

1

Supplementary Information

2 High-Valent Manganese Promotes Percolating K-Vacancy Networks to Boost Bulk K⁺

3 Conduction in $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$

4 Zhungzhuang chen, Liping Li *, Taotao Huang, Junhong Zhou, Yaowen Wang, Xu Han, Yuhan Yi,

5 and Guangshe Li *

⁶ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin

7 University, Changchun 130012, P.R. China

8 *Corresponding authors.

⁹ E-mail addresses: lipingli@jlu.edu.cn; guangshe@jlu.edu.cn

10

11 Supplementary Information:

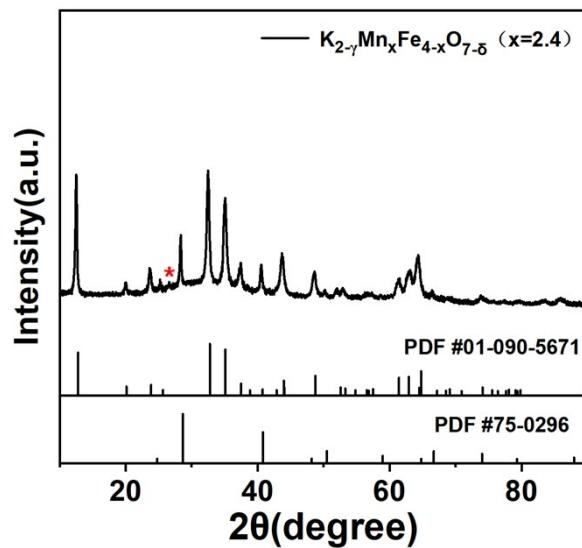
12 Synthesis

13 Compositions $K_{2-y}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0, 0.4, 0.8, 1.2, 1.6, 2.0$) were synthesized by an alkaline

14 hydrothermal route using $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ (99%, Aladdin) and $\text{Mn}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$ (99%, Aladdin) at

15 varied molar ratios in the presence of excess KOH(99%, Aladdin). Typically, 2.9 g of $\text{Fe}(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$

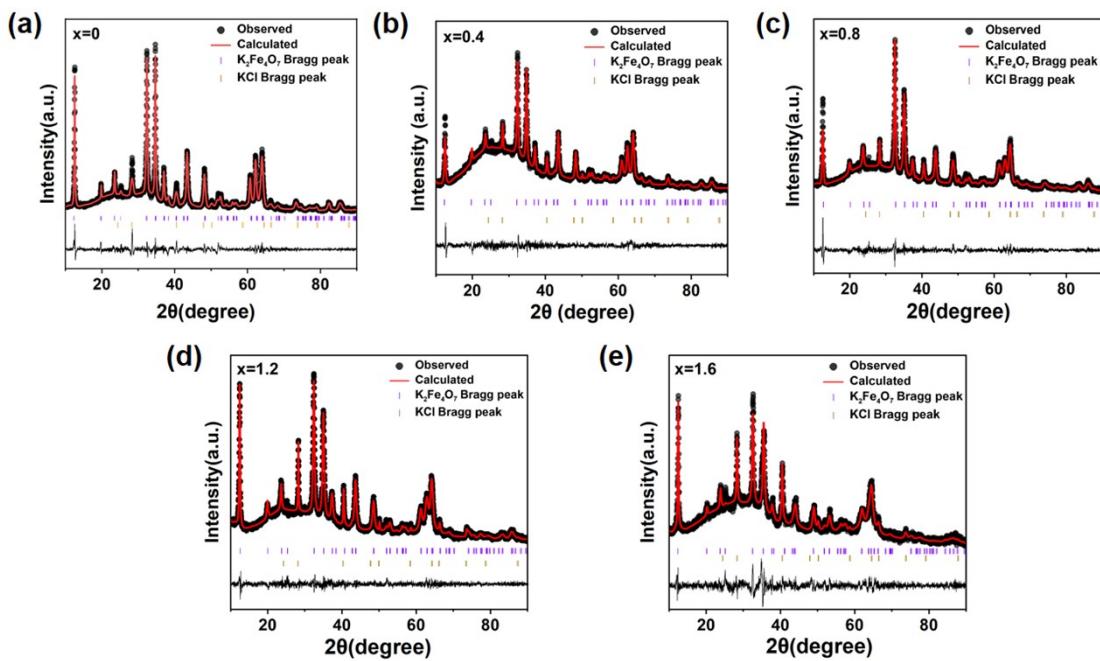
16 and 1.8g of $\text{Mn}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$ were dissolved in 16 mL deionized water to afford a clear solution. To


