

Supporting Information

Nitridation-Driven Construction of Ru/WNO Catalysts Enables Highly Selective Cellulose to C₂ Alcohols Hydrogenolysis

Wei Jia^a, Nianxue Zhai^b, Hongxiao Wang^b, DanDan Wang^b, Yuandong Cui^b, Guoqing Ren^{c,*}, Xiaoli Yang^{b,*}

^a Pei County Secondary Specialized School of Jiangsu Province, Xuzhou 221600, China

^b College of Textiles and Clothing, State Key Laboratory of BioFibers and Eco-textiles, Qingdao University, Qingdao 266071, China

^c Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, P. R. China

* Corresponding author. Email: renguojing@sdu.edu.cn, xlyang@qdu.edu.cn

No of Pages: 14

Summary:

Experimental Section

Fig. S1. Recycling tests of Ru/WNO-800. Reaction conditions: 0.1 g of cellulose, 0.05 g of catalysis, 30 mL of deionized water, 245 °C, initial 5 MPa H₂, 4 h. EG: ethylene glycol; EtOH: ethanol.

Fig. S2. XRD patterns of used Ru/WNO-800.

Fig. S3. SEM images of (a, b) Ru/WNO-400; (c, d) Ru/WNO-600; (e, f) Ru/WNO-800; (g, h) Ru/WNO-900.

Fig. S4. N₂ adsorption–desorption isotherm of Ru/WNO-*t* catalysts.

Fig. S5. TEM image, SAED pattern and elemental mapping images of Ru/WNO-400.

Fig. S6. TEM image, SAED pattern and elemental mapping images of Ru/WNO-600.

Fig. S7. TEM image, SAED pattern and elemental mapping images of Ru/WNO-900.

Fig. S8. Raman spectra of WNO-*t* catalysts.

Fig. S9. Ru 3p spectra of Ru/WNO-*t* catalysts.

Fig. S10. NH₃-TPD profiles of Ru/WNO-*t* catalysts.

Fig. S11. Acidity content of Ru/WNO-*t* catalysts.

Fig. S12. The linear correlation between total acid amount and W–O bonds in Ru/WNO-*t* catalysts.

Table S1. Catalytic performance of Ru/WNO-*t*.

Table S2. Catalytic performance of previously reported catalysts.

Table S3. Catalytic performance of Ru/WNO-800 under different reaction conditions.

Table S4. The elemental content of Ru and W in the solution after reaction.

Table S5. Structural parameters of Ru/WNO-*t* catalysts.

Table S6. Relative acid amount of Ru/WNO-*t* catalysts obtained by NH₃-TPD curves.

Table S7. Different acid types of Ru/WNO-*t* catalysts obtained by Py-IR spectra.

Reference

Experimental Section

Materials and catalyst preparation

Tungsten chloride (WCl_6), absolute ethanol (99.7%), microcrystalline cellulose (25 μm), ethylene glycol (98%), glucose (99%), fructose (99%), sorbitol (98%), mannose (99%), propylene glycol (99%), and butylene glycol (98%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., and all chemicals were used without further processing. Ruthenium (III) chloride hydrate ($\text{RuCl}_3 \cdot x\text{H}_2\text{O}$, ReagentPlus[®]) was purchased from Merck KGaA, Darmstadt, Germany. Before use, it was dissolved in deionized water and diluted to a concentration of 10 g L^{-1} .

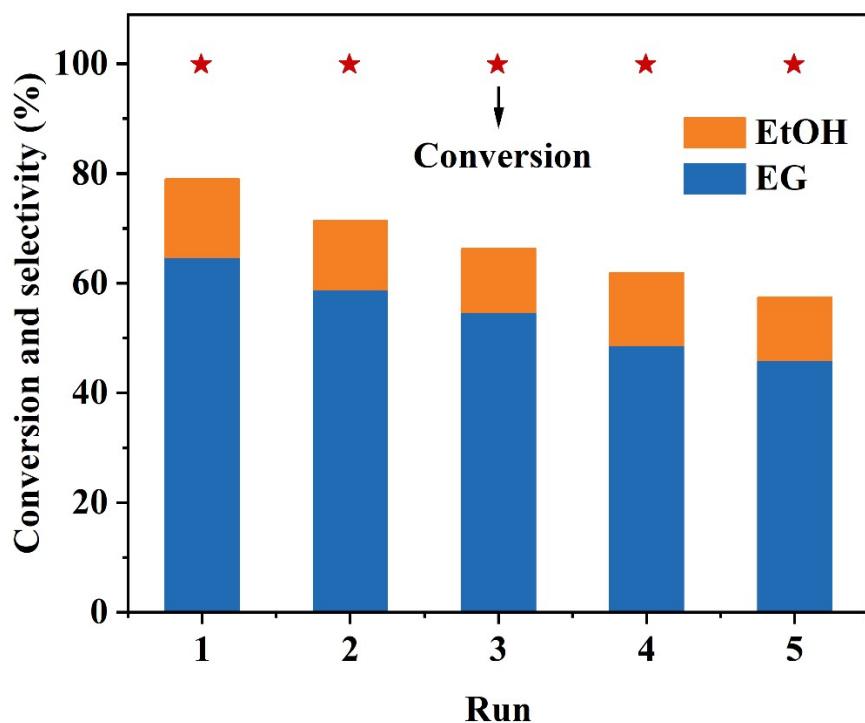
WO_x was synthesized by dissolving 1.6 g of WCl_6 in 80 mL of ethanol and stirring for 30 min until a dark-blue solution was obtained. The mixture was then transferred to a PTFE-lined autoclave and heated at 160 °C for 12 h. The resulting solid was filtered, washed thoroughly with deionized water, and dried under vacuum to afford blue WO_x . Nitridation was performed in a tubular furnace under flowing NH_3 at 400, 600, 800, or 900 °C (2 h, 5 °C min^{-1}), yielding $\text{WNO-}t$ (t = nitridation temperature).

