

Supplementary information

**The prenucleation clusters of ZnSe magic size clusters
mimicking natural hydrolase**

Yang Li,*^{a†} Yujie Yang,^{a†} Yue Yang,^{a†} Xieruoying Zhong,^a Xianxiang Wang^a and Li He*^a

^a College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District,
Yaan, 625014, China

[†] These authors contribute equally

Email: li_yang@sicau.edu.cn (Y. Li), lihe@sicau.edu.cn (L. He)

Experimental section

Materials

Znic chloride (ZnCl_2 , 98%) was purchased from Shanghai Acmec Biochemical Co., Lid. (Shanghai, China). 3-mercaptopropionic acid (MPA, 99%), 1-butylamine (BTA, AR), L-cystenine (L-cys, 99%), 4-nitrophenyl acetate (p-NPA, 98%) were purchased from Shanghai Titan Scientific Co., Ltd. (Shanghai, China). Selenourea (98%) was obtained from Sigma-Aldrich (USA). Hydrogen peroxide (H_2O_2 , 30%), copper(II) chloride dihydrate ($\text{CuCl}_2 \cdot 2\text{H}_2\text{O}$, AR), sodium hydroxide, acetic acid (HAc, AR), sodium acetate anhydrous (NaAc, AR), and sodium hydroxide (NaOH, AR), 3,3',5,5'-tetramethylbenzidine (TMB, 98%), tris(Hydroxymethyl)Aminomethane Hydrochloride (Tris-HCl, AR) were supplied by Chengdu Cologne Chemical Co., Ltd. (Chengdu, China). All the materials were applied without further purification.

Characterization

X-ray photoelectron spectroscopy (XPS) analysis was obtained by an Escalab 250 Xi XPS system with Al $\text{K}\alpha$ source ($h\nu = 1486.6$ eV). X-ray diffraction (XRD) patterns were obtained using an X-ray diffractometer (DX-2700, Dandong, China) using Cu- $\text{K}\alpha$ radiation. Fourier transform infrared spectrometer (FT-IR) characterization was performed on a Nicolet iS20 (USA). UV-vis spectrophotometer (AOE, A390, China) and enzyme-labeled instrument (MD, SpectraMax190, USA) were used to collect the data of the catalytic performance.

Synthesis of ZnSe prenucleation clusters

0.4 mmol of ZnCl_2 (54.5 mg) and 0.8 mmol of MPA (70 μL) were mixed in 18 mL of water, and the pH was adjusted to 12 using 5 M NaOH. The volume was then brought to 19.5 mL by adding water. Under stirring, 0.5 mL of 200 mM SeU (0.1 mmol) was added, and the reaction proceeded at room temperature (~ 25 °C) for 5 hours. The product was purified by centrifugation and washing with ethanol. The final product was obtained by freeze-drying.

CA mimetic activity assessment

The carbonic anhydrase-like activity of ZnSe was measured using p-NPA as the substrate by UV spectrophotometry. Specifically, 50 μ L of ZnSe solution (8 mg/mL) and 20 μ L of p-NPA solution (10 mM) were added to 930 μ L of Tris-HCl buffer (pH 10.0), resulting in a total reaction volume of 1 mL. After incubation at 25 °C for 30 minutes, the mixture was diluted 6-fold and scanned for absorbance between 300–500 nm using a UV spectrophotometer. A blank control was prepared by replacing the ZnSe solution with an equal volume of ultrapure water, containing only p-NPA.

