1 M, 0.2 M,
0.3 M, and 0.4 M), 02(40.95x10 M) and MeCN (2 mL) inside the glove box. The tube was

sealed and the mixture was under the 365 nm, 15 W light irradiation. After that, the 'F NMR
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spectra were recorded at various time intervals. The varying 2-(2-fluoro-[1,1'-biphenyl]-4-yl)
propanoic acid (1y) concentration and the constant concentration of W-1 and O> for each set of
experiments are given in Table S4 and represent the data graphically.

Table S4. Initial rates (kons) for the decarboxylative oxidation reaction of
2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (ly) were carried out under varying

concentrations of 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y).

1yM™M) W-1(M) 0:(M) Initial rates(M/min) R?
0.1 0.005 40.95x1073 (0.64+0.0462) x1073 0.9643
0.2 0.005 40.95x1073 (1.27+0.0778) x1073 0.9646
0.3 0.005 40.95x1073 (1.74+0.1223) x107? 0.9254
0.4 0.005 40.95%1073 (2.36+0.0729) x10°3 0.9803

2.04 y = 5.63x10" x + 9.5x10°°
R?=0.995

Initial rates x 10-3(M/min)

010 015 020 025 030 035 0.40
1y (M)

Figure S17. Plot of reaction initial rates (M/min) vs 1y(M).

-2.6
7l y=0.976x-2.277
R? = 0.994

15t order in substrate

-1.0 -0.9 -0.8 -0.7 0.6 -0.5 -0.4
l9[1y]

Figure S18. Plot of 1g(kobs) vs 1g (conen of 1y).
7.2.2 Representative procedure for the 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y)

decarboxylative oxidation reaction carried out with various concentrations of W-1.
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Initial rates (kobs) were determined using various concentrations of W-1 (0.005 M, 0.01 M,
0.02 M, 0.03 M, and 0.04 M) by keeping the concentration of 2-(2-fluoro-[1,1'-biphenyl]-4-yl)
propanoic acid (1y) (0.1 M) and Oz (40.95x103 M) constant. We observed kobs values of the
reaction from [product] vs time plot, which was equal to the slope of the linear fit lines (Table
S5). The experimental procedure that has been used is described below.

To a 10 mL Schlenk tube fitted with a stir bar was added 2-(2-fluoro-[1,1'-biphenyl]-4-yl)
propanoic acid (1y) (0.1M), W-1 (in different concentrations, 0.005 M, 0.01 M, 0.02 M, 0.03 M,
and 0.04 M), 02(40.95x10* M) and MeCN (2 mL) inside the glove box. The tube was sealed and
the mixture was under the 365 nm, 15 W light irradiation. After that, the '°F NMR spectra were
recorded at various time intervals. The varying catalyst concentration and the concentration of O
and 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y) for each set of experiments are given in
Table S5 and represent the data graphically.

Table S5. Initial rates (kons) for the decarboxylative oxidation reaction of
2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y) with O: carried out under varying

concentrations of W-1.

1y(M) W-1(M) 0:(M) Initial rates(M/min) R?
0.1 0.005 40.95x10"3 (0.635+0.0462) x10-3 0.9643
0.1 0.01 40.95x10"3 (0.637+0.0402) x10-3 0.9721
0.1 0.02 40.95x10"3 (0.643+0.0482) x10-3 0.9622
0.1 0.03 40.95x10"3 (0.644+0.0447) x10-3 0.9661
0.1 0.04 40.95x10°3 (0.645+0.0411) x107? 0.9714

14
£ Ly y = 2.9%10 x + 6.35%10+
E 10 R? =0.7657
£
":c,_ 038
,;2 0.6 - N
; 0.4 -
E 0.2

0.00 0.01 0.02 0.03 0.04 0.05
W-1 (M)

Figure S19. Plot of reaction initial rates (M/min) vs W-1(M).
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i0 y =0.0083 x - 3.18
7 R? = 0.961
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Figure S20. Plot of 1g(kobs) vs 1g (concn of W-1).
7.2.3 Representative procedure for the 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y)
decarboxylative oxidation reaction carried out with various concentrations of O:

Initial rates (kobs) were determined using various concentrations of Oz (8.6x107° M,
20.48x103 M, 30.71x10° M, 40.95x10° M) by keeping the concentration of
2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y) (0.1 M) and W-1 (0.005 M) constant. We
observed kobs values of the reaction from [product] vs time plot, which was equal to the slope of
the linear fit lines (Table S6). The experimental procedure that has been used is described below.