Ru/ $\text{WNO-}t$ catalysts were prepared by incipient wetness impregnation. Typically, 200 mg of $\text{WNO-}t$ was dispersed in 50 mL of deionized water, followed by addition of an appropriate volume of RuCl_3 solution to achieve 3 wt% Ru loading. After stirring for 2 h, the mixture was dried, ground, and reduced under H_2 at 400 °C for 2 h. The reduced samples were passivated in 1% O_2/N_2 for 2 h (5 °C min^{-1}) to obtain the final catalysts.

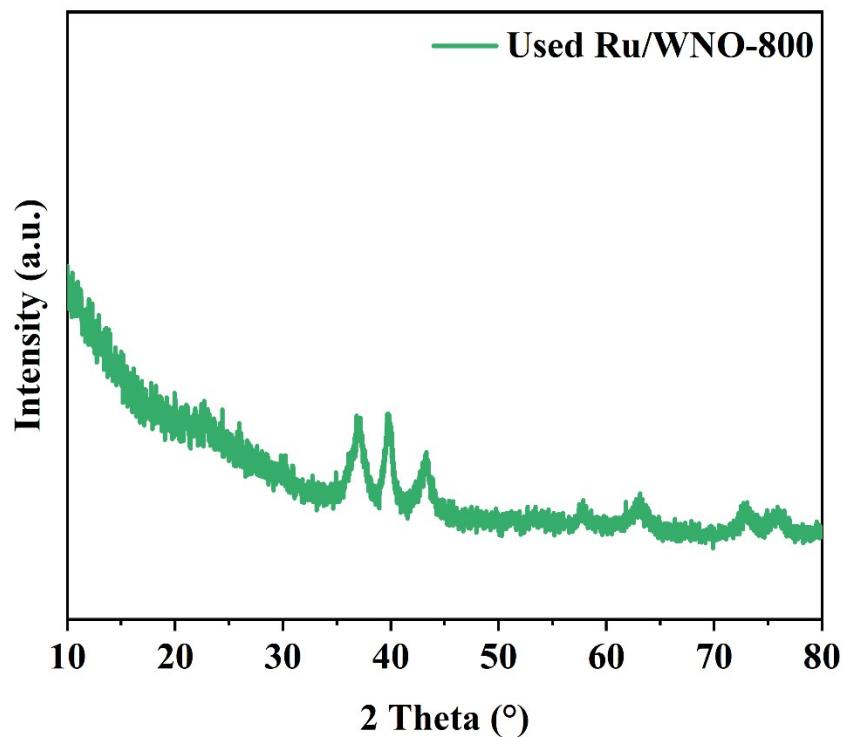
Catalytic activity measurements

Catalytic tests were conducted in a 100 mL stainless-steel autoclave. A mixture of catalyst (50 mg), microcrystalline cellulose (100 mg), and deionized water (30 mL) was loaded into the reactor. After sealing, the system was purged with H_2 several times, then pressurized to 5 MPa with high-purity hydrogen (99.999%). The reaction was carried out at 245 °C for 4 h under magnetic stirring (600 rpm). Notably, at an initial pressure of 5 MPa, the pressure inside the vessel reaches 10.2 MPa when the reactor is heated to 245 °C. After cooling to room temperature, the liquid products were analyzed by HPLC (Agilent 1260) equipped with an 87-H column and a refractive index detector (RID). A 2 mmol L^{-1} H_2SO_4 aqueous solution was used as the mobile phase at 0.6 mL min^{-1} . All catalytic tests were repeated three times, and the relative error for each sample was controlled within 3%. Carbon balance was calculated based on quantified liquid-phase products. Under the optimized conditions used for