17 efficiently add KOH without evaporating the solution's water content, the clear solution was stirred in an
18 ice bath. During stirring, approximately 1 g of KOH was added every 3 – 5 minutes until 32 g KOH was
19 incorporated. The mixture was transferred to a PTFE-lined stainless-steel autoclave and heated at 240
20 ° C for 20 h. Finally, the crystals of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ were obtained. Crystals with other Mn contents
21 were prepared by the same procedure while adjusting the $Fe(NO_3)_3 \cdot 9H_2O$ and $Mn(NO_3)_2 \cdot 4H_2O$ molar
22 ratio. After cooling to room temperature, crystals were collected by filtration, washed with deionized
23 water and dried in air at ambient temperature. The crystals are put into an agate ball-filled milling jar and
24 ball-milled for 36 h at 360 rpm/min, using ethanol as the solvent. The obtained was dried in an oven at
25 75 ° C for 12 h. Subsequently, the fine powder was pressed into pellets with a diameter of 6 or 10 mm
26 and a thickness of 0.05-0.2 cm. Finally, those pellets were sintered for 20 h at 600 ° C in an alumina
27 crucible. The heating rate was 2 ° C /min, and the cooling rate was 5 ° C /min.

28 Characterization methods

29 The crystal structures of the $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0, 0.4, 0.8, 1.2, 1.6, 2.0$) electrolytes were
30 examined by X-ray diffraction (XRD; Rigaku Miniflex) using a Cu K α radiation source ($\lambda = 1.5418 \text{ \AA}$)
31 at 40 kV and 15 mA in a scan range of 2θ between 10° to 90°, with a 0.02° step size. The lattice parameters
32 were calculated by Rietveld refinement on the GSAS program. The morphology and energy dispersive
33 spectrometer (EDS) mapping of the samples were characterized using a field-emission scanning electron
34 microscopy (SEM; Hitachi, JSM-6700F). The morphology of supports and catalysts was characterized
35 by transmission electron microscopy (TEM, Tecnai G2S-Twin F20). X-ray photoelectron spectroscopy

36 (XPS) measurements were performed on an ESCALAB250 apparatus with a monochromatic Al K α
37 (1486.6 eV) X-ray source. All photoelectron peaks were calibrated by setting the binding energy of the
38 contaminative carbon (C 1s) to 284.8 eV. Elemental compositions of the samples were obtained by
39 inductively coupled plasma (ICP) on an Thermo, iCAP 7600. XAS measurements were performed
40 on a laboratory device (easyXAFS300, easy-XAFS LLC), which is based on Rowland circle geometries
41 with spherically bent crystal analyzers (SBCA) and a silicon drift detector. Si (5,5,3) and Ge (4,2,0) were
42 used respectively to test for Fe K-edge. The Thermogravimetric Mass Spectrometry (TG-MS) was
43 measured on the NETZSCH STA449F3 QMS403D \ Bruker V70 instrument, about 20 mg of the sample
44 was heated from 25 °C to 600 °C at 10 °C·min-1 in a N₂ gas atmosphere. The Fourier Transform infrared
45 spectroscopy (FT-IR) was detected under vacuum conditions by VERTEX 80V(Bruker). The
46 electrochemical impedance spectroscopy (EIS) was recorded using Squidtat plus (Admiral)
47 electrochemical work station in the frequency range from 2 MHz to 0.1 Hz at 30-300 °C. Their electronic
48 conductivity was measured based on direct-current polarization method with a constant voltage of 0.1 V
49 using Solartron 1260 and 1287 at room temperature. Before testing, the electrolyte pellets were polished
50 with a polishing machine, and both surfaces of the pellets were sputtered with Pt as the blocking
51 electrodes. All electrolyte pellets were preheated in a muffle furnace at 500°C for five hours. The
52 electrochemical impedance spectroscopy and electronic conductivity were measured under a continuous
53 flow of dry argon gas. All of impedance data are analyzed using Z-view software to determine the total
54 resistance and grain boundary resistance.
55


56 **Supplementary Figures and Tables:**

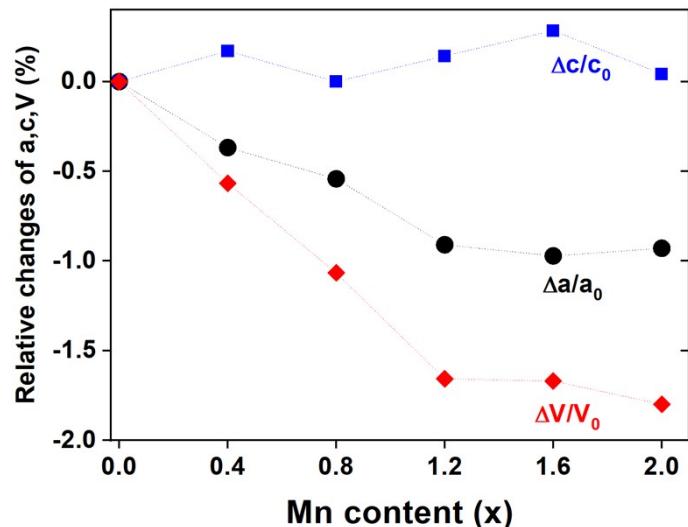
57

58 **Fig. S1.** XRD of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 2.4$). The symbol “*” represents an additional diffraction peak,
59 indicating the formation of a secondary phase. High purity KCl (PDF #75-0296) was added as an internal
60 standard.