To a 10 mL Schlenk tube fitted with a stir bar was added 2-(2-fluoro-[1,1'-biphenyl]-4-yl)
propanoic acid (1y) (0.1 M), O: (in different concentrations, 8.6x10= M, 20.48x10 M,
30.71x10 M, 40.95x10- M), W-1 (0.005 M) and MeCN (2 mL) inside the glove box. The tube
was sealed and the mixture was under the 365 nm, 15 W light irradiation. After that, the '°F
NMR spectra were recorded at various time intervals. The varying O2 concentration and the
concentration of 2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (ly) and W-1 for each set of
experiments are given in Table S6 and represent the data graphically.

Table S6. Initial rates (ko»s) for the Decarboxylative oxidation reaction of
2-(2-fluoro-[1,1'-biphenyl]-4-yl) propanoic acid (1y) with W-1 carried out under varying

concentrations of O-.
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1y(M) W-1(M) 0:(M) Initial rates(M/min) R?

0.1 0.005 8.6x107 (0.15+0.0462) x103 0.9859
0.1 0.005 20.48x1073 (0.31+0.0482) x10°3 0.9861
0.1 0.005 30.71x1073 (0.47+0.0447) x103 0.9793
0.1 0.005 40.95x1073 (0.64+0.0462) x103 0.9643

0.7

0.6 y=0.015X + 1.05 x 10°

R?=0.997
0.5+

0.4

0.3

Initial rates x 10~ (M/min)

0.2+

0.1 T T T T T T T T
0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05

0, (M)

Figure S21. Plot of reaction initial rates (M/min) vs Q2(M).

-334 y=0.914 x -1.941
54, R%=0.994

Ig(kobs)

1% order in O,

—2.1-2.0 -1.9 1.8 1.7 -1.6 1.5 —1.4
19[0,]

Figure S22. Plot of 1g(kobs) vs 1g (concn of O»).
8.Control Experiments
8.1 Control Experiments on Light Switch

To a 10 mL screw-cap vial fitted with a magneton was added 1y (0.2 mmol), W-1 (5 mol%
based on the substrate), Na,CO3 (0.24 mmol, 1.2 equiv.), MeCN (2 mL). The reaction tube is
charged with pure oxygen via a double-manifold operation and subjected to reaction under 365
nm, 15 W light irradiation, as the time period indicated in Figure S23. At the end of each period,
a small portion (25 pL) of the reacting solution was taken by a syringe, transferred into nuclear

magnetic tube and add MeCN (0.8 mL). Yields were determined by '°F NMR integration.
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Figure S23. Light on/off experiments over time. Time frame for the conversion of 1y to 2y.
8.2 Radical Quenching Experiment

To a 10 mL screw-cap vial fitted with a magneton was added 1a (0.2 mmol), W-1 (5 mol%
based on the substrate), MeCN (2 mL), Na,COs (0.24 mmol, 1.2 equiv.) and radical quencher
(TEMPO or DABCO etc, 0.4 mmol).The reaction tube is charged with pure oxygen via a
double-manifold operation and subjected to reaction under 365 nm, 15 W light irradiation. After
12 hours, the reaction mixture was removed from light and added tetraethylsilane (1eq based on
the substrate). Yield was determined by 'H NMR integration (Figure S24). For TEMPO trapping
experiments, 4-methoxyphenylacetic acid (1b) (33.2 mg, 0.2 mmol, 1.0 equiv.) and W-1 (5.5 mg, 5
mol%) and NaxCO; (0.24 mmol, 1.2 equiv.) and (2,2,6,6-tetramethylpiperidin-1-yl) oxyl
(TEMPO) (31.3 mg, 0.40 mmol, 2 equiv.) were dissolved in MeCN (2.0 mL, 0.1 M). The
mixture was irradiated at 365 nm 15W under O; atmosphere for 12 h at room temperature (30°C).
The decarboxylation reaction is completely suppressed and the 2b-TEMPO (Figure S96, S97)
was observed by 'H NMR and purified by automated flash column chromatography using a
petroleum ether/ethyl acetate gradient. The result indicates the formation of alkyl radicals in the

