Supporting information

Constructing energetic hydroxytetrazole with high thermal stability by connecting aminotriazole onto 1-hydroxytetrazole

Feng Yang,^{*a} Shuaijie Jiang,^b Yuangang Xu,^b Quan Wang,^a Zhiwei He^a and Ming Lu^{*b}

^a School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.

^b School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

*Corresponding author. E-mail address: yangf9572@163.com (Feng Yang)

luming302@126.com (Ming Lu)

Content

1.	Experimental sections
2.	Crystallographic data6
3.	TG of compound 3, 4, 5 and ATTO- N_2H_4 14
4.	IR and NMR spectrum14
5.	Calculation method and results23
6.	Reference

1 Experimental Sections

Cautions! Strong acids, bases and other hazardous chemicals are used in the chemical

reaction process involved in this article. Wearing protective equipment during the entire experiment is strongly recommended.

General methods: Single-crystal X-ray diffraction measurements were conducted on a Bruker Smart Apex II diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å) with a graphite monochromator at 296 K. NMR spectra were recorded on Bruker AVANCE III 500MHz at 25 °C. The onset decomposition temperature (DSC) was measured using NETZSCH DSC204 F1 Phoenix differential scanning calorimeter at a heating rate of 5 °C min⁻¹ under a dry nitrogen atmosphere. Infrared spectra (IR) were obtained on a ThermoFisher NICOLETIS10 instrument at 25 °C. Elemental analyses of C/H/N were investigated on a ThermoFisher FLASHSMART Elemental Analyzer (by multiple (5 times, 2~50 mg / times) measurements). Impact and friction sensitivities were tested by a BAM fallhammer and friction tester. Densities were determined at room temperature by employing a Micromeritics AccuPyc 1340 gas pycnometer.

1.1 Synthesis of 5-(5-amino-4H-1,2,4-triazol-3-yl)-1H-tetrazol-1-ol (ATTO)

Compound 1^{25} (3.16 g, 20 mmol) was added to 100 mL methanol solution of sodium methoxide (3.24 g, 60 mmol) in batches, stirred violently at 0 °C for 30min, and then heated to room temperature. Afterwards, aminoguanidine sulfate (14.8 g) was added to the mixture in batches, and then slowly heated to 60 ° C and reacted continuously for 24 hours at this temperature. After the reaction is completed, filter the mixture in hot solution and rinse the filter cake with 20 ml of methanol. Then adjust the pH of the collected methanol to weakly acidic (pH = 4) with a 20% hydrochloric acid, and filter the mixture to obtain a yellow solid product after evaporating half of the solution.

Yield 2.32 g (69.0%). ¹³C NMR (125 MHz, DMSO- d_6): 157.88, 146.07, 141.76; ¹H NMR (500 MHz, DMSO- d_6): 9.47, 7.76, 6.47; IR (KBr): 3348.29, 3271.44, 3146.41, 2249.85, 1808.50, 1679.66, 1619.27, 1547.95, 1454.04, 1425.44, 1355.82, 1266.30, 1226.27, 1172.17, 1135.08, 1086.57, 1033.32, 1018.02, 975.70, 934.39, 822.21, 756.10, 734.43, 716.31, 691.63 cm⁻¹; Element analysis (C₃N₈OH₄), calculated (%): C 21.43, H 2.40, N 66.65; measured (%): C 21.98, H 2.11, N 66.00.

1.2 Synthesis of 5-(5-amino-1,3,4-oxadiazol-2-yl)-1H-tetrazol-1-ol (AOTO)

Compound 2^{25} (2.88 g, 20 mmol) was dispersed in a 40 mL ethanol solution, and 20 ml of water dissolved in sodium bicarbonate (4.20 g, 50 mmol) was added to the aforementioned solution in batches under stirring at room temperature. When the above mixture is stirred at room temperature for 30 min, cyanogen bromide (2.54 g, 24 mmol) is added to it. After the mixture is stirred for 24 h, 20% hydrochloric acid is added to it until the PH is 3. Then continue stirring the mixture for 1 hour, filter, and rinse the filter cake with ice water to obtain a white solid product.

Yield 2.41 g (71.3%). ¹³C NMR (125 MHz, DMSO-*d*₆): 165.04, 146.40, 136.43, ¹H NMR (500 MHz, DMSO-*d*₆): 7.74; IR (KBr): 3470.21, 3409.06, 3137.82, 2697.32, 1732.83, 1659.79, 1633.65, 1506.99, 1313.01, 1245.59, 1181.80, 1155.28, 1093.72, 1020.46, 999.85, 831.88, 783.67, 746.55, 674.21, 652.79 cm⁻¹; Element analysis (C₃N₇O₂H₃), calculated (%): C 21.31, H 1.79, N 57.98; measured (%): C 20.46, H 2.20, N 58.87.

1.3 Synthesis of the salts (3, 4, 5 and 6) and co-crystal (ATTO- N_2H_4) of ATTO and AOTO

ATTO (0.168 g, 1 mmol) or **AOTO** (0.169 g, 1 mmol) were added to ammonia water (40 mL, 28%), hydroxylamine solution (40 mL, 50%), and hydrazine hydrate (40 mL, 85%) at room temperature, respectively. The reaction solution was stirred at room temperature for 2 h, filtered, and the corresponding crystalline products were obtained after slowly evaporating the filtrate.

For **3**, yield 0.164 g (88.6 %). ¹³C NMR (125 MHz, DMSO-*d*₆): 159.82, 146.83, 137.32, ¹H NMR (500 MHz, DMSO-*d*₆): 7.44, 5.97; IR (KBr): 3562.39, 3428.05, 3309.49, 3063.05, 2851.09, 2168.36, 1634.51, 1587.78, 1502.48, 1410.46, 1362.60, 1238.68, 1205.11, 1103.10, 1050.04, 1016.25, 986.52, 751.23, 707.36, 688.93, 647.04, 579.35 cm⁻¹; Element analysis (C₃N₉OH₇), calculated (%): C 19.46, H 3.81, N 68.09; measured (%): C 18.88, H 4.20, N 68.87.