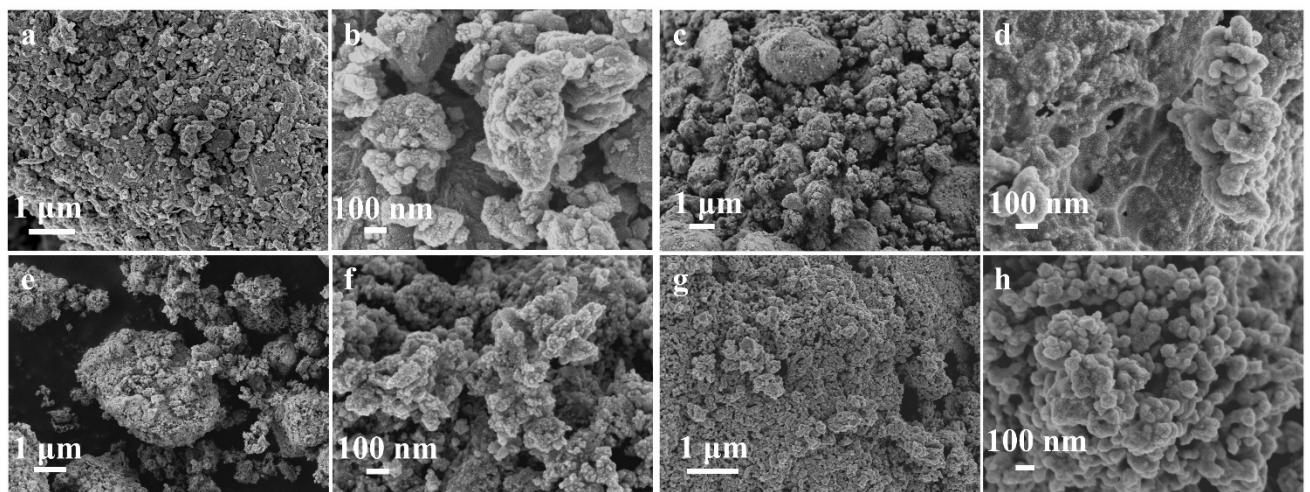
catalyst comparison, the carbon balance exceeded 90%, whereas lower values were observed at incomplete conversion due to the formation of undetected oligomeric species.

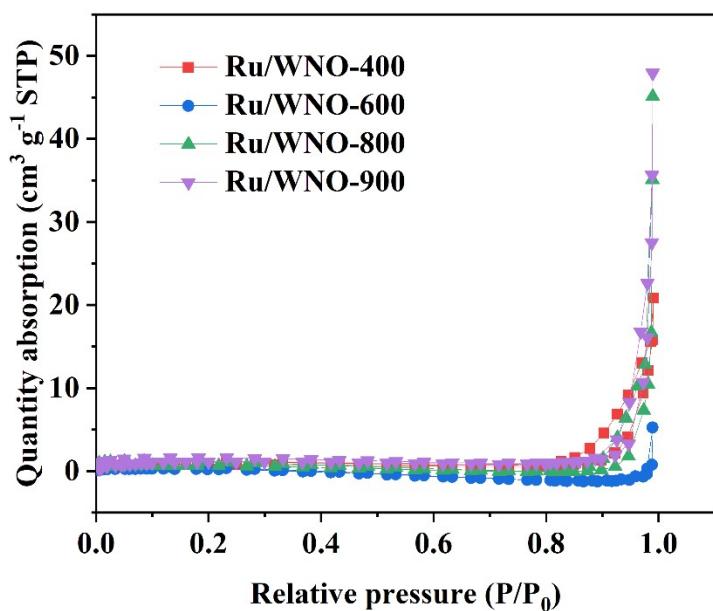

Catalysis characterization

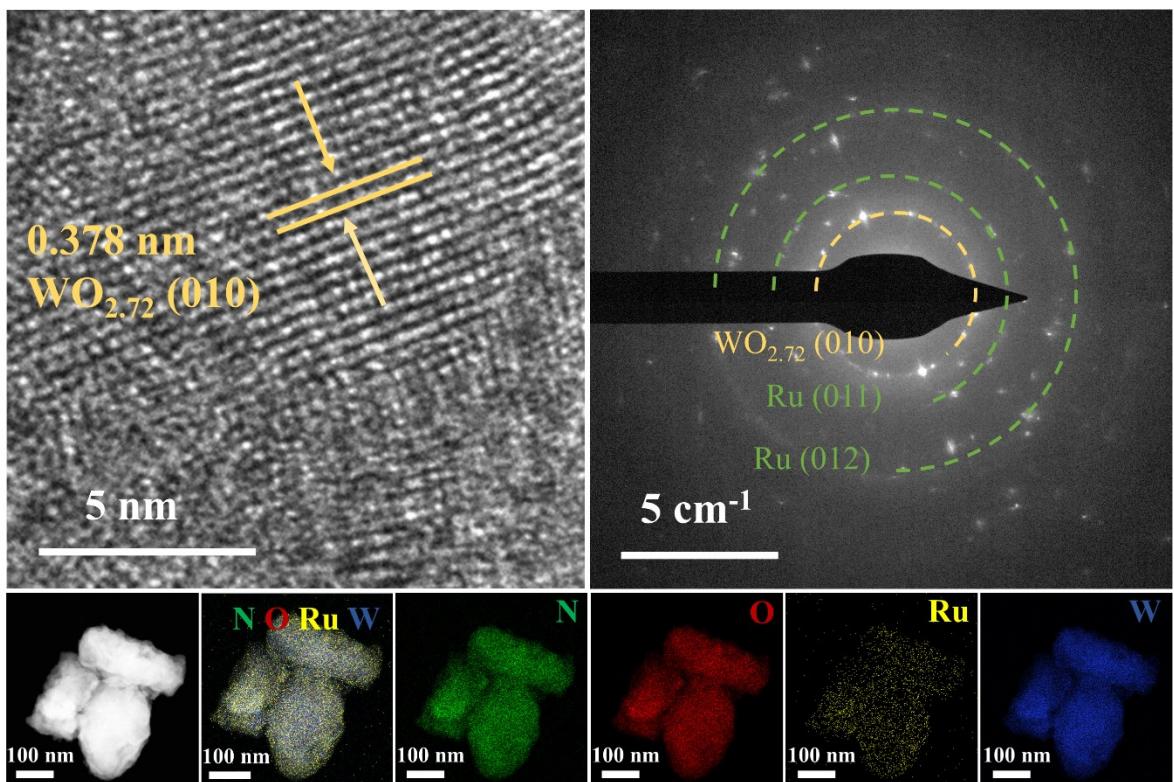
X-ray diffraction (XRD) patterns were recorded on a Rigaku Ultima IV diffractometer using Cu K α radiation ($\lambda = 0.15406$ nm) with a scanning rate of $10^\circ \cdot \text{min}^{-1}$ over a 2θ range of 10° - 80° . Scanning electron microscopy (SEM) images were acquired on a Sigma 500 microscope. Transmission electron microscopy (TEM) analysis was carried out using a Talos F200SG2 microscope to examine particle size and lattice structure.