mechanistic pathway.
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W-1 (5 mol%)
MeCN,365nm,15W,0,,12h
1a quencher(2eq) 2a

o]

i @ @ E -

TEMPO DABCO BQ +BuOH

Table S7. Quencher experiments

entry quencher(2eq) Yield of 2a

1 TEMPO 6

2 BQ 14
3 AgNO; 20
4 DABCO 33
5 t-BuOH 84
6 none 87

\
\

~ T T —
100 8 s E
e+ .= 8487 |
80 tges |
— = ‘g | |
= 5853 |
e 60 = c ‘
7 C S o 2 |
° c g 3 T \
2 4 25933 |
7 o 14 20 ‘
o S8f)
. .
=

Figure S24. Ridical trapping experiment.
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9. NMR date

1-(4-isobutylphenyl)ethan-1-one?(2a) 'H NMR (400 MHz, Chloroform-d) 4 7.86 (d, J = 8.3 Hz,
2H), 7.22 (d, J = 8.6 Hz, 2H), 2.57 (s, 3H), 2.52 (d, ] = 7.2 Hz, 2H), 1.94 — 1.83 (m, 1H), 0.89 (d,
J =6.6 Hz, 6H). *C NMR (101 MHz, Chloroform-d) & 198.10, 147.73, 135.03, 129.39, 128.41,
45.47,30.22,26.66,22.42. Colorless oil.

0
@AH
o

4-methoxybenzaldehyde(2b) '"H NMR (400 MHz, Chloroform-d) 8 9.85 (s, 1H), 7.81 (d, ] = 8.8
Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H). 3C NMR (101 MHz, Chloroform-d) & 190.97,
164.70, 132.09, 130.01, 114.40, 55.68. Colorless oil.

o
HO

4-hydroxybenzaldehyde’(2e) 'H NMR (400 MHz, Chloroform-d) & 9.85 (s, 1H), 7.80 (d, J =
8.7 Hz, 2H), 6.95 (d, ] = 8.6 Hz, 2H), 6.30 (s, 1H). *C NMR (101 MHz, Chloroform-d) & 191.23,
161.58, 132.58, 129.98, 116.07. White solid.

L

2-naphthaldehyde(2h)* 'H NMR (400 MHz, Chloroform-d) § 10.16 (s, 1H), 8.34 (s, 1H), 8.01 -
7.89 (m, 4H), 7.61 (dd, J = 15.6, 7.7 Hz, 2H). '3C NMR (101 MHz, Chloroform-d) & 192.40,
136.56, 134.69, 134.21, 132.74, 129.64, 129.22, 128.19, 127.20, 122.87. Off white solid.

=0
(jf\g
N
H
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1H-indole-3-carbaldehyde®(2j) 'H NMR (400 MHz, DMSO-d¢) 8 9.89 (s, 1H), 8.25 (d, J = 0.9
Hz, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.47 (dd, J = 7.9, 1.1 Hz, 1H), 7.20 (dtt, J = 17.9, 7.2, 1.2 Hz,
2H). *C NMR (101 MHz, DMSO-ds) & 185.66, 139.25, 137.57, 124.62, 123.89, 122.52, 121.42,

©)L

acetophenone(2k) 'H NMR (400 MHz, Chloroform-d) & 7.90 (d, J = 8.5 Hz, 2H), 7.53 -7.46 (m,

118.67, 112.96. Brown solid.