61

62

63 **Fig. S2.** XRD Rietveld refinement of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0, 0.4, 0.8, 1.2, 1.6$): (a) $x=0$, (b) $x=0.4$, (c)
64 (c) $x=0.8$, (d) $x=1.2$, (e) $x=1.6$ samples, respectively.


65

66 **Table S1** Lattice parameters, XRD refinement factors of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0, 0.4, 0.8, 1.2, 1.6, 2.0$).

x	Lattice parameters			Refinement factors		
	a (Å)	c (Å)	V (Å ³)	χ^2	R _{wp}	R _p
0	5.164	7.024	162.3	1.08	0.068	0.051
0.4	5.145	7.036	161.3	1.06	0.061	0.046
0.8	5.136	7.024	160.5	1.10	0.062	0.047
1.2	5.117	7.034	159.6	0.85	0.059	0.045
1.6	5.114	7.044	159.5	0.86	0.057	0.044
2.0	5.116	7.027	159.3	0.87	0.060	0.047

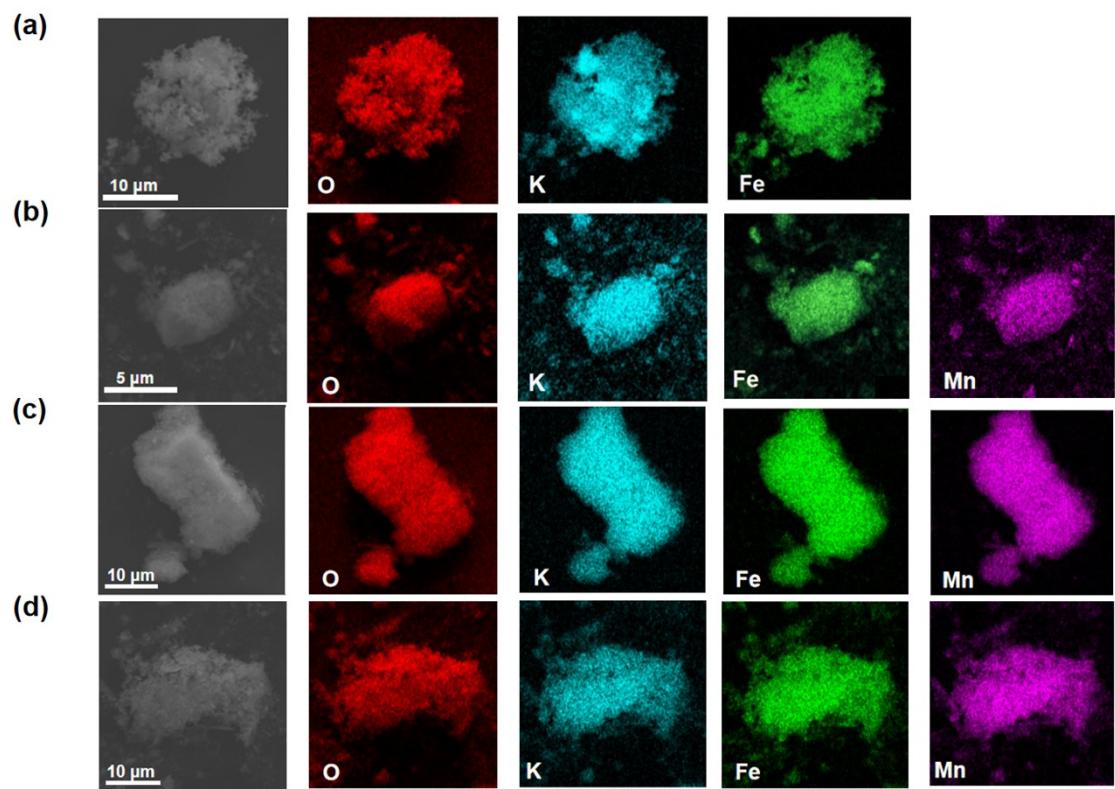
67

68

69

70 **Fig. S3** Relative changes of lattice parameters a , c , and unit cell volume V of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$. $\Delta a=a-a_0$,