For **4**, yield 0.182 g (90.1 %). ¹³C NMR (125 MHz, DMSO-*d*₆): 159.01, 146.91, 138.03, ¹H NMR (500 MHz, DMSO-*d*₆): 6.18; IR (KBr): 3341.78, 3174.22, 3003.27, 2687.07, 2459.98, 1666.55, 1618.55, 1592.16, 1507.71, 1444.27, 1344.61, 1241.31,

1206.08, 1126.50, 1084.91, 1058.02, 1002.94, 989.32, 868.99, 745.41, 718.41, 684.79, 660.51, 578.57 cm⁻¹; Element analysis (C₃N₉O₂H₇), calculated (%): C 17.91, H 3.51, N 62.67; measured (%): C 16.99, H 3.98, N 63.43.

For **5**, yield 0.169 g (91.2 %). ¹³C NMR (125 MHz, DMSO-*d*₆): 164.24, 148.91, 133.06, ¹H NMR (500 MHz, DMSO-*d*₆): 7.35; IR (KBr): 3133.34, 2827.95, 1667.66, 1592.81, 1485.37, 1434.44, 1398.59, 1302.39, 1237.32, 1160.44, 1113.79, 1078.13, 1033.52, 1007.98, 970.14, 827.48, 741.78, 726.32, 673.87; Element analysis (C₃N₈O₂H₆), calculated (%): C 19.36, H 3.25, N 60.20; measured (%): C 20.08, H 2.72, N 61.03.

For **6**, yield 0.186 g (92.7 %). ¹³C NMR (125 MHz, DMSO- d_6): 164.22, 149.04, 132.94, ¹H NMR (500 MHz, DMSO- d_6): 7.32, 7.10; IR (KBr): 3288.14, 3126.25, 2649.81, 1674.37, 1599.56, 1486.68, 1417.13, 1303.37, 1241.57, 1163.38, 1145.98, 1113.02, 1081.99, 1028.51, 1009.92, 972.02, 752.57, 740.01, 674.91, 586.55; Element analysis (C₃N₉O₂H₇), calculated (%): C 17.91, H 3.51, N 62.67; measured (%): C 17.00, H 4.42, N 61.83.

For **ATTO-N₂H₄**, yield 0.181 g (90.6 %). ¹H NMR (500 MHz, DMSO-*d*₆): 5.59; IR (KBr): 3397.44, 3159.34, 2812.04, 2604.71, 1655.52, 1618.08, 1536.27, 1499.73, 1415.68, 1304.84, 1229.77, 11210.19, 1152.51, 1126.02, 1037.05, 986.07, 959.24, 767.49, 744.33, 724.91, 692.01, 665.28, 589.78; Element analysis (C₃N₉O₂H₃), calculated (%): C 18.00, H 4.03, N 69.98; measured (%): C 17.11, H 4.42, N 70.83.

2 Crystallographic data

Table S1 Crystallography data sheet for compounds AOTO·H₂O, ATTO·N₂H₄ and 3.

Comp.	AOTO·H ₂ O	ATTO·N ₂ H ₄	3
Formula	$C_3H_3N_7O_2\cdot H_2O$	$C_3H_4N_8O\cdot N_2H_4$	$C_3H_3N_8O{\cdot}H_2O{\cdot}NH_4$
Temperature	296(2) K	296(2) K	296(2) K
System	Monoclinic	Orthorhombic	Monoclinic

Space group	$P2_1/n$	Cmca	P21/c
Dimensions	a = 7.2861(5) Å	a = 6.5314(4)Å	a = 9.2271(12) Å
	b = 5.9922(4) Å	b = 25.0039(17) Å	b = 14.2917(17) Å
	c = 8.2491(6) Å	c = 9.2895(6) Å	c = 6.4999(8) Å
	$\alpha = 90^{\circ}$	α= 90 °	$\alpha = 90^{\circ}$
	β=97.669(2) °	β= 90 °	β=101.078(4) °
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume/ Å ³	356.93(4)	1517.07(17)	841.18(18)
Ζ	2	8	4
Density / g·cm ⁻³	1.741	1.753	1.604
F(000)	192	832	424
Theta range / °	2.821 to 27.480	2.732 to 24.983	2.663 to 27.559
Index ranges	-9≤h≤9, -7≤k≤7, -9≤l≤10	0≤h≤7, 0≤k≤29, 0≤l≤11	-11≤h≤9, -18≤k≤16, -
			8≤1≤8
Reflections collected	3318	724	8363
Independent reflections	892	724	1940
	[R(int) = 0.0238]	[R(int) = 0.0288]	[R(int) = 0.0331]
Data/restraints/ parameters	892 / 3 / 89	724 / 0 / 85	1940 / 0 / 155
Goodness-of-fit on F ²	1.083	1.060	1.056
Final R indices	R1 = 0.0410,	R1 = 0.0743,	R1 = 0.0535,
[I>2sigma(I)]	wR2 = 0.1006	wR2 = 0.1669	wR2 = 0.1430
R indices (all data)	R1 = 0.0507,	R1 = 0.0810,	R1 = 00.0738,
	wR2 = 0.1067	wR2 = 0.1720	wR2 = 0.1554
CCDC Num.	2277160	2267698	2265664

Comp.	4	5	6
Formula	C ₃ H ₃ N ₈ O·NH ₃ OH	$C_3H_2N_7O_2\cdot NH_4$	$C_3H_2N_7O_2{\cdot}N_2H_5$
Temperature	296(2) K	296(2) K	296(2) K
System	Monoclinic	Monoclinic	Monoclinic
Space group	P21/n	P21	P21/c

Dimensions	a = 7.7908(10) Å	a = 3.8698(2) Å	a = 25.649(5) Å	
	b = 15.457(2) Å	b = 8.3310(5) Å	b = 9.0726(16) Å	
	c = 7.2605(11) Å	c = 11.6487(8) Å	c = 6.7690(14) Å	
	a= 90°	α= 90 °	a= 90°	
	b= 114.635(4) °	β= 95.015(2) °	b= 92.424(6)°	
	g = 90°	$\gamma = 90^{\circ}$	$g = 90^{\circ}$	
Volume/ Å ³	794.75(19)	374.11(4)	1573.8(5)	
Ζ	4	2	8	
Density / g·cm ⁻³	1.681	1.653	1.698	
F(000)	416	192	832	
Theta range / °	2.635 to 27.524	3.010 to 27.457	2.245 to 24.999	
Index ranges	-9≤h≤9, -15≤k≤20,	-5≤h≤4, -10≤k≤10, -	-30≤h≤29, -10≤k≤9, -	
	-9≤1≤9	15≤l≤15	8≤l≤8	
Reflections collected	6393	3742	11860	
Independent reflections	1803	1548	2712	
	[R(int) = 0.0395]	[R(int) = 0.0216]	[R(int) = 0.0616]	
Data/restraints/ parameters	1803 / 0 / 139	1548 / 1 / 130	2712 / 0 / 257	
Goodness-of-fit on F ²	1.075	1.109	1.078	
Final R indices	R1 = 0.0500,	R1 = 0.0322,	R1 = 0.0887,	
[I>2sigma(I)]	wR2 = 0.1125	wR2 = 0.0728	wR2 = 0.2414	
R indices (all data)	R1 = 0.0769,	R1 = 0.0371,	R1 = 0.1017,	
	wR2 = 0.1225	wR2 = 0.0758	wR2 = 0.2572	
CCDC Num.	2268512	2217973	2217234	