1H), 7.43 -7.35 (m, 2H), 2.53 (s, 3H). '*C NMR (101 MHz, Chloroform-d) § 198.23, 137.14,
133.20, 128.65, 128.37, 26.67. Colorless liquid.

)@i
1-(p-tolyl) ethan-1-one(21) 'H NMR (400 MHz, Chloroform-d) 8 7.85 (d, J = 8.2 Hz, 2H), 7.24

(d, J = 8.1 Hz, 2H), 2.57 (s, 3H), 2.40 (s, 3H). '*C NMR (101 MHz, Chloroform-d) § 198.00,
143.99, 134.80, 129.34, 128.54, 26.64, 21.74. Colorless liquid.

0
O,N” :

1-(4-nitrophenyl) ethan-1-one®(2m) 'H NMR (400 MHz, Chloroform-d) & 8.29 (d, J = 8.7 Hz,
2H), 8.09 (d, J = 8.8 Hz, 2H), 2.66 (s, 3H). '3C NMR (101 MHz, Chloroform-d) § 196.50, 150.43,
141.44, 129.44, 123.98, 27.14. White solid.

O
cyclohexyl(phenyl)methanone(2n) 'H NMR (400 MHz, Chloroform-d) & 7.93 (d, J = 7.0 Hz, 2H),
7.52(d,J = 7.4 Hz, 1H), 7.44 (dd, ] = 8.2, 6.8 Hz, 2H), 3.25 (tt, J = 11.4, 3.2 Hz, 1H), 1.91 - 1.80

(m, 4H), 1.75 - 1.71 (m, 1H), 1.51 - 1.22 (m, 5H). '*C NMR (101 MHz, Chloroform-d) & 204.05,
136.41, 132.84, 128.68, 128.36, 45.71,29.51, 26.05, 25.95. Colorless liquid.
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O

CO

3,4-dihydronaphthalen-1(2H)-one’(20) 'H NMR (400 MHz, Chloroform-d) & 8.02 (dd, J = 7.8,
1.5 Hz, 1H), 7.46 (td, ] = 7.5, 1.5 Hz, 1H), 7.32-7.25 (m, 2H), 2.96 (t, J = 6.1 Hz, 2H), 2.67-2.63
(m, 2H), 2.14 (dt, J = 8.3, 5.8 Hz, 2H). '3C NMR (101 MHz, Chloroform-d) & 198.63, 144.62,
133.53, 132.69, 128.89, 127.27, 126.74, 39.28, 29.80, 23.37. Yellow oil.

O

(1

9H-fluoren-9-one(2p) 'H NMR (400 MHz, Chloroform-d) & 7.65 (dt, J = 7.3, 1.0 Hz, 2H), 7.53
-7.45 (m, 4H), 7.28 (td, J = 7.2, 1.4 Hz, 2H). 3C NMR (101 MHz, Chloroform-d) & 194.11,
144.53, 134.82, 134.23, 129.19, 124.44, 120.43. Yellow solid.

0]
9H-xanthen-9-one(2q) '"H NMR (400 MHz, Chloroform-d) 6 8.32 (d, ] = 7.0 Hz, 2H), 7.70 (t, J

= 7.8 Hz, 2H), 7.49 - 7.44 (m, 2H), 7.38 - 7.34 (m, 2H). *C NMR (101 MHz, Chloroform-d) &
177.33, 156.26, 134.92, 126.82, 124.00, 121.93, 118.07. White solid.

O O
N
©)LHJ\©
N-benzoylbenzamide(2r) '"H NMR (400 MHz, Chloroform-d) 8 9.00 (s, 1H), 7.86 (d, J = 7.1 Hz,

4H), 7.60 (t, J = 7.4 Hz, 2H), 7.50 (dd, J = 8.3, 6.9 Hz, 4H). '*C NMR (101 MHz, Chloroform-d)
5 166.49, 133.42, 133.26, 129.06, 128.03. White solid.