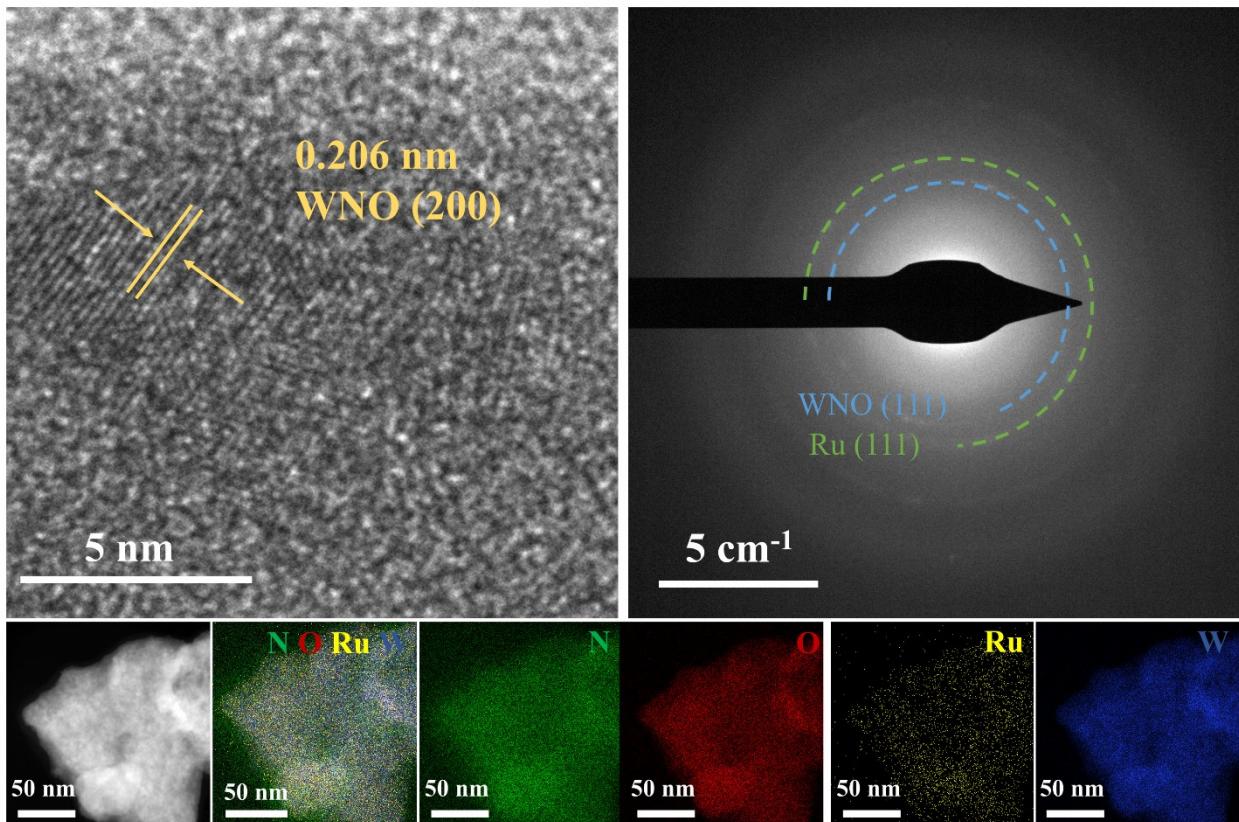

Brunauer-Emmett-Teller (BET) specific surface area was measured using a TriStar 3000 analyzer after degassing samples at 120°C for 3 h. X-ray photoelectron spectroscopy (XPS) was conducted on a PHI 5000 VersaProbe II spectrometer, and binding energies were calibrated to the C 1s peak at 284.8 eV. Raman spectra were collected on a Thermo Fisher DXR2 micro-Raman spectrometer.