Figure S1 Interlayer (A) and intralayer (B) hydrogen bonding of AOTO·H2O crystals (Green

dashed lines represent hydrogen bonds).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(3)-H(3A)N(4)#1	0.79(5)	2.10(6)	2.855(3)	160(5)
O(3)-H(3B)N(2)	0.76(5)	2.10(5)	2.861(3)	177(5)
N(7)-H(7B)O(3)#2	0.857(16)	1.858(17)	2.713(3)	177(3)
N(7)-H(7A)O(2)#3	0.828(16)	1.974(17)	2.755(3)	157(3)
N(6)-H(6)N(3)#4	0.92(3)	1.90(3)	2.808(3)	172(2)

Table S3 Hydrogen Bond of Compound AOTO·H₂O.

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 x-1,y,z+1 #3 x-1,y,z #4 x,y,z+1

Figure S2 Interlayer (A) and intralayer (B) hydrogen bonding of $ATTO \cdot N_2H_4$ crystals (Green dashed lines represent hydrogen bonds).

5 0	1	- 1		
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(7)-H(7)N(4)#3	0.86	2.13	2.976(7)	167.4
N(8)-H(8A)N(6)#3	0.86	2.06	2.912(8)	171.8
N(8)-H(8B)N(3)#4	0.86	2.26	2.952(8)	138.0
N(9)-H(9A)O(1)#1	0.89	2.07	2.916(5)	158.0
N(9)-H(9B)N(5)#5	0.89	2.20	3.056(5)	160.2
O(1)-H(1)N(9)	0.82	2.69	3.414(5)	147.8
O(1)-H(1)N(9)#1	0.82	2.10	2.916(5)	173.9

Table S4 Hydrogen Bond of Compound $ATTO \cdot N_2H_4$.

Symmetry transformations used to generate equivalent atoms:

Figure S3 Interlayer (A) and intralayer (B) hydrogen bonding of 3 crystals (Green dashed lines represent hydrogen bonds).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(6)-H(6)N(3)#1	0.84(3)	2.10(3)	2.921(3)	167(2)
N(8)-H(8B)O(2)#2	0.86	2.23	3.075(3)	168.1
N(9)-H(9A)O(2)#3	0.89(3)	2.00(3)	2.884(3)	170(2)
N(9)-H(9B)N(1)#4	1.00(3)	2.50(3)	3.344(3)	142(2)
N(9)-H(9B)O(1)#4	1.00(3)	1.84(3)	2.830(3)	172(2)
N(9)-H(9C)N(4)#1	0.81(4)	2.27(4)	2.950(3)	141(4)
N(9)-H(9C)N(7)#1	0.81(4)	2.58(4)	3.172(3)	130(3)
N(9)-H(9D)N(5)	0.93(4)	2.17(4)	3.049(3)	158(3)
N(9)-H(9D)O(1)	0.93(4)	2.35(4)	2.913(3)	119(3)
O(2)-H(2A)N(1)	0.92(3)	2.70(3)	3.470(2)	141(2)
O(2)-H(2A)O(1)	0.92(3)	1.85(3)	2.713(2)	156(3)
O(2)-H(2B)N(2)#5	0.85(4)	2.27(4)	3.096(2)	164(4)
O(2)-H(2B)N(3)#5	0.85(4)	2.48(4)	3.222(2)	146(4)

Table S5 Hydrogen bond of compound 3.

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y+1/2,-z+1/2 #2 x-1,-y+3/2,z-1/2 #3 x,-y+3/2,z-1/2 #4 x,-y+3/2,z+1/2 #5 -x+2,-y+1,-z+1

Figure S4 Interlayer (A) and intralayer (B) hydrogen bonding of 4 crystals (Green dashed lines represent hydrogen bonds).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(6)-H(6)N(2)#1	0.86	2.11	2.967(2)	171.3
N(8)-H(8B)O(1)#1	0.86	2.05	2.898(2)	169.4
N(8)-H(8A)N(3)#2	0.86	2.20	3.013(2)	157.9
N(9)-H(9A)N(4)	0.89(2)	2.18(2)	2.991(3)	151(2)
N(9)-H(9A)O(2)#3	0.89(2)	2.36(2)	2.972(3)	125.7(18)
N(9)-H(9B)N(7)#4	0.95(2)	2.39(2)	2.973(3)	118.9(16)
N(9)-H(9B)O(1)#4	0.95(2)	1.95(2)	2.837(2)	152.7(19)
N(9)-H(9C)N(1)#5	0.99(2)	2.59(2)	3.462(3)	147.8(17)
N(9)-H(9C)O(1)#5	0.99(2)	1.84(2)	2.824(2)	175.2(19)
O(2)-H(2)N(5)	0.82(3)	1.85(3)	2.662(2)	174(3)

 Table S6 Hydrogen bond of compound 4.

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,y+1/2,-z+3/2 #2 -x+1,y+1/2,-z+3/2 #3 x,-y+1/2,z-1/2

#4 x-1,y,z #5 x-1,-y+1/2,z-1/2

Figure S5 Interlayer (A) and intralayer (B) hydrogen bonding of 5 crystals (Green dashed lines represent hydrogen bonds).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(7)-H(7A)N(5)#1	0.86	2.16	3.017(3)	171.6
N(7)-H(7B)N(6)#2	0.86	2.13	2.984(3)	173.9
N(8)-H(8A)N(3)#3	0.90(3)	2.55(3)	3.315(3)	143(2)
N(8)-H(8A)O(2)#3	0.90(3)	1.92(3)	2.816(3)	173(2)
N(8)-H(8B)N(3)	0.98(3)	2.56(3)	3.428(3)	148(2)
N(8)-H(8B)O(2)	0.98(3)	1.83(3)	2.810(3)	177(2)
N(8)-H(8C)N(2)#4	0.87(3)	2.32(3)	3.093(3)	148(3)
N(8)-H(8C)O(2)#4	0.87(3)	2.29(3)	2.896(3)	127(3)
N(8)-H(8D)N(1)#5	0.93(3)	2.07(3)	2.949(3)	156(2)

Table S7 Hydrogen bond of compound 5.