Lk
N~ O
o
tert-butyl benzoylcarbamate(2s) 'H NMR (400 MHz, Chloroform-d) 8 7.94 (s, 1H), 7.82 - 7.78
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(m, 2H), 7.58 - 7.53 (m, 1H), 7.50 - 7.44 (m, 2H), 1.52 (s, 9H). '3C NMR (101 MHz,
Chloroform-d) § 165.33, 149.63, 133.48, 132.90, 128.93, 127.59, 82.93, 28.12. White solid.

bis(4-chlorophenyl) methanone®(2t) 'H NMR (400 MHz, Chloroform-d) & 7.72 (d, J = 8.7 Hz,
4H), 7.46 (d, J = 8.7 Hz, 4H). 13C NMR (101 MHz, Chloroform-d) & 194.43, 139.28, 135.58,
131.50, 128.82. White solid.

0]

benzophenone(2u) 'H NMR (400 MHz, Chloroform-d) 8 7.80 (d, J = 7.8 Hz, 4H), 7.58 (t, ] =
7.4 Hz, 2H), 7.47 (t, J = 7.6 Hz, 4H). 3C NMR (101 MHz, Chloroform-d) & 196.88, 137.69,

&

1-((3r,5r,7r)-adamantane-1-carbonyl)pyrrolidin-2-one’2v) 'H NMR (400 MHz,

132.54, 130.17, 128.39. White solid.

Chloroform-d) & 3.89 - 3.74 (m, 2H), 2.57 (t, J = 8.0 Hz, 2H), 2.10 - 1.99 (m, 11H), 1.73 (t, ] =
11.8 Hz, 6H). 1*C NMR (101 MHz, Chloroform-d) & 180.41, 173.65, 48.67, 44.05, 36.56, 36.49,

o

chroman-2-one(2w) 'H NMR (400 MHz, Chloroform-d) 8 7.32 - 7.16 (m, 2H), 7.18 - 6.89 (m,

34.62, 28.31, 18.00. White solid.

2H), 3.00 (t, J = 7.3 Hz, 2H), 2.78 (dd, J = 8.3, 6.2 Hz, 2H). '*C NMR (101 MHz, Chloroform-d)
5 168.70, 152.10, 128.38, 128.11, 124.50, 122.72, 117.06, 29.33, 23.80. Colorless liquid.

o~
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1,3-dihydro-2H-inden-2-one(2x) 'H NMR (400 MHz, Chloroform-d) & 7.31 - 7.25 (m, 4H),
3.56 (s, 4H). '*C NMR (101 MHz, Chloroform-d) & 215.49, 137.87, 127.51, 125.12, 44.22.

Colorless liquid.

O o)
(J 1
1-(2-fluoro-[1,1'-biphenyl]-4-yl) ethan-1-one(2y) 'H NMR (400 MHz, Chloroform-d) & 7.80
(dd, J = 8.0, 1.7 Hz, 1H), 7.73 (dd, J = 11.1, 1.7 Hz, 1H), 7.59-7.52 (m, 3H), 7.50-7.39 (m, 3H),
2.62 (s, 3H). *C NMR (101 MHz, Chloroform-d) & 196.70, 161.02, 158.53, 137.90, 137.83,
134.76, 133.98, 133.84, 131.07, 131.03, 129.13, 129.10, 128.74, 128.63, 124.49, 124.46, 116.15,

115.91,26.81. 'F NMR (376 MHz, Chloroform-d) & -116.65. White solid.
0]

(J T

@)
1-(3-benzoylphenyl) ethan-1-one(2z) 'H NMR (400 MHz, Chloroform-d) & 8.34 (s, 1H), 8.16

(ddd, T = 7.8, 1.8, 1.2 Hz, 1H), 7.98-7.95 (m, 1H), 7.78 (dd, J = 8.3, 1.4 Hz, 2H), 7.63-7.56 (m,
2H), 7.51-7.46 (m, 2H), 2.63 (s, 3H). ’C NMR (101 MHz, Chloroform-d) & 197.49, 195.93,
138.01, 137.13, 134.33, 132.96, 131.89, 130.12, 129.73, 128.76, 128.55, 26.89. Yellow gum.