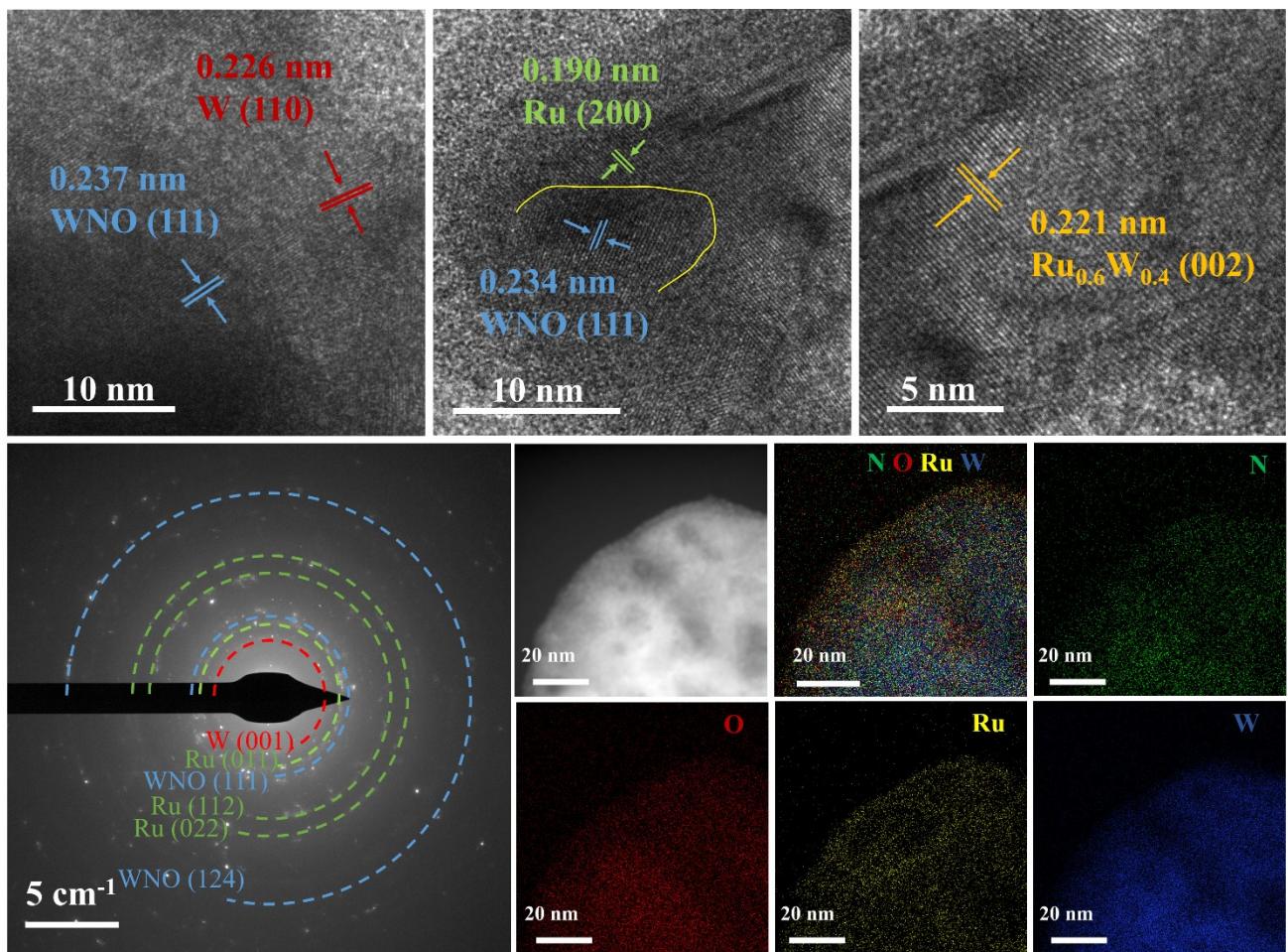
NH_3 temperature-programmed desorption (NH_3 -TPD) measurements were performed on a MICROTRAC MRB BELCAT-II apparatus. Samples were first pretreated in Ar at 250°C (5°C min^{-1} , 1 h), then reduced in 5 vol% H_2 /Ar by heating to 400°C (5°C min^{-1} , 30 min). After cooling to 50°C and purging with Ar, adsorption of 5 vol% NH_3 /Ar was carried out until saturation. The samples were subsequently purged with Ar to remove weakly adsorbed species, followed by temperature-programmed desorption from 50°C to 900°C at $10^\circ\text{C min}^{-1}$ under Ar flow.