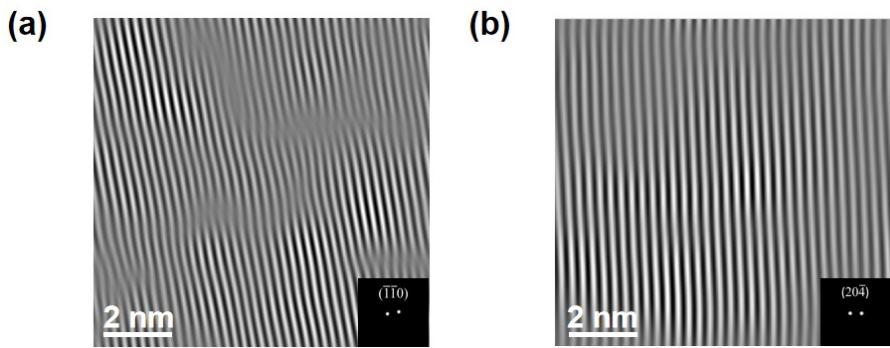
71 $\Delta c=c-c_0$, and $\Delta V=V-V_0$, where, a_0 , c_0 and V_0 are the values of $x=0$.


72

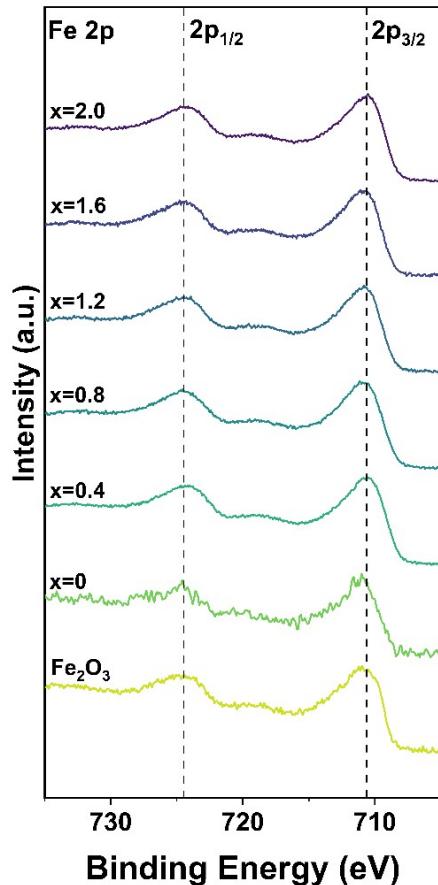
73 **Table S2.** Element content (in mole ratio) obtained from ICP analysis.

74

x	K	Mn	Fe	Calculated value of γ in the molecular formula $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$
0	1.46	0	4.00	0.54
0.4	1.08	0.40	3.60	0.92
0.8	0.96	0.79	3.21	1.08
1.2	0.83	1.05	2.95	1.17
1.6	0.81	1.52	2.48	1.19
2.0	0.75	1.97	2.03	1.25

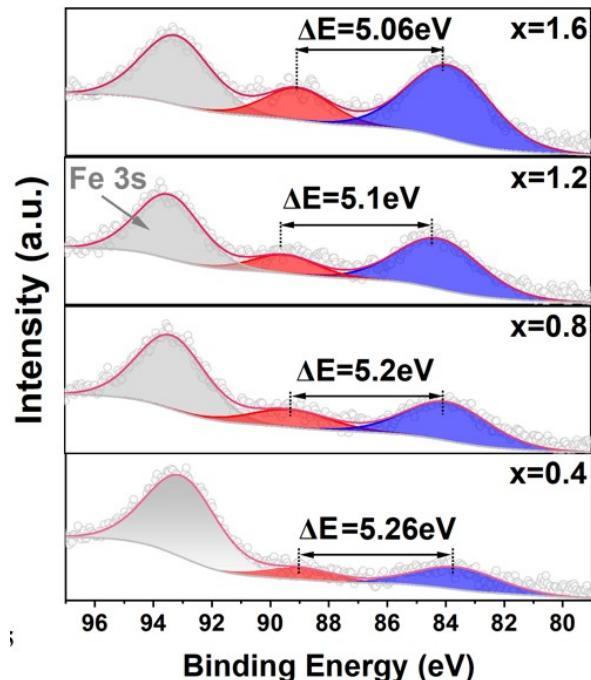

75

76
77 **Fig. S4.** EDS elements distribution mappings of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$: (a) $x = 0$, (b) $x = 0.8$ (c) $x = 1.6$ and (d)
78 $x = 2.0$


79

80

81 **Fig. S5.** IFFT patterns of the $(\bar{1}\bar{1}0)$ and $(20\bar{4})$ crystal planes in the selected regions I and II of K_2-


82 γ $Mn_xFe_{4-x}O_{7-\delta}$: (a) $x = 0$, (b) $x = 2.0$.