o

LD

2-acetyldibenzo[b.f]thiepin-10(11H)-one(2aa) 'H NMR (400 MHz, Chloroform-d) 8.19 & (d,

0O

J=8.0 Hz, 1H), 7.99 (s, 1H), 7.79 - 7.70 (m, 2H), 7.59 (d, J = 7.9 Hz, 1H), 7.44 (t, J = 7.6 Hz,
1H), 7.33 (t, ] = 7.6 Hz, 1H), 4.41 (s, 2H), 2.59 (s, 3H). 3C NMR (101 MHz, Chloroform-d) &
197.09, 190.84, 140.20, 139.16, 138.26, 138.03, 136.11, 132.91, 131.71, 131.58, 131.04, 129.25,
127.29, 127.03, 51.09, 26.87. White solid.
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o

O
1-(6-methoxynaphthalen-2-yl)ethan-1-one(2ab) 'H NMR (400 MHz, Chloroform-d) & 8.37

(s, 1H), 7.99 (dd, J = 8.6, 1.8 Hz, 1H), 7.83 (d, ] = 9.1 Hz, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.19 (dd,
J=8.9, 2.5 Hz, 1H), 7.14 (d, J = 2.5 Hz, 1H), 3.93 (s, 3H), 2.68 (s, 3H). *C NMR (101 MHz,
Chloroform-d) & 198.09, 159.84, 137.38, 132.66, 131.20, 130.09, 127.88, 127.19, 124.74, 119.42,
105.63, 55.53, 26.68. Brown solid.

0]
2-(4-acetylbenzyl)cyclopentan-1-one(2ac) 'H NMR (400 MHz, Chloroform-d) 6 7.86 (d, J =
8.3 Hz, 2H), 7.24 (d, ] = 8.3 Hz, 2H), 3.17 (dd, ] = 13.8, 4.3 Hz, 1H), 2.64 - 2.57 (m, 1H), 2.57 (s,
3H), 2.35 (dddt, ] = 12.5,9.7, 6.9, 1.6 Hz, 2H), 2.14 - 2.01 (m, 2H), 1.95 (dddt, J = 13.6, 8.9, 6.5,
2.4 Hz, 1H), 1.71 (d, J = 3.0 Hz, 1H), 1.51 (dtd, J = 12.5, 11.1, 6.5 Hz, 1H). *C NMR (101 MHz,
Chloroform-d) & 219.85, 197.99, 145.96, 135.42, 129.23, 128.71, 50.80, 38.17, 35.63, 29.21,
26.71, 20.62. White solid.
0
Sace
1-(3-phenoxyphenyl)ethan-1-one(2ad) 'H NMR (400 MHz, Chloroform-d) & 7.67 (d, J = 8.0
Hz, 1H), 7.57 (s, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.38 - 7.32 (m, 2H), 7.20 (d, J = 8.2 Hz, 1H), 7.16
- 7.11 (m, 1H), 7.01 (d, J = 7.7 Hz, 2H), 2.57 (s, 3H). 1*C NMR (101 MHz, Chloroform-d) &
197.68, 157.84, 156.68, 138.93, 130.08, 123.95, 123.46, 123.23, 119.23, 118.19, 26.89.

oot
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1-(6-chloro-9H-carbazol-2-yl)ethan-1-one(2ae) 'H NMR (400 MHz, Chloroform-d) & 8.27 -
8.20 (m, 2H), 7.99 (dd, J = 8.2, 1.5 Hz, 1H), 7.53 - 7.50 (m, 1H), 7.34 (dd, J = 8.6, 2.0 Hz, 1H),
7.25 (s, 1H), 6.75 (d, ] = 8.6 Hz, 1H), 2.57 (s, 3H). 3C NMR (101 MHz, Chloroform-d) & 197.70,
140.06, 139.33, 136.33, 128.56, 128.00, 125.01, 122.68, 122.53, 121.70, 121.22, 110.23, 108.85,