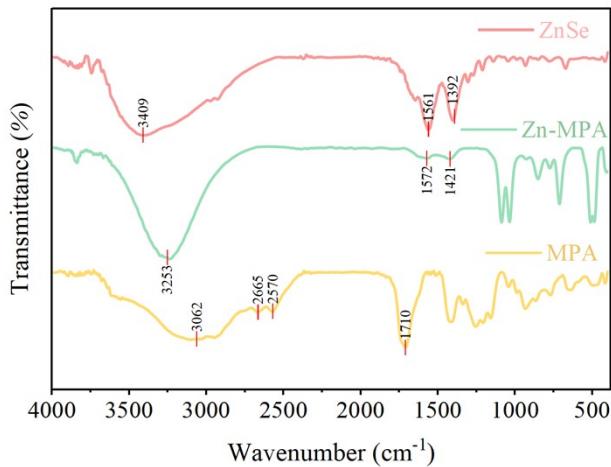
Determination of steady-state kinetic parameters

To determine the kinetic parameters of ZnSe-catalyzed hydrolysis of p-NPA, the initial reaction rate (V_0) was measured at various substrate concentrations. Briefly, 20 μ L of p-NPA at different concentrations (0.02–5 mM) was mixed with 50 μ L of ZnSe solution (20 mg/mL) and 930 μ L of Tris-HCl buffer (pH 10.0). After 30 minutes of reaction at 25 °C, the mixture was diluted 6-fold, and the absorbance at 400 nm was measured to calculate V_0 according to Equation (1):

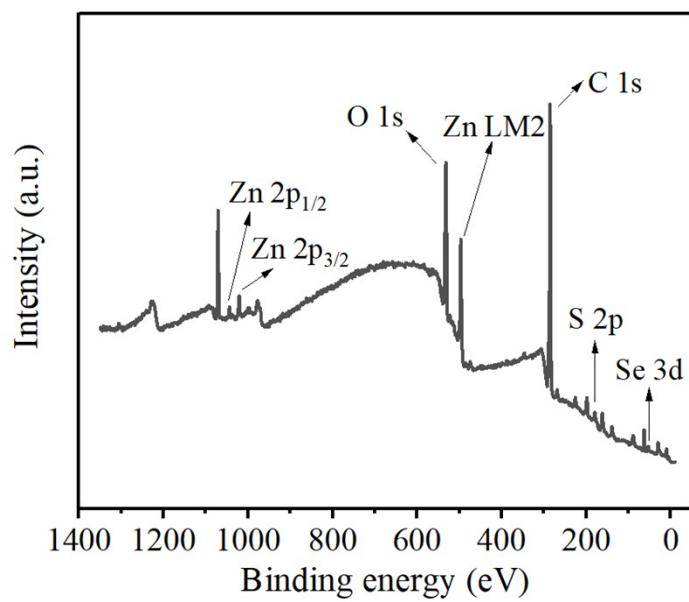
$$V_0 = [\Delta A_{400 \text{ nm}} / (\varepsilon L)] / t \quad (1)$$

where ε is the molar extinction coefficient of the product p-nitrophenol (p-NP) ($18,300 \text{ M}^{-1} \cdot \text{cm}^{-1}$), L is the path length (1 cm), and t is the reaction time (30 minutes).

The V_0 values obtained at different substrate concentrations [S] were fitted using the Michaelis–Menten equation (Equation 2) via nonlinear regression and the Lineweaver–Burk equation (Equation 3) via linear regression:


$$V_0 = (V_{\max} \times [S]) / (K_m + [S]) \quad (2)$$

$$1/V_0 = (K_m / V_{\max}) \times (1 / [S]) + 1 / V_{\max} \quad (3)$$


From these fittings, the apparent maximum reaction rate (V_{\max}) and apparent Michaelis constant (K_m) were determined.