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y-1,z #2 -x+1,y-1/2,-z+2 #3 -x+1,y+1/2,-z+1 #4 -x+2,y+1/2,-z+1 #5 x,y+1,z

Figure S6 Interlayer (A) and intralayer (B) hydrogen bonding of 6 crystals (Green dashed lines represent hydrogen bonds).

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(7)-H(7A)N(3)#1	0.86	2.14	2.984(7)	166.6
N(7)-H(7B)N(4)#2	0.86	2.10	2.951(6)	170.5
N(14)-H(14A)N(10)#1	0.86	2.09	2.934(7)	168.5
N(14)-H(14B)N(11)#3	0.86	2.10	2.954(7)	172.6
N(18)-H(18A)N(16)#4	0.89	2.25	3.116(7)	163.1
N(18)-H(18B)N(9)#5	0.89	2.59	3.051(7)	113.5
N(18)-H(18B)N(13)#4	0.89	2.08	2.877(7)	148.4
N(18)-H(18C)O(3)#6	0.89	1.84	2.731(8)	173.5
N(17)-H(17A)O(3)#5	0.89	2.26	3.129(7)	166.8
N(17)-H(17A)N(9)#5	0.89	2.54	3.179(7)	128.9
N(17)-H(17B)O(1)	0.89	2.24	2.995(8)	142.8
N(16)-H(16A)N(5)#7	0.89	2.52	3.160(7)	129.7
N(16)-H(16B)O(3)	0.89	2.46	3.096(6)	129.1
N(16)-H(16B)N(12)	0.89	2.32	3.117(6)	149.7
N(15)-H(15A)N(17)	0.89	2.03	2.915(8)	174.0
N(15)-H(15B)O(1)#7	0.89	1.91	2.802(6)	178.7
N(15)-H(15C)N(6)#8	0.89	2.02	2.866(6)	159.1

 Table S8 Hydrogen bond of compound 6.

Symmetry transformations used to generate equivalent atoms:

#1 x,y-1,z #2 -x+1,y-1/2,-z+3/2 #3 -x,y-1/2,-z+1/2

#4 x,-y+1/2,z+1/2 #5 x,-y+3/2,z+1/2 #6 x,y,z+1

#7 x,y,z-1 #8 x,-y+1/2,z-1/2

Figure S7 TG of 3, 4, 5, 6, AOTO, ATTO and ATTO- N_2H_4 .

4 IR and NMR spectrum

Figure S8 IR spectrum of ATTO.

Figure S10 IR spectrum of $ATTO \cdot N_2H_4$.

Figure S11 IR spectrum of 3.

Figure S13 IR spectrum of 5.

Figure S14 IR spectrum of 6.

Figure S15 ¹H NMR spectrum of ATTO (DMSO-d₆).

Figure S16¹³C NMR spectrum of ATTO (DMSO-d₆).

Figure S17 ¹H NMR spectrum of AOTO (DMSO-d₆).

Figure S18 ¹³C NMR spectrum of AOTO (DMSO-d₆).

Figure S19 ¹H NMR spectrum of ATTO-N₂H₄ (DMSO-d₆).

Figure S20 ¹³C NMR spectrum of ATTO-N₂H₄ (DMSO-d₆).

Figure S21 ¹H NMR spectrum of 3 (DMSO-d₆).

Figure S22 ¹³C NMR spectrum of 3 (DMSO-d₆).

Figure S23 ¹H NMR spectrum of 4 (DMSO- d_6).

Figure S24 ¹³C NMR spectrum of 4 (DMSO-d₆).

Figure S25 ¹H NMR spectrum of **5** (DMSO-d₆).

Figure S26 ¹³C NMR spectrum of 4 (DMSO-d₆).

Figure S27 ¹H NMR spectrum of 6 (DMSO-d₆).

Figure S28 ¹³C NMR spectrum of 6 (DMSO-d₆).

5 Calculation method and results

The geometric optimization and frequency analyses of all these compounds were based on available single-crystal structures by Gaussian 09 suite¹ of programs and using the B3LYP functional with the 6-31++G(d,p) basis set. The geometrical configurations were optimized with no constraints imposed under default convergence criteria. All of the optimized structures were characterized to be true local energy minima on the potential energy surface without imaginary frequencies. Thermal corrections to enthalpy were computed at the same DFT level of theory. The gas phase heats of formation were calculated using isodesmic reactions (Figure S29).²

$$\begin{array}{c} \begin{array}{c} OH \\ N-N \\ N-N \end{array} + NH_2 \end{array} + NH_3 + 3CH_4 \longrightarrow \begin{array}{c} H \\ N-N \\ N-N \end{array} + \begin{array}{c} O \\ N-N \end{array} + NH_2OH + CH_3CH_3 + CH_3NH_2 \end{array}$$

Figure S29 Isodesmic-reaction of AOTO and ATTO.

The enthalpy of sublimation can be represented as eq $(1)^3$ and on the basis of the predicted electrostatic potential of a molecule.⁴

$$\Delta H_{sub} = a(SA)^2 + b\sqrt{\upsilon\sigma_{tot}^2} + c \qquad (1)$$

Here SA is the surface area of the 0.001 electrons bohr⁻³ isosurface of the electronic density of the compounds, $v\sigma_{tot}^2$ is derived from the molecular electrostatic potential calculation, and a, b, c are fitting parameters reported by Politzer et al.⁴

For energetic salts, the solid-phase heats of formation are calculated based on a Born-Haberenergy cycle (Figure S30).⁵

Figure S30 Born-Haber Cycle for the formation of energetic salts.