Qo
Ph

[1,1'-biphenyl]-4-carbaldehyde(2af) 'H NMR (400 MHz, Chloroform-d) & 10.05 (s, 1H),

27.11. White solid.

7.99-7.92 (m, 2H), 7.78 - 7.72 (m, 2H), 7.66 - 7.62 (m, 2H), 7.51-7.41 (m, 3H). 3C NMR (101
MHz, Chloroform-d) § 192.14, 147.31, 139.80, 135.25, 130.41, 129.14, 128.59, 127.81, 127.49.

L

o =0

White solid.

11-0x0-6,11-dihydrodibenzo[b,e]oxepine-2-carbaldehyde(2ah) 'H NMR (400 MHz,
Chloroform-d) 6 9.99 (d, J = 0.7 Hz, 1H), 8.73 (d, ] = 2.2 Hz, 1H), 8.02 (dd, J = 8.6, 2.2 Hz, 1H),
7.88 (dd, J=7.8, 1.4 Hz, 1H), 7.62 - 7.58 (m, 1H), 7.51 (td, J = 7.6, 1.3 Hz, 1H), 7.43 - 7.39 (m,
1H), 7.17 (dd, J = 8.6, 0.7 Hz, 1H), 5.28 (s, 2H). 3C NMR (101 MHz, Chloroform-d) & 190.60,
190.39, 165.69, 140.43, 137.67, 134.59, 133.53, 133.36, 130.70, 129.88, 129.50, 128.28, 124.90,
122.30, 73.71. Yellow solid.

O
N
Cl

/O

1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-carbaldehyde(2ai) 'H NMR (400 MHz,
Chloroform-d) 6 10.31 (s, 1H), 7.80 (s, 1H), 7.69 (d, J = 8.6 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H),
6.72 (d, J = 1.7 Hz, 2H), 3.86 (s, 3H), 2.75 (s, 3H). 3*C NMR (101 MHz, Chloroform-d) & 185.96,
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168.37, 157.26, 148.73, 141.05, 132.11, 131.81, 130.69, 129.61, 127.02, 118.47, 114.42, 114.00,

fog'e
Cl

O—
(4-chlorophenyl)(5-methoxy-2,3-dimethyl-1H-indol-1-yl)methanone(2ai’) 'H NMR (400

103.33, 53.57, 12.77. White solid.

MHz, Chloroform-d) 6 7.63 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 6.92 - 6.87 (m, 2H),
6.65 (dd, J = 8.9, 2.6 Hz, 1H), 3.84 (s, 3H), 2.30 (s, 3H), 2.18 (s, 3H). 1*C NMR (101 MHz,
Chloroform-d) & 168.36, 156.00, 138.96, 134.43, 133.88, 132.04, 131.13, 130.91, 129.11, 115.54,
111.24, 55.82, 13.50, 8.91. Colorless liquid.
1 !

N
| 4
(1,5-dimethyl-1H-pyrrol-2-yl)(p-tolyl)methanone(2aj’) '"H NMR (400 MHz, Chloroform-d) &
7.68 (d, J = 8.2 Hz, 2H), 7.25 - 7.21 (m, 2H), 6.64 (d, J = 3.9 Hz, 1H), 5.94 (dd, J = 4.0, 0.8 Hz,
1H), 3.91 (s, 3H), 2.40 (s, 3H), 2.29 (s, 3H). 3*C NMR (101 MHz, Chloroform-d) & 185.54,
141.69, 139.35, 137.72, 130.67, 129.98, 129.45, 128.76, 122.86, 108.22, 33.03, 21.66, 12.77.
Colorless liquid.