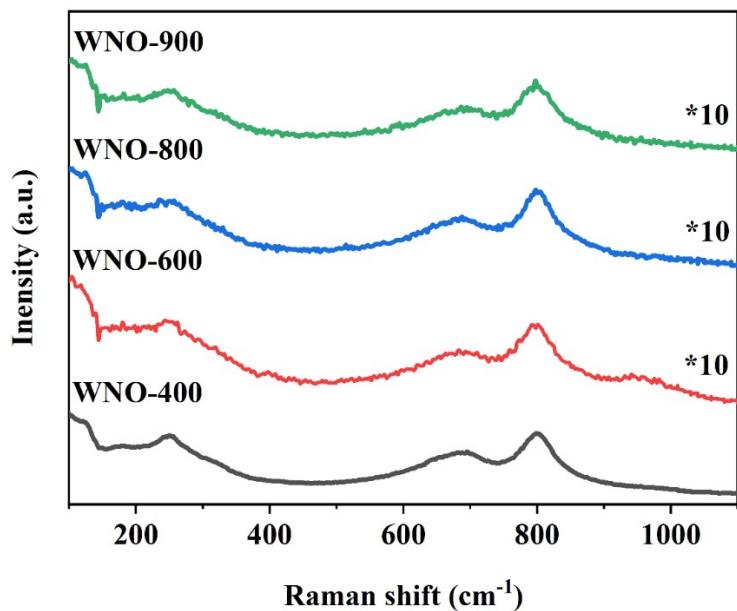

Pyridine-adsorbed FTIR (Py-IR) spectra were acquired on a Nicolet 380 spectrometer. Samples were pretreated under vacuum at 350°C for 1 hour, cooled to 40°C , and exposed to pyridine vapor for 10 min. After physisorbed pyridine removal, spectra were collected at room temperature and after desorption at 150°C under dynamic vacuum.

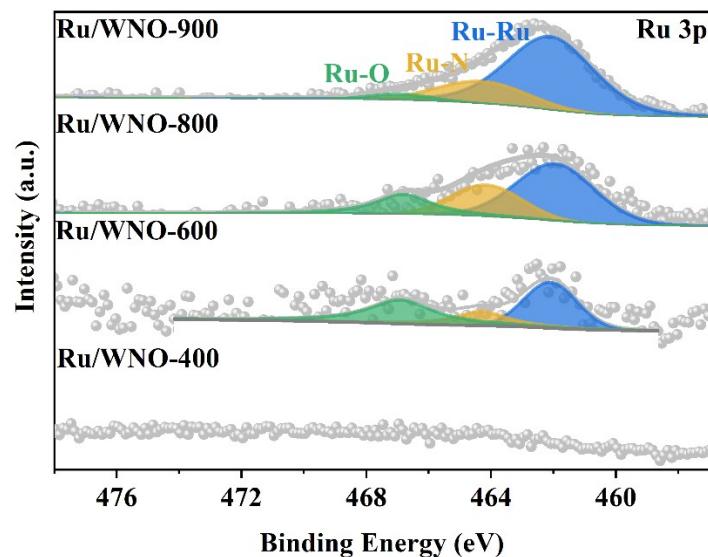

Fig. S1. Recycling tests of Ru/WNO-800. Reaction conditions: 0.1 g of cellulose, 0.05 g of catalysis, 30 mL of deionized water, 245 °C, initial 5 MPa H₂, 4 h. EG: ethylene glycol; EtOH: ethanol.

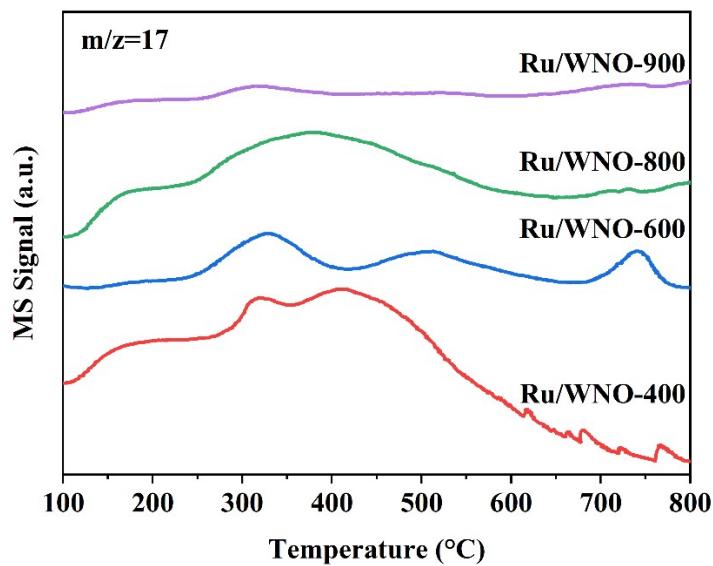

Fig. S2. XRD patterns of used Ru/WNO-800.

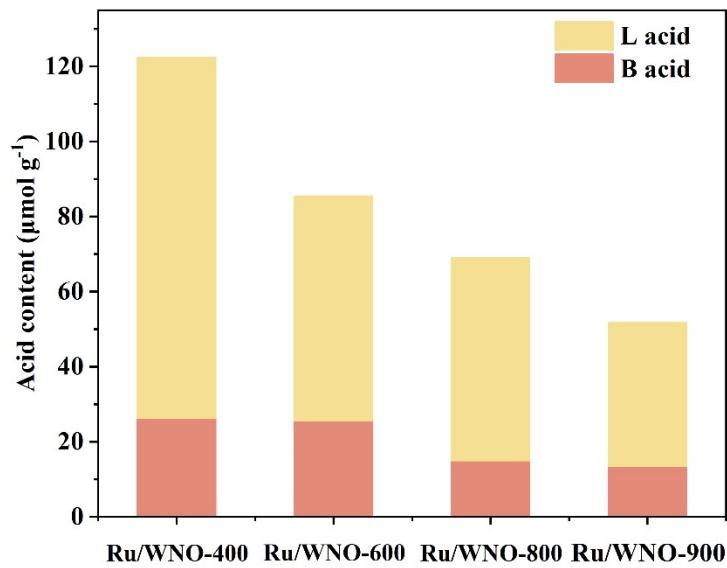

Fig. S3. SEM images of (a, b) Ru/WNO-400; (c, d) Ru/WNO-600; (e, f) Ru/WNO-800; (g, h) Ru/WNO-900.