 $\Delta H_{\rm f}^{\rm o}$ (salt, 298 K) = $\Delta H_{\rm f}^{\rm o}$ (cation, 298K) + $\Delta H_{\rm f}^{\rm o}$ (anion, 298K) – $\Delta H_{\rm L}$ (2) where $\Delta H_{\rm L}$ is the lattice energy of the salts, which could be predicted by using the formula suggested by Jenkins et al. [Eq. (3)]

$$\Delta H_{\rm L} = U_{\rm POT} + \left[p(n_{\rm M}/2 - 2) + q(n_{\rm X}/2 - 2) \right] RT$$
(3)

where n_M and n_X represent the nature of the ions, M_q^+ and X_p^- , and are equal to 3 for monatomic ions, 5 for linear polyatomicions, and 6 for nonlinear polyatomic ions. The equation for lattice potential energy U_{POT} is as the follow:

 $U_{\text{POT}} [\text{kJ mol}^{-1}] = \gamma (\rho_{\text{m}}/\text{M}_{\text{m}})^{1/3} + \delta$ (4) where $\rho_{\text{m}} (\text{g cm}^{-3})$ is the density of the salt, M_{m} is the formula mass of the ionic compound, and values for γ (kJ mol⁻¹ cm) and δ (kJ mol⁻¹) are assigned literature values. The calculation of the enthalpy of cocrystal was based on the method in reference [6] and [7].

Table S9 Calculated total energy (E₀), zero-point energy (ZPE), thermal correction to enthalpy (ΔH_T) , heats of formation $(\Delta_f H_{gas})$ in gas state, sublimation enthalpy (ΔH_{sub}) and heats of formation $(\Delta_f H_{sold})$ in gas state.

	E ₀ /Hartree	ZPE/Hartree	$\Delta H_T/Hartree$	$\Delta_{\rm f} {\rm H}_{\rm gas} ({\rm kJ/mol})$	$\Delta H_{sub} (kJ/mol)$	$\Delta_{\rm f} H_{\rm sold} (kJ/mol)$
ATTO	-630.030082	0.107715	0.117976	631.36	139.16	492.2
AOTO	-649.8262892	0.093388	0.104059	634.97	160.57	474.4

Table S10 Calculated total energy (E₀), zero-point energy (ZPE), thermal correction to enthalpy (ΔH_T) , and heats of formation $(\Delta_f H)$ of ions.

	E ₀ /Hartree	ZPE/Hartree	$\Delta H_T/Hartree$	$\Delta_{\rm f} {\rm H} ~({\rm kJ/mol})$
NH4 ⁺	-56.9219842	0.049481	0.053276	624.59
NH ₃ OH ⁺	-132.0866003	0.054499	0.058742	676.97
$N_2H_5^+$	-112.2529502	0.067866	0.072181	742.77
ATTO-	-629.4769221	0.094356	0.1046	329.19
AOTO-	-649.3412948	0.081531	0.091459	183.51
TO-	-332.9670411	0.037808	0.04276	156.36
ATO-	-388.3461172	0.054982	0.0613	147.28
BTO ²⁻	-664.6465108	0.0567	0.06581	579.25

Table S11 Calculated lattice energy (U_{pot}) and heats of formation ($\Delta_f H$) of ionic compounds.

	Upot (kJ/mol)	$\Delta_{\rm f} { m H} \ ({ m kJ/mol})$
ATTO-N ₂ H ₄	517.16	554.8
3	515.68	438.1
4	510.86	495.3
5	519.00	289.1
6	512.18	414.1
TO ⁻ ·NH ₃ OH ⁺	570.63	262.7
ATO ⁻ ·NH ₃ OH ⁺	536.05	288.2
TKX-50	1482.39	450.8

Molecular surface properties

ATTO

Summary of surface analysis

Volume:1130.68161 Bohr^3(167.54973 Angstrom^3)Estimated density according to mass and volume (M/V):1.6662 g/cm^3Minimal value:-47.93888 kcal/molMaximal value:61.34839 kcal/molOverall surface area:627.58880 Bohr^2Overall surface area:627.58880 Bohr^2(175.74276 Angstrom^2)Positive surface area:274.60824 Bohr^2(76.89814 Angstrom^2)

Negative surface area: 352.98056 Bohr² (98.84462 Angstrom²) Overall average value: -0.00110349 a.u. (-0.69245 kcal/mol) Positive average value: 0.03983103 a.u. (24.99437 kcal/mol) Negative average value: -0.03294930 a.u. (-20.67602 kcal/mol) Overall variance (sigma² tot): 0.00134546 a.u.² (529.80025 (kcal/mol)^2) Positive variance: 0.00088960 a.u.^2 (350.29505 (kcal/mol)^2) Negative variance: 0.00045586 a.u.^2 (179.50520 (kcal/mol)^2) Balance of charges (nu): 0.22401996 Product of sigma² tot and nu: 0.00030141 a.u.^2 (118.68583 (kcal/mol)^2) Internal charge separation (Pi): 0.03583621 a.u. (22.48758 kcal/mol) Molecular polarity index (MPI): 0.97853432 eV (22.56556 kcal/mol) Nonpolar surface area (|ESP| <= 10 kcal/mol): 52.30 Angstrom² (29.76 %) Polar surface area (|ESP| > 10 kcal/mol): 123.44 Angstrom² (70.24 %) Overall skewness: 0.7509464392 Positive skewness: 0.2654803808 Negative skewness: -0.2147186450

ΑΟΤΟ

Volume: 1091.28870 Bohr^3 (161.71230 Angstrom^3) Estimated density according to mass and volume (M/V): 1.7364 g/cm^3 Minimal value: -59.12528 kcal/mol Maximal value: 97.45675 kcal/mol Overall surface area: 614.08270 Bohr² (171.96067 Angstrom²) Positive surface area: 268.82501 Bohr² (75.27867 Angstrom²) Negative surface area: 345.25769 Bohr² (96.68200 Angstrom²) Overall average value: 0.00081990 a.u. (0.51449 kcal/mol) Positive average value: 0.07739218 a.u. (48.56437 kcal/mol) Negative average value: -0.05880092 a.u. (-36.89816 kcal/mol) Overall variance (sigma² tot): 0.00232406 a.u.² (915.14312 (kcal/mol)^2) Positive variance: 0.00166222 a.u.^2 (654.52949 (kcal/mol)^2) Negative variance: 0.00066184 a.u.^2 (260.61363 (kcal/mol)^2) Balance of charges (nu): 0.20367996 Product of sigma² tot and nu: 0.00047336 a.u.^2 (186.39632 (kcal/mol)^2) 0.06704299 a.u. (42.07015 kcal/mol) Internal charge separation (Pi): Molecular polarity index (MPI): 1.82151796 eV (42.00524 kcal/mol) Nonpolar surface area (|ESP| <= 10 kcal/mol): 15.12 Angstrom² (8.80 %) Polar surface area (|ESP| > 10 kcal/mol): 156.84 Angstrom² (91.20%) Overall skewness: 1.6266657918 Positive skewness: -0.0661089620 Negative skewness: 0.6501281806