83

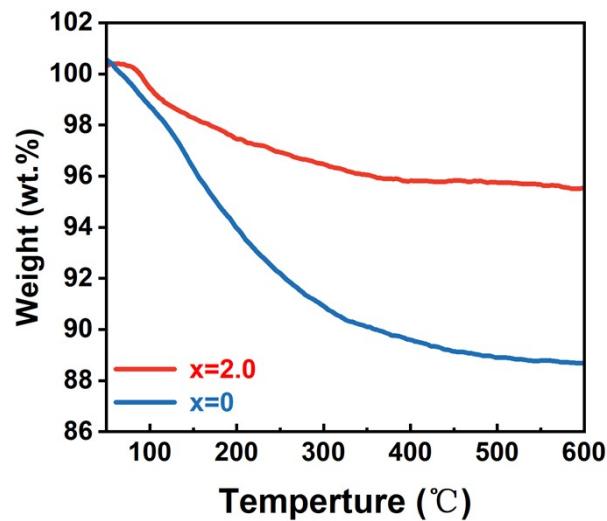
84 **Fig. S6.** Fe 2p XPS spectra of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ samples ($x = 0.4, 0.8, 1.2, 1.6, 2.0$) and Fe_2O_3 .

85

86

87 **Fig. S7.** Mn 3s XPS spectra of $K_{2-y}Mn_xFe_{4-x}O_{7-\delta}$ samples ($x = 0.4, 0.8, 1.2, 1.6$).

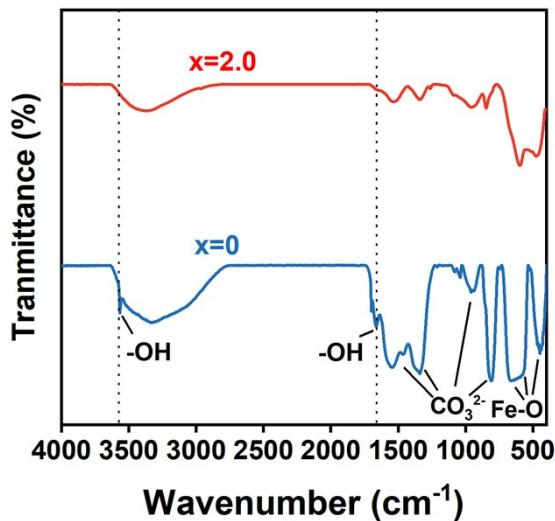
88


89 **Table S3.** Oxidation states of Mn in $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0.4, 0.8, 1.2, 1.6, 2.0$).

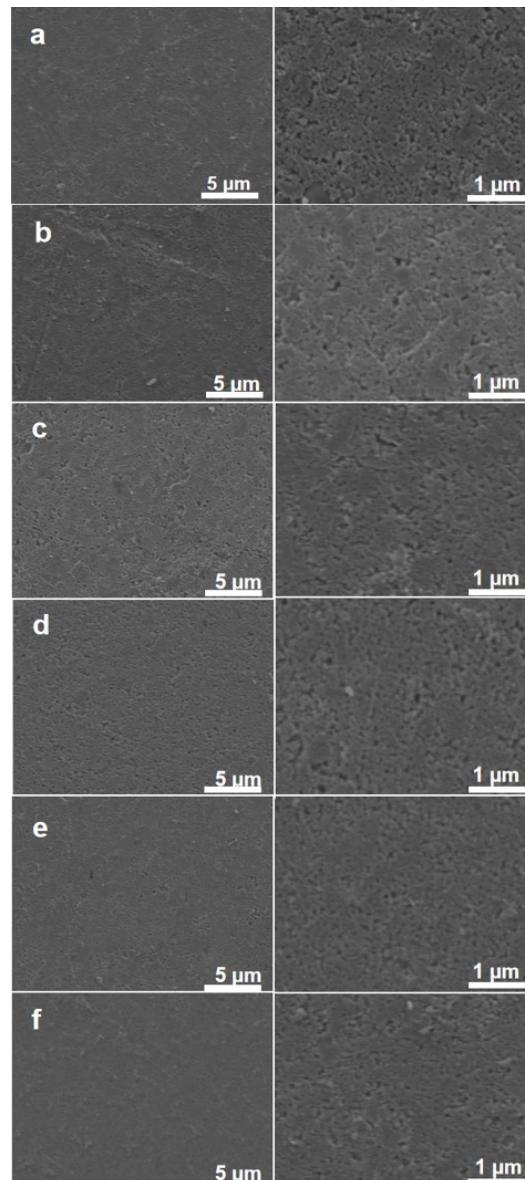
x	Mn oxidation state	
	<i>Average Valence = 8.95 - 1.13 × ΔE</i>	
0.4		+3.01
0.8		+3.07
1.2		+3.19
1.6		+3.23
2.0		+3.32