Fig. S4. N_2 adsorption–desorption isotherm of Ru/WNO-*t* catalysts.


Fig. S5. TEM image, SAED pattern and elemental mapping images of Ru/WNO-400.


Fig. S6. TEM image, SAED pattern and elemental mapping images of Ru/WNO-600.


Fig. S7. TEM image, SAED pattern and elemental mapping images of Ru/WNO-900.


Fig. S8. Raman spectra of WNO-*t* catalysts.

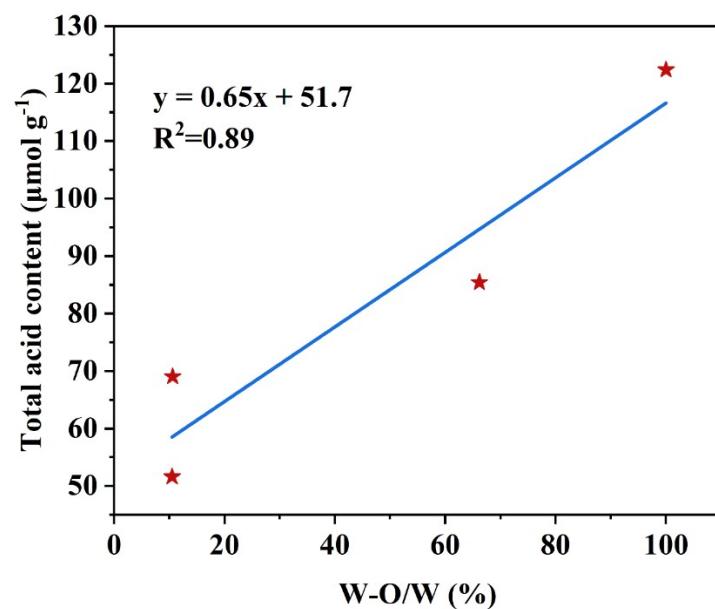

Fig. S9. Ru 3p spectra of Ru/WNO-*t* catalysts.

Fig. S10. NH₃-TPD profiles of Ru/WNO-*t* catalysts.

Fig. S11. Acidity content of Ru/WNO-*t* catalysts.

Fig. S12. The linear correlation between total acid amount and W-O bonds in Ru/WNO-*t* catalysts.

Table S1. Catalytic performance of Ru/WNO-*t*.

Catalysis	Conversion	Selectivity of products in liquid (%)							TOC
		Sor	Ery	EG	1,2-PG	1,2-BDO	EtOH	Others	
3Ru/WNO-400	>99	0.3	1.6	51.1	8.3	7.6	15.6	5.2	92.4
3Ru/WNO-600	>99	0.3	1.2	55.9	9.7	10.0	12.8	4.5	94.4
3Ru/WNO-800	>99	0.4	1.1	64.1	9.1	7.2	13.3	3.0	98.2
3Ru/WNO-900	>99	3.5	3.2	57.2	8.6	6.4	10.5	4.6	94.0

Reaction condition: 0.1 g cellulose, 0.05 g catalysts, 245 °C, 5 MPa H₂, 4 h. EG: ethylene glycol; EtOH: ethanol; 1,2-PG: 1,2-propylene glycol; 1,2-BDO: 1,2-butanediol; Sor: sorbitol; Ery: erythritol. Others: LA, Formic acid, acetic acid and other unidentified polyols and oligomers. TOC means total organic carbon in the liquid product.

Table S2. Catalytic performance of previously reported catalysts.

Catalysts	Temperature	Pressure	Time	EG	EtOH	References
	/°C	/MPa	/h	/%	/%	
NiCu/WO ₃	245	5.5	4	58.9	3.9	¹
Ru-WO _x /SiO ₂ (500 Å)	240	4	5	51.5	5.1	²
Ir-WO _x /SiO ₂ (500 Å)	280	4	5	0.4	40.5	
Ni-Cu/4ZnO-CNT	255	4	6	24	-	³
NiW-[NC]-H ₂	245	6	1	51	-	⁴
Ni@C/WO _x	250	5	2	69.4	-	⁵
Ru-WO _x /TATP	245	5	3	62.9	-	⁶
Pd/o-WO ₃	245	5.5	4	64.8	15.4	⁷
Ru-WO _x /Nb ₂ O ₅	230	4	6	3.1	50.3	⁸
Pt-WO _x /Nb ₂ O ₅				52.6	25.9	
Pd/WO _x	230	5	4	59.6	17.5	⁹

Table S3. Catalytic performance of Ru/WNO-800 under different reaction conditions.