Parameters at C-	J point:							
Detonation parameters				Composi	tion of de	tonation	products (23):
Heat of detonation =	- 4128.57	kJ∕ kg		(per mol c	of expl.)	(per kg of	(Mol %)	(Mass %)
Detonation temperature =	2891.65	K		N2	3.7268	22.16684	45.222	62.096
Detonation pressure =	27.99422	GPa		C(d)	2.856676	16.99138	34.6637	20.4083
Detonation velocity =	8681.37	m/s		H2O	0.922332	5.485992	11.1918	9.8832
Particle velocity =	1781.56	m/s		NH3	0.542247	3.22526	6.5798	5.4929
Sound velocity =	6899.81	m/s		H2	0.066999	0.398505	0.813	0.0803
Density of products =	2.277349	g/cm3		CH4	0.058107	0.34562	0.7051	0.5545
Specific volume of products =	0.439	cm3/g		CH2O2	0.026924	0.160142	0.3267	0.7371
Exponent 'Gamma' =	3.873			C2H6	0.01591	0.094633	0.1931	0.2845
Moles of gaseous products =	5.384	mol/mol	EM	CO	0.01527	0.090822	0.1853	0.2544
Moles of condensed products =	2.857	mol/mol	EM	CO2	0.004245	0.025252	0.0515	0.1111
Mean Mw of gas =	24.85	g/mol		HCN	0.003162	0.01881	0.0384	0.0508
Mean Mw of condensed prod.	12.011	g/mol		C2H4	0.001868	0.01111	0.0227	0.0312
Mean Mw of all prod. =	20.4	g/mol		N2H4	0.000482	0.002868	0.0059	0.0092
Volume og gas at STP =	783.238	dm3/kg l	EM	CH3OH	5.91E-05	0.000352	0.0007	0.0011
Internal energy of products =	5715.554	kJ∕ kg		NH2	2.54E-05	0.000151	0.0003	0.0002
Compression energy =	1586.986	kJ∕ kg		Н	8.52E-06	5.07E-05	0.0001	0
Entropy of products) =	6.057	kJ/kg K		CH2O	1.33E-07	7.91E-07	0	0
				CNO	3.68E-08	2.19E-07	0	0
				N	3.52E-08	2.09E-07	0	0
				HCNO	2.26E-08	1.34E-07	0	0
				H2O2	1.57E-08	9.35E-08	0	0
				N2O	7.64E-10	4.54E-09	0	0
				C(gr)	2.23E-20	1.33E- 19	0	0

Figure S31 Calculation results of ATTO from EXPLO5.

Parameters at C-	J point:							
Detonation parameters				Composit	tion of de	tonation p	products (23):
Heat of detonation =	- 4161.97	kJ∕ kg		(per mol c	of expl.)	(per kg of	(Mol %)	(Mass %)
Detonation temperature =	2638.28	К		N2	4.205886	21.01125	43.0635	58.8588
Detonation pressure =	31.30505	GPa		C(d)	2.665573	13.31635	27.2925	15.9943
Detonation velocity =	9305.52	m/s		NH3	1.584372	7.915015	16.2222	13.4801
Particle velocity =	1919.07	m/s		H2O	0.97233	4.857449	9.9556	8.7508
Sound velocity =	7386.45	m/s		CH4	0.159368	0.796153	1.6318	1.2773
Density of products =	2.208446	g/cm3		H2	0.082063	0.409962	0.8402	0.0826
Specific volume of products =	0.453	cm3/g		C2H6	0.076883	0.384081	0.7872	1.1549
Exponent 'Gamma' =	3.849			CH2O2	0.011737	0.058635	0.1202	0.2699
Moles of gaseous products =	7.101	mol/mol	EM	CO	0.002883	0.014405	0.0295	0.0403
Moles of condensed products	2.666	mol/mol	EM	C2H4	0.002332	0.011649	0.0239	0.0327
Mean Mw of gas =	23.679	g/mol		HCN	0.001335	0.006668	0.0137	0.018
Mean Mw of condensed prod.	12.011	g/mol		N2H4	0.001254	0.006263	0.0128	0.0201
Mean Mw of all prod. =	20.494	g/mol		CO2	0.000638	0.003185	0.0065	0.014
Volume og gas at STP =	867.576	dm3/kg l	EM	CH3OH	3.7E-05	0.000185	0.0004	0.0006
Internal energy of products =	6003.393	kJ∕ kg		NH2	1.25E-05	6.24E-05	0.0001	0.0001
Compression energy =	1841.426	kJ∕ kg		Н	2.4E-06	1.2E-05	0	0
Entropy of products) =	6.385	kJ/kg K		CH2O	1.15E-08	5.76E-08	0	0
				Ν	5.12E-09	2.56E-08	0	0
				CNO	1.92E-09	9.59E-09	0	0
				H2O2	1.68E-09	8.38E-09	0	0
				HCNO	1.04E-09	5.22E-09	0	0
				N2O	4.3E-11	2.15E-10	0	0
				C(gr)	1.34E-20	6.7E-20	0	0

Figure S32 Calculation results of $ATTO{\cdot}N_2H_4$ from EXPLO5.

Parameters at C-	J point:							
	-							
Detonation parameters				Composi	tion of de	tonation _l	products (23):
Heat of detonation =	- 5000.02	kJ∕ kg		(per mol c	of expl.)	(per kg of	(Mol %)	(Mass %)
Detonation temperature =	3540.57	K		N2	3.450526	20.40428	45.0786	57.1585
Detonation pressure =	28.83171	GPa		C(d)	2.421048	14.31658	31.6292	17.1956
Detonation velocity =	8516.75	m/s		H2O	1.083291	6.40591	14.1524	11.5404
Particle velocity =	1880.71	m/s		CH2O2	0.228655	1.352123	2.9872	6.2231
Sound velocity =	6636.03	m/s		CO	0.203976	1.20619	2.6648	3.3785
Density of products =	2.310137	g/cm3		CO2	0.127664	0.754925	1.6678	3.3224
Specific volume of products =	0.433	cm3/g		NH3	0.089296	0.528043	1.1666	0.8993
Exponent 'Gamma' =	3.528			H2	0.032518	0.192291	0.4248	0.0388
Moles of gaseous products =	5.233	mol/mol	EM	HCN	0.009289	0.054931	0.1214	0.1485
Moles of condensed products =	2.421	mol/mol	EM	CH4	0.006416	0.037938	0.0838	0.0609
Mean Mw of gas =	26.755	g/mol		C2H4	0.000722	0.004271	0.0094	0.012
Mean Mw of condensed prod.	12.011	g/mol		C2H6	0.000707	0.00418	0.0092	0.0126
Mean Mw of all prod. =	22.092	g/mol		N2H4	0.000145	0.000857	0.0019	0.0027
Volume og gas at STP =	756.844	dm3/kg l	EM	CH3OH	8.47E-05	0.000501	0.0011	0.0016
Internal energy of products =	6768.573	kJ∕ kg		NH2	6.35E-05	0.000376	0.0008	0.0006
Compression energy =	1768.554	kJ∕ kg		Н	4.89E-05	0.000289	0.0006	0
Entropy of products) =	6.395	kJ/kg K		CNO	5.36E-06	3.17E-05	0.0001	0.0001
				CH2O	2.3E-06	1.36E-05	0	0
				N	1.35E-06	7.98E-06	0	0
				H2O2	1.13E-06	6.71E-06	0	0
				HCNO	1E-06	5.91E-06	0	0
				N2O	8.39E-08	4.96E-07	0	0
				C(gr)	1.17E- 18	6.91E- 18	0	0