90

91


92

93

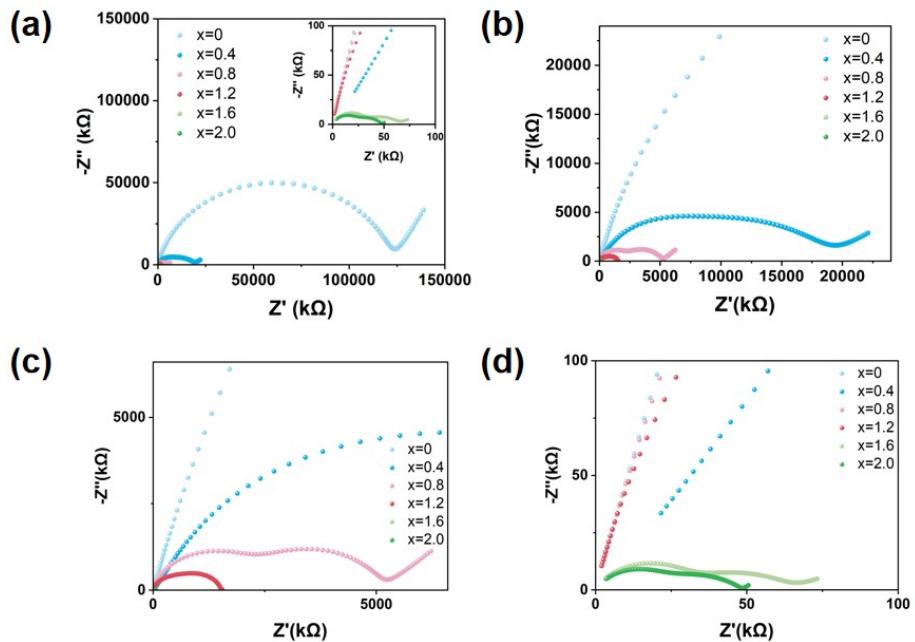

94 **Fig. S8.** TGA of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0$) and ($x = 2.0$), respectively.

95

96

97 **Fig. S9.** FTIR spectra of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0$) and ($x = 2.0$), respectively. Key absorption bands are
98 assigned according to Reference [1], corresponding to hydroxyl (OH) and carbonate (CO_3^{2-}) group peaks
99 and to Fe-O modes.

101 **Fig. S10.** SEM images of polished solid electrolyte $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ (a) $x = 0$, (b) $x = 0.4$, (c) $x = 0.8$,
102 (d) $x = 1.2$, (e) $x = 1.6$, (f) $x = 2.0$.


103 **Table S4.** Dimensions, theoretical density (ρ_{theor}), apparent density (ρ_{exp}), and relative density ratio
 104 ($\rho_{\text{exp}}/\rho_{\text{theor}}$) of as-synthesized $\text{K}_{2-\gamma}\text{Mn}_x\text{Fe}_{4-x}\text{O}_{7-\delta}$ ($x = 0, 0.4, 0.8, 1.2, 1.6, 2.0$) pellets for AC impedance
 105 measurements.

106

x	Mass (g)	Diameter (cm)	Thickness (cm)	$\rho_{\text{theor}}^{[a]}$ ($\text{g}\cdot\text{cm}^{-3}$)	$\rho_{\text{exp}}^{[b]}$ ($\text{g}\cdot\text{cm}^{-3}$)	$\rho_{\text{exp}}/\rho_{\text{theor}}$ (%)
0	0.066	0.589	0.073	3.973	3.318	83.5
0.4	0.058	0.580	0.070	3.837	3.136	81.7
0.8	0.054	0.575	0.065	3.804	3.199	84.1
1.2	0.060	0.590	0.068	3.773	3.227	85.5
1.6	0.056	0.580	0.065	3.762	3.260	86.6
2.0	0.048	0.560	0.062	3.738	3.143	84.1

107 ^[a] ρ_{theor} value is calculated by the formula $\rho_{\text{theor}} = \frac{ZM}{V_{\text{cell}}N_A}$, where Z represents the quantity of atoms
 108 within a unit cell, M is the total mass of those atoms in one unit cell, V_{cell} stands for the unit cell's volume
 109 and N_A denotes Avogadro's constant.

110 ^[b] ρ_{exp} value is calculated by the formula $\rho_{\text{exp}} = m/V$, where m stands for the mass of ceramic pellet
 111 examined, and V for its volume which can be determined by the area and thickness of the ceramic pellet.

113

114 **Fig. S11.** Room-temperature Nyquist impedance plot of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0, 0.4, 0.8, 1.2, 1.6, 2.0$)

115 and local enlargements of impedance details from samples with varying concentrations.