Temperatur e (°C)	H ₂ Pressure (MPa)	Reaction conditions			Conversion (%)	Selectivity of products in liquid (%)							TO C				
		Time (h)	Ratio catalyst/cellulose	Conversion (%)		EG		EtOH		1,2- PG		1,2- BDO		Sor	Ery	Others	
						EG	EtOH	1,2- PG	1,2- BDO	Sor	Ery	Others					
215	5	4	1:2	71	30.0	7.6	5.6	6.4	1.5	3.2	6.6	60.9					
230	5	4	1:2	>99	50.9	9.6	6.9	7.7	1.7	3.2	5.6	85.6					
245	5	4	1:2	>99	64.1	13.3	9.1	7.2	0.4	1.1	3.0	98.2					
260	5	4	1:2	>99	56.4	13.2	8.3	5.8	0.1	0.9	5.0	89.7					
245	6	4	1:2	>99	57.7	11.4	5.0	8.1	0.7	2.4	1.0	86.3					
245	4	4	1:2	>99	52.6	10.5	7.2	7.3	0.6	1.4	1.2	80.8					
245	3	4	1:2	>99	48.4	10.4	4.7	5.8	0.3	1.3	0.5	71.4					
245	5	5	1:2	>99	53.7	13.7	5.2	8.1	0.2	1.7	0.8	83.4					
245	5	3	1:2	>99	57.4	9.4	12.3	6.6	3.0	3.3	0.5	92.5					
245	5	2	1:2	>99	40.2	10.9	8.1	8.9	2.5	2.4	0.7	73.7					
245	5	4	1:3	>99	52.9	10.0	7.0	6.4	1.3	1.7	4.3	83.6					

EG: ethylene glycol; EtOH: ethanol; 1,2-PG: 1,2-propylene glycol; 1,2-BDO: 1,2-butanediol; Sor: sorbitol; Ery: erythritol. Others: LA, Formic acid, acetic acid and other unidentified polyols and oligomers. TOC means total organic carbon in the liquid product.

Table S4. The elemental content of Ru and W in the solution after reaction.

Catalysts	Ru (mg L ⁻¹)	W (mg L ⁻¹)
Ru/WNO-800	0.22	132.81

Table S5. Structural parameters of Ru/WNO-*t* catalysts.

Catalysts	Surface Area (m ² g ⁻¹)	Mecopore Volume (10 ⁻³ cm ³ g ⁻¹)	Average Pore Diameter (nm)
Ru/WNO-400	3.19	1.09	34.50
Ru/WNO-600	1.15	1.04	16.48
Ru/WNO-800	2.64	1.23	65.81
Ru/WNO-900	4.43	0.55	64.66

Table S6. Relative acid amount of Ru/WNO-*t* catalysts obtained by NH₃-TPD curves.

Catalysts	Relative acid amount ×10 ³ (a.u.)
Ru/WNO-400	17.4
Ru/WNO-600	9.1
Ru/WNO-800	7.8
Ru/WNO-900	2.8

Table S7. Different acid types of Ru/WNO-*t* catalysts obtained by Py-IR spectra.

Catalysts	B acid	L acid	Total acid
Ru/WNO-400	26.1	96.3	122.4
Ru/WNO-600	25.4	60.0	85.4
Ru/WNO-800	14.9	54.1	69.0
Ru/WNO-900	13.5	38.2	51.6

Reference

1. X. Yang, Z. Li, M. Guo, T. Zhao, X. Su, W. Jiang, G. Han and H. Ben, *Fuel*, 2023, **341**, 127560.
2. Y. Weng, Y. Wang, M. Zhang, X. Wang, Q. Sun, S. Mu, H. Wang, M. Fan and Y. Zhang, *Catalysis Today*, 2023, **407**, 89-95.
3. H. Ma, C. v. d. Wijst, S. F. Morken and D. Chen, *Catalysis Today*, 2024, **435**, 114694.
4. J. Boulos, F. Goc, N. Perret, F. Rataboul, J. Dhainaut and S. Royer, *ACS Applied Nano Materials*, 2024, **7**, 16086-16096.
5. M. Chen, Z. Yang, H. Xin, Y. Wang, D. Liang and C. Li, *ACS Sustainable Chemistry & Engineering*, 2025, **13**, 15201-15213.
6. Y. Zhao, Y. Ju, B. Guo, P. Gan, P. Lv, J. Yang, C. Qiao and K. Zhang, *RSC Advances*, 2025, **15**, 34754-34767.
7. W. Jia, W. Liu, Y. Cui, H. Song, C. Zhou, W. Jiang, H. Ben, X. Yang and D. Chen, *Journal of Catalysis*, 2025, **442**, 115860.
8. D. Wu, Y. Liu, X. Zhang, J. Liu, Q. Zhang, L. Ma and L. Chen, *Applied Catalysis A: General*, 2025, **699**, 120275.
9. W. Jia, H. Song, D. Wang, C. Zhou, Y. Zhao, Y. Cui, H. Ben and X. Yang, *ACS Sustainable Chemistry & Engineering*, 2025, **13**, 13274-13283.