Figure S33 Calculation results of AOTO from EXPLO5.

Parameters at C-	J point:							
Detonation parameters				Composi	tion of de	tonation p	products (23):
Heat of detonation =	- 3784.4	kJ∕ kg		(per mol c	of expl.)	(per kg of	(Mol %)	(Mass %)
Detonation temperature =	2556.53	К		N2	3.926147	21.20442	43.4238	59.4
Detonation pressure =	25.023	GPa		C(d)	2.574763	13.90584	28.4773	16.7023
Detonation velocity =	8463.65	m/s		NH3	1.144611	6.18184	12.6596	10.5283
Particle velocity =	1781.03	m/s		H2O	0.961159	5.191047	10.6306	9.3518
Sound velocity =	6682.62	m/s		CH4	0.21322	1.151564	2.3583	1.8475
Density of products =	2.102418	g/cm3		H2	0.102476	0.553456	1.1334	0.1116
Specific volume of products =	0.476	cm3/g		C2H6	0.089803	0.48501	0.9932	1.4583
Exponent 'Gamma' =	3.752			CH2O2	0.01405	0.07588	0.1554	0.3492
Moles of gaseous products =	6.467	mol/mol	EM	CO	0.007136	0.038541	0.0789	0.108
Moles of condensed products :	2.575	mol/mol	EM	C2H4	0.003664	0.019788	0.0405	0.0555
Mean Mw of gas =	23.849	g/mol		HCN	0.002056	0.011103	0.0227	0.03
Mean Mw of condensed prod.	12.011	g/mol		CO2	0.001764	0.009529	0.0195	0.0419
Mean Mw of all prod. =	20.478	g/mol		N2H4	0.000513	0.00277	0.0057	0.0089
Volume og gas at STP =	854.137	dm3/kg l	EM	CH3OH	7.68E-05	0.000415	0.0008	0.0013
Internal energy of products =	5370.451	kJ∕ kg		NH2	1.3E- 05	7.01E-05	0.0001	0.0001
Compression energy =	1586.05	kJ∕ kg		Н	3.13E-06	1.69E-05	0	0
Entropy of products) =	6.381	kJ/kg K		CH2O	7.34E-08	3.96E-07	0	0
				HCNO	8.65E-09	4.67E-08	0	0
				CNO	3.37E-09	1.82E-08	0	0
				N	2.83E-09	1.53E-08	0	0
				H2O2	1.98E-09	1.07E-08	0	0
				N2O	8.32E-11	4.49E-10	0	0
				C(gr)	2.17E-20	1.17E-19	0	0

Figure S34 Calculation results of 3 from EXPLO5.

Parameters at C-	J point:							
	-							
Detonation parameters				Composi	tion of de	tonation _l	products (23):
Heat of detonation =	- 4753.02	kJ∕kg		(per mol o	of expl.)	(per kg of	(Mol %)	(Mass %)
Detonation temperature =	3093.63	K		N2	4.1064	20.414	42.0127	57.1858
Detonation pressure =	27.24007	GPa		C(d)	2.677344	13.30979	27.392	15.9864
Detonation velocity =	8630.71	m/s		H2O	1.789024	8.893716	18.3036	16.0223
Particle velocity =	1877.55	m/s		NH3	0.777244	3.863885	7.952	6.5806
Sound velocity =	6753.16	m/s		H2	0.138929	0.690651	1.4214	0.1392
Density of products =	2.148362	g/cm3		CH4	0.109492	0.544314	1.1202	0.8732
Specific volume of products =	0.465	cm3/g		CH2O2	0.07105	0.353208	0.7269	1.6256
Exponent 'Gamma' =	3.597			CO	0.0453	0.225198	0.4635	0.6308
Moles of gaseous products =	7.097	mol/mol	EM	C2H6	0.033005	0.164074	0.3377	0.4933
Moles of condensed products =	2.677	mol/mol	EM	CO2	0.011685	0.058091	0.1196	0.2557
Mean Mw of gas =	23.812	g/mol		HCN	0.008109	0.040314	0.083	0.109
Mean Mw of condensed prod.	12.011	g/mol		C2H4	0.005403	0.026858	0.0553	0.0753
Mean Mw of all prod. =	20.579	g/mol		N2H4	0.000884	0.004394	0.009	0.0141
Volume og gas at STP =	862.815	dm3/kg l	EM	CH3OH	0.000204	0.001014	0.0021	0.0032
Internal energy of products =	6515.642	kJ∕ kg		NH2	8.01E-05	0.000398	0.0008	0.0006
Compression energy =	1762.617	kJ∕ kg		Н	3.45E-05	0.000172	0.0004	0
Entropy of products) =	6.83	kJ/kg K		CH2O	7.75E-07	3.85E-06	0	0
				CNO	2.16E-07	1.08E-06	0	0
				N	1.76E-07	8.75E-07	0	0
				HCNO	1.25E-07	6.21E-07	0	0
				H2O2	9.72E-08	4.83E-07	0	0
				N2O	3.6E-09	1.79E-08	0	0
				C(gr)	2.93E-20	1.46E- 19	0	0

Figure S35 Calculation results of 4 from EXPLO5.