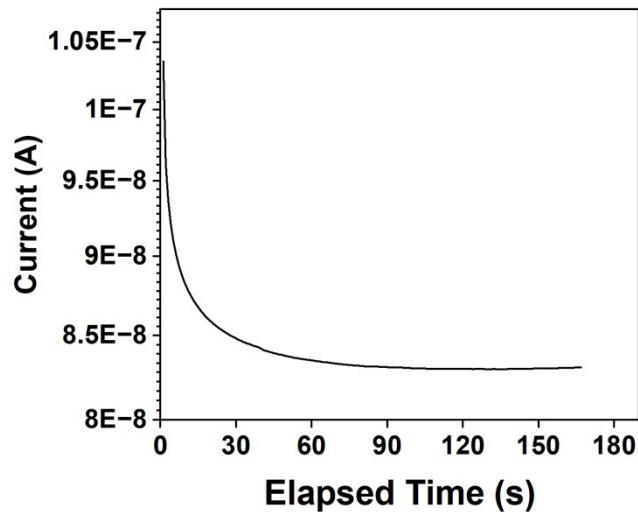
116

117 **Table S5.** The fitted resistance, CPE parameters and the corresponding capacitances of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ (x = 0.4, 0.8, 1.2, 1.6, 2.0) by fitting the equivalent circuit consisted of R_1 -CPE₁ in parallel, R_2 -CPE₂ in parallel, and W_1 in series.

120

x	$R_1(k\Omega)$	CPE ₁ (F)	$C_1(F)$	$R_2(k\Omega)$	CPE ₂ (F)	$C_2(F)$
0	5.03×10^4	5.48×10^{-11}	2.18×10^{-11}	9.50×10^4	5.95×10^{-10}	3.24×10^{-10}
0.4	4.89×10^3	6.04×10^{-11}	2.95×10^{-11}	1.39×10^4	1.30×10^{-9}	1.07×10^{-10}
0.8	2.16×10^3	4.05×10^{-11}	1.33×10^{-11}	2.94×10^3	1.22×10^{-9}	2.73×10^{-10}
1.2	5.79×10^2	5.80×10^{-11}	1.68×10^{-11}	9.47×10^2	2.65×10^{-9}	1.04×10^{-9}
1.6	28.5	6.68×10^{-10}	2.50×10^{-11}	35.4	4.71×10^{-7}	4.24×10^{-9}
2.0	19.9	6.84×10^{-10}	2.31×10^{-11}	28.8	2.03×10^{-7}	1.06×10^{-9}

121

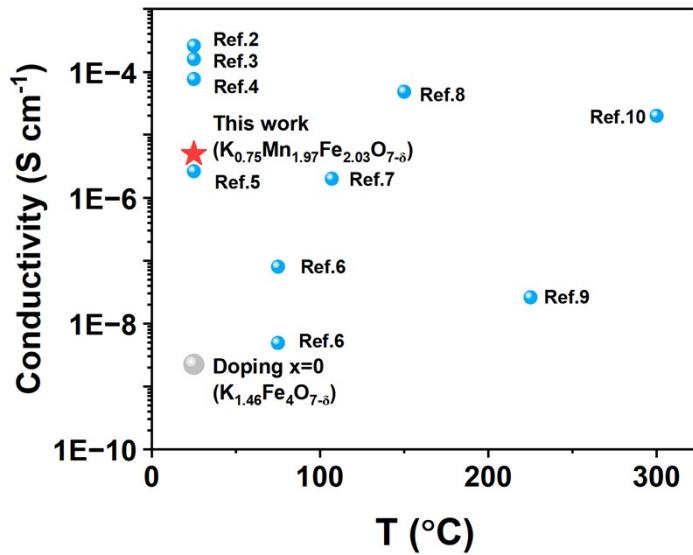

122

123 **Table S6.** Room-temperature ionic conductivities of solid electrolytes $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0, 0.4, 0.8,$
124 $1.2, 1.6, 2.0$).

125

x	R_b (k Ω)	R_{gb} (k Ω)	σ_b (S \cdot cm $^{-1}$)	σ_{gb} (S \cdot cm $^{-1}$)	σ_{total} (S \cdot cm $^{-1}$)
0	5.03×10^4	9.50×10^4	5.32×10^{-9}	2.82×10^{-9}	1.84×10^{-9}
0.4	4.89×10^3	1.39×10^4	5.42×10^{-8}	1.90×10^{-8}	1.41×10^{-8}
0.8	2.16×10^3	2.94×10^3	1.15×10^{-7}	8.51×10^{-8}	4.91×10^{-8}
1.2	5.79×10^2	9.47×10^2	4.29×10^{-7}	2.62×10^{-7}	1.63×10^{-7}
1.6	28.5	35.4	8.63×10^{-6}	6.95×10^{-6}	3.85×10^{-6}
2.0	19.9	28.8	1.26×10^{-5}	8.74×10^{-6}	5.17×10^{-6}