)

@*Mo

5-oxo0-5-phenylpentanal(4a) '"H NMR (400 MHz, Chloroform-d) 6 9.80 (t, J = 1.4 Hz, 1H), 7.98
- 7.93 (m, 2H), 7.55 (d, J = 7.4 Hz, 1H), 7.46 (dt, J = 7.1, 2.0 Hz, 2H), 3.04 (t, J = 7.0 Hz, 2H),
259 (t, J = 7.1 Hz, 2H), 2.11 - 2.04 (m, 2H). *C NMR (101 MHz, Chloroform-d) §
202.12,199.44,136.76, 133.29, 128.74, 128.18, 128.10, 43.18, 37.36, 16.59. Colorless liquid.
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4-(4-chlorophenyl)-4-oxobutanal(4b) 'H NMR (400 MHz, Chloroform-d) & 9.88 (s, 1H), 7.91
(d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.7 Hz, 2H), 3.31 - 3.23 (m, 2H), 2.93 (t, J = 6.2 Hz, 2H). *C
NMR (101 MHz, Chloroform-d) 6 200.55, 196.72, 139.89, 134.81, 129.59, 129.08, 37.63, 31.01.

Colorless liquid.

)

Bon

1-(4-bromophenyl)ethan-1-one(6e) 'H NMR (400 MHz, Chloroform-d) & 7.80 (d, J = 8.6 Hz,
2H), 7.58 (d, J = 8.5 Hz, 2H), 2.57 (s, 3H). 1*C NMR (101 MHz, Chloroform-d) 4 197.15, 135.90,
131.99, 129.94, 128.41, 26.64. Colorless liquid.

N
e
o

1-((4-methoxybenzyl)oxy)-2,2,6,6-tetramethylpiperidine (2b-TEMPO) 'H NMR (400 MHz,
Chloroform-d) 6 7.32 - 7.27 (m, 2H), 6.90 - 6.86 (m, 2H), 4.74 (s, 2H), 3.81 (s, 3H), 1.65 - 1.46
(m, 6H), 1.27 (s, 6H), 1.13 (s, 6H). *C NMR (101 MHz, Chloroform-d) & 159.08, 130.45, 129.32,
113.73, 78.50, 60.06, 55.36, 39.77, 33.24, 20.38, 17.21.
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Figure S26. '*C NMR spectrum of W-1 (101 MHz, Chloroform-d).
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Figure S62. '3C NMR spectrum of 2r (101 MHz, Chloroform-d).
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Figure S63. 'H NMR spectrum of 2ai (400 MHz, Chloroform-d).
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Figure S64. 3C NMR spectrum of 2ai (101 MHz, Chloroform-d).
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Figure S65. 'H NMR spectrum of 2m (400 MHz, Chloroform-d).
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Figure S66. *C NMR spectrum of 2m (101 MHz, Chloroform-d).
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Figure S72. 3C NMR spectrum of 21 (101 MHz, Chloroform-d).
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Figure S74. 3C NMR spectrum of 2q (101 MHz, Chloroform-d).
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Figure S76. '3C NMR spectrum of 2aa (101 MHz, Chloroform-d).
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Figure S78. 13C NMR spectrum of 2v (101 MHz, Chloroform-d).
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Figure S79. 'H NMR spectrum of 2w (400 MHz, Chloroform-d).
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Figure S80. '3C NMR spectrum of 2w (101 MHz, Chloroform-d).
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Figure S84. '3C NMR spectrum of 2x (101 MHz, Chloroform-d).
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Figure S90. 'H NMR spectrum of 2aj’ (400 MHz, Chloroform-d).
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Figure S93. '3C NMR spectrum of 2ai’ (101 MHz, Chloroform-d).

LT-12-1
single_pulse

7.81
11/
7.6
7.5
—2.57

2.00-=
2.01=

(S ] X U S
,m_302 S

100 95 90 85 80 75 70 65 60 55 50 45 40 35 3.0 20 15 10 05 00
1 (ppm)

Figure S94. 'H NMR spectrum of 6e (400 MHz, Chloroform-d).
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Figure S96. 'H NMR spectrum of 2b-TEMPO (400 MHz, Chloroform-d).
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Figure S97. 13C NMR spectrum of 2b-TEMPO (101 MHz, Chloroform-d).
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