Quantification of the concentration of Cu²⁺

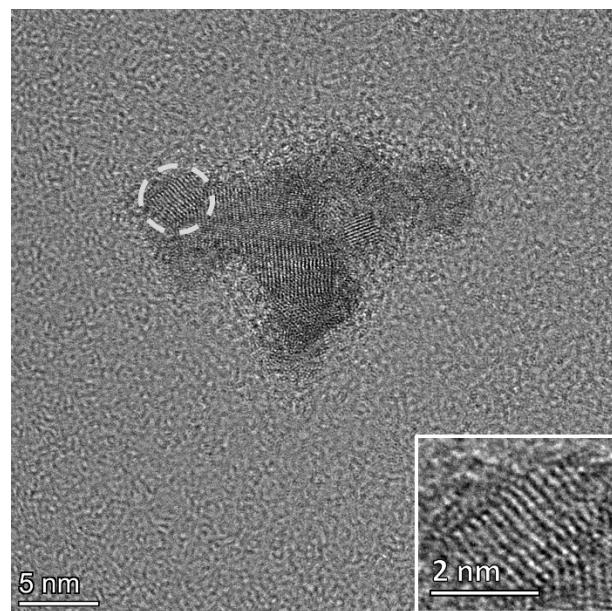

The introduction of Cu²⁺ induces a concomitant decrease in the carbonic anhydrase (CA)-like activity of ZnSe cluster and an increase in the peroxidase-like activity of the resulting Cu_{2-x}Se species. For dual-channel detection, two distinct protocols were employed. For the CA-like activity assay, 50 µL of ZnSe clusters and 50 µL of Cu²⁺ (varying from 0.54 to 1.2 mM) were incubated in 1140 µL of Tris-HCl buffer (pH 9). Following the addition of 40 µL of p-NPA (10 mM) and a 30-minute reaction period, a 500 µL aliquot was diluted in 2.5 mL of H₂O. The absorbance was measured at 400 nm. Simultaneously, the peroxidase-like activity was evaluated in a pH 4.0 NaAc-Hac buffer (840 µL). The reaction mixture contained 40 µL of ZnSe clusters, 40 µL of Cu²⁺, 40 µL of 30% H₂O₂, and 40 µL of TMB (5 mM). After a 30-minute incubation, the absorbance at 652 nm was recorded to quantify the Cu²⁺ concentration.

Figure S1. FT-IR spectra of ZnSe cluster, Zn-MPA complex, and MPA. Upon comparing the spectra of MPA and the Zn-MPA complex, the peak at 1710 cm^{-1} attributed to the carboxyl C=O stretching vibration of MPA shifts to 1561 cm^{-1} and 1392 cm^{-1} , which can be ascribed to coordination between Zn^{+2} and the carboxylate group. Further comparison between the Zn-MPA complex and the ZnSe cluster reveals that the peaks at 1421 cm^{-1} and 1572 cm^{-1} further shift to 1392 cm^{-1} and 1561 cm^{-1} , respectively, suggesting the formation of ZnSe clusters. Additionally, the broad absorption bands around 3410 cm^{-1} are associated with O-H stretching vibrations.

Figure S2. XPS survey spectra of ZnSe cluster.

Figure S3. TEM spectra of ZnSe cluster.

Table S1. Catalytic activity parameters of ZnSe cluster and other CA-like catalysts.

Material	K_m (mM)	V_{max} (mM/min)	Refs
ZnTaz-1	4.30	0.014	1
ZIF-90	7.657	0.029	2
DW-CAB	6.17	0.230	3
ZC-HNPs	3.37	0.008	4
ZnAC	4.071	0.220	5
CA	154	102	6
ZnSe	3.55	15.04	This work

References

1. S. Liang, X.-L. Wu, M.-H. Zong and W.-Y. Lou, *Chemical Engineering Journal*, 2020, **398**, 125530.
2. C. Fan, Y. Tang, H. Wang, Y. Huang, F. Xu, Y. Yang, Y. Huang, W. Rong and Y. Lin, *Nanoscale*, 2022, **14**, 7985-7990.
3. L. Li, W. Xu, Z. Wu, W. Geng, S. Li, S. Sun, M. Wang, C. Cheng and C. Zhao, *Small*, 2024, **20**, 2307537.
4. B. Fan, Y. Zhang and Y. Lv, *Matter*, 2023, **6**, 4245-4260.
5. J. Liu, S. Sun, R. Lv, S. Lin, Y. A. Golubev, K. Wang, R. Cao and Y. Zeng, *Separation and Purification Technology*, 2025, **354**, 128979.
6. Ana M. Pablo-Sainz-Ezquerro, M. Rubio-Huertas, E. T. Tunca, P. W. Thulstrup and L. Hosta-Rigau, *Mater. Today Bio*, 2025, **35**, 102406.