126



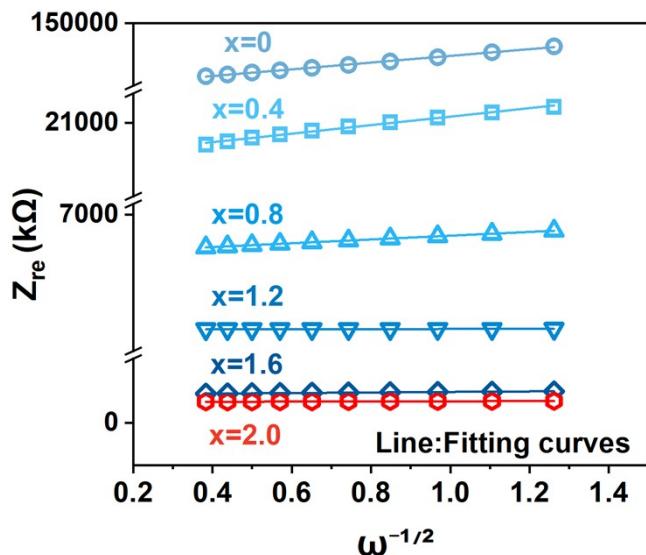
127

128 **Fig. S12.** Direct-current (DC) polarization with blocking electrodes of $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 2.0$) under

129 inert gas.

130

131


132 **Fig. S13.** A comprehensive comparison of reported solid-state electrolytes for potassium-ion batteries

133 and their intrinsic potassium-ion conductivities. Red stars denote data for the Mn-doped sample with x

134 = 2.0 from this work, gray spheres represent the undoped samples, and blue spheres correspond to solid-

135 state potassium-ion electrolytes reported in the references [2-10].

136

139 **Fig. S14.** Real part of impedance (Z_{re}) vs. $\omega^{-1/2}$ for $K_{2-\gamma}Mn_xFe_{4-x}O_{7-\delta}$ ($x = 0, 0.4, 0.8, 1.2, 1.6, 2.0$), where

140 the Warburg coefficients (σ_W) is obtained from linear fitting.

142 **Table S7.** The computed Warburg factors (σ_w) and K⁺ diffusion coefficient of (D_{K+}) of the K_{2- γ} Mn_xFe_{4-x}O_{7- δ} (x = 0.04, 0.8, 1.2, 1.6, 2.0).

144

x	σ_w (Ω s ^{-1/2})	D _{K+} (cm ² s ⁻¹)
0	1.61×10 ⁷	1.8×10 ⁻²³
0.4	2.89×10 ⁶	9.4×10 ⁻²²
0.8	9.04×10 ⁵	9.7×10 ⁻²⁰
1.2	1.76×10 ⁴	4.0×10 ⁻¹⁷
1.6	6130	3.5×10 ⁻¹⁶
2.0	1770	4.8×10 ⁻¹⁵

145

146 **References**

147 [1] F. Dai, Q. Zhuang, G. Huang, H. Deng and X. Zhang, ACS Omega, 2023, 8, 17064-17076.

148 [2] A. Haffner, A.-K. Hatz, O. E. O. Zeman, C. Hoch, B. V. Lotsch, D. Johrendt, Angew. Chem. Int. Ed. 2021, 60, 13641.

149 [3] X. Zhang, B. Yi, W. Jia, S. Zhao, S. Savilov, S. Yao, Z. X. Shen, G. Chen, Z. Wei, F. Du, Angew. Chem. Int. Ed., 2025, 64, e202413214.

150 [4] J. Shao, J. Zheng, L. Qin, S. Zhang, Y. Ren, Y. Wu, Angew. Chem. Int. Ed. 2022, 61, e202200606; Angew. Chem. 2022, 134, e202200606.

151 [5] G.-G. Zhang, P. Qiu, J.-X. Kang, Z. Lu, A.-Q. Zhu, X. Yu, et al. Inorg. Chem. Front., 2024, 11, 8715-8724.

152 [6] H. Ben Yahia, K. Motohashi, H. Ishibashi, Y. Kubota, A. Kosuga, A. Sakuda, et al. The Journal of Physical Chemistry C, 2024, 128, 8900-8910.

153 [7] Y. Sadikin, R. V. Skoryunov, O. A. Babanova, A. V. Soloninin, Z. Lodziana, M. Brighi, et al. The Journal of Physical Chemistry C, 2017, 121, 5503-5514.

154 [8] Jiang Wang, Gangtie Lei, Teng He, Hujun Cao, Ping Chen, Journal of Energy Chemistry, 2022, 69, 555-560.

155 [9] M. Jørgensen, S. R. H. Jensen, T. D. Humphries, M. R. Rowles, M. V. Sofianos, C. Buckley, et al. The Journal of Physical Chemistry C, 2020, 124, 11340-11349.

156 [10] E. Wang and M. Greenblatt, Chemistry of Materials, 1991, 3, 542-546.