Parameters at C-	J point:							
	-							
Detonation parameters				Composit	tion of de	tonation _l	oroducts (23):
Heat of detonation =	- 3933.82	kJ∕ kg		(per mol c	of expl.)	(per kg of	(Mol %)	(Mass %)
Detonation temperature =	2780.13	К		N2	3.737901	20.08113	41.0803	56.2533
Detonation pressure =	22.96423	GPa		C(d)	2.695128	14.47904	29.62	17.3908
Detonation velocity =	7998.36	m/s		H2O	1.757277	9.440621	19.3129	17.0076
Particle velocity =	1736.91	m/s		NH3	0.51911	2.788813	5.7051	4.7496
Sound velocity =	6261.45	m/s		H2	0.110997	0.596311	1.2199	0.1202
Density of products =	2.111537	g/cm3		CH4	0.099852	0.536436	1.0974	0.8606
Specific volume of products =	0.474	cm3/g		CH2O2	0.073773	0.396333	0.8108	1.8241
Exponent 'Gamma' =	3.605			CO	0.051754	0.278036	0.5688	0.7788
Moles of gaseous products =	6.404	mol/mol	EM	C2H6	0.02335	0.125442	0.2566	0.3772
Moles of condensed products =	2.695	mol/mol	EM	CO2	0.021626	0.116184	0.2377	0.5113
Mean Mw of gas =	24.011	g/mol		HCN	0.004597	0.024697	0.0505	0.0667
Mean Mw of condensed prod.	12.011	g/mol		C2H4	0.0032	0.017192	0.0352	0.0482
Mean Mw of all prod. =	20.456	g/mol		N2H4	0.000232	0.001246	0.0025	0.004
Volume og gas at STP =	841.374	dm3/kg l	EM	CH3OH	0.000168	0.000905	0.0019	0.0029
Internal energy of products =	5442.255	kJ∕ kg		NH2	2.7E-05	0.000145	0.0003	0.0002
Compression energy =	1508.436	kJ∕ kg		Н	1.27E-05	6.8E-05	0.0001	0
Entropy of products) =	6.5	kJ/kg K		CH2O	7.83E-07	4.2E-06	0	0
				HCNO	1.32E-07	7.11E-07	0	0
				CNO	6.73E-08	3.62E-07	0	0
				H2O2	3.66E-08	1.96E-07	0	0
				Ν	2.13E-08	1.15E-07	0	0
				N2O	1.31E-09	7.05E-09	0	0
				C(gr)	3.67E-20	1.97E- 19	0	0

Figure S36 Calculation results of 5 from EXPLO5.

Parameters at C-	J point:							
	-							
Detonation parameters				Composit	tion of de	tonation _[products (23):
Heat of detonation =	- 4361.08	kJ∕ kg		(per mol c	of expl.)	(per kg of	(Mol %)	(Mass %)
Detonation temperature =	2901.36	K		N2	4.106509	20.41455	41.9238	57.1873
Detonation pressure =	26.74077	GPa		C(d)	2.71088	13.47651	27.6757	16.1866
Detonation velocity =	8584.26	m/s		H2O	1.821815	9.056725	18.5991	16.316
Particle velocity =	1834.56	m/s		NH3	0.780937	3.882247	7.9727	6.6119
Sound velocity =	6749.7	m/s		H2	0.120184	0.597467	1.227	0.1204
Density of products =	2.159514	g/cm3		CH4	0.109337	0.543543	1.1162	0.872
Specific volume of products =	0.463	cm3/g		CH2O2	0.062841	0.312399	0.6416	1.4378
Exponent 'Gamma' =	3.679			CO	0.031904	0.158602	0.3257	0.4442
Moles of gaseous products =	7.084	mol/mol	EM	C2H6	0.031276	0.155481	0.3193	0.4675
Moles of condensed products =	2.711	mol/mol	EM	CO2	0.010227	0.05084	0.1044	0.2237
Mean Mw of gas =	23.797	g/mol		HCN	0.004803	0.023877	0.049	0.0645
Mean Mw of condensed prod.	12.011	g/mol		C2H4	0.003655	0.018172	0.0373	0.051
Mean Mw of all prod. =	20.535	g/mol		N2H4	0.0006	0.002983	0.0061	0.0096
Volume og gas at STP =	861.289	dm3/kg E	M	CH3OH	0.000146	0.000724	0.0015	0.0023
Internal energy of products =	6043.891	kJ/ kg		NH2	4.05E-05	0.000201	0.0004	0.0003
Compression energy =	1682.815	kJ/ kg		Н	1.6E- 05	7.95E-05	0.0002	0
Entropy of products) =	6.639	kJ/kg K		CH2O	3.72E-07	1.85E-06	0	0
				CNO	6.92E-08	3.44E-07	0	0
				HCNO	5.4E-08	2.68E-07	0	0
				N	5.02E-08	2.5E-07	0	0
				H2O2	4.21E-08	2.09E-07	0	0
				N2O	1.27E-09	6.31E-09	0	0
				C(gr)	2.56E-20	1.27E-19	0	0

Figure S37 Calculation results of 6 from EXPLO5.

Reference

 M. J. Frisch, Gaussian 09. Revision a. 02, Gaussian, Inc., Wallingford CT, 2009.
 J. Zhang, H. D, F. Wang, DFT Studies on a High Energy Density Cage Compound 4-Trinitroethyl-2,6,8,10,12-pentanitrohezaazaisowurtzitane, *J. Phys. Chem. A*, 2011, 24, 6617-6621.

(3) P. W. Atkins, Physical Chemistry. Oxford University Press, Oxford, U. K., 1982.

(4) P. J. Politzer, S. Murray, T. Brinck, P. Lan, Immunoanalysis of agrochemicals. ACS Sympsium Series 586, American Chemical Society, Washington, DC, 1994.

(5) H. D. B. Jenkins, D. Tudela, L. Glasser, Lattice Potential Energy Estimation for Complex Ionic Salts from Density Measurements, *Inorg. Chem.*, 2002, **9**, 2364-2367.

(6) J. Zhang, J.P. Hooper, J. Zhang, J.M. Shreeve, Well-balanced energetic cocrystals of H₅IO₆ /HIO₃ achieved by a small acid-base gap, *Chem. Eng. J.*, 2021, **405**, 126623.

(7) A.K. Yadav, V.D. Ghule, S. Dharavath, Thermally Stable and Insensitive Energetic Cocrystals Comprising Nitrobarbituric Acid Coformers, *Cryst. Growth Des.*, 2023, **23** 2826–2836.