Electronic Supplementary Information (ESI)

A Ni-added polyoxometalate: synthesis, structure and catalytic performance

Zheng-Ge Zhang^a, Zhen-Wen Wang^a, Yu Wang^a, Juan Chen^a, Yue-Lin Wang^{*b} and Guo-Yu Yang^{*a}

^aMOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China. E-mail: ygy@bit.edu.cn, ygy@fjirsm.ac.cn, Fax: (+86) 10-6891-8572 ^bCollege of Science, Inner Mongolia Agricultural University, Hohhot 010018, China. E-mail: wyl2619@126.com

- Fig. S1. (a) The asymmetric structural unit of 1; (b) Ball and stick model diagram of 1a.
- Fig. S2. (a) The packing mode of 1a along the *b*-axis; (b) The packing mode of 1a along the *c*-axis.
- Fig. S3. The FT-IR spectrum of 1.
- Fig. S4. The TG curve of 1.
- Fig. S5. Experimental and simulated PXRD patterns of 1.
- Fig. S6. UV-Vis diffuse reflectance spectrum of 1 and the corresponding a/S-Energy curve (inset).
- Fig. S7. (a)The Knoevenagel condensation of benzaldehyde with malononitrile detected by GC. Reaction conditions: 1 mmol benzaldehyde, 0.5 μmol catalyst, 1.2 mmol malononitrile, 3 mL CH₃OH, room temperature, 20 min. (b) Internal standard curve after fitting.
- Table S1. BVS calculations of some oxygen atoms in 1.
- Table S2 Comparison of some POM-based catalysts for the Knoevenagel condensation reaction of benzaldehyde with malononitrile.

Fig. S1. (a) The asymmetric structural unit of 1; (b) Ball an stick model diagram of 1a.

Fig. S2. (a) The packing mode of **1a** along the *b*-axis. (b) The packing mode of **1a** along the *c*-axis. Color labels for polyhedra: WO₆, red; SiO₄, purple; NiO₆, green.

Fig. S5. Experimental and simulated PXRD patterns of 1.

Fig. S6. UV-Vis diffuse reflectance spectrum of 1 and the corresponding α/S-Energy curve (inset).

Fig. S7. (a) The Knoevenagel condensation of benzaldehyde with malononitrile detected by GC. Reaction conditions: 1 mmol benzaldehyde, 0.5 μ mol catalyst, 1.2 mmol malononitrile, 3 mL CH₃OH, room temperature, 20 min. (b) Internal standard curve after fitting.

Atom	BVS	Atom	BVS
03	0.328	O34	0.311
O13	2.020	O43	0.322
O20	2.117	O47	1.000
O22	2.044	O48	0.825
O30	1.064	B1	2.864

Table S1. BVS calculations of some atoms in 1.

Table S2. Comparison of some POM-based catalysts for the Knoevenagel condensation reaction of benzaldehyde with malononitrile.

Compounds		Temp.	Conversion	Ref.
		(°C)	(%)	
Na ₈ H[A-PW ₉ O ₃₄]·7H ₂ O		25	92	1
Na ₈ H[B-PW ₉ O ₃₄]·19H ₂ O		25	89	1
$[\gamma-SiW_{10}O_{34}(H_2O)_2]^{4-}$		32	90	2
$[H(\gamma-SiW_{10}O_{32})_2(\mu-O)_4]^{7-}$		32	96	2
Na ₁₆ [SiNb ₁₂ O ₄₀]·xH ₂ O		25	100	3
$Mg_{0.73}Al_{0.22}(OH)_2[PW_{12}O_{40}]_{0.04}\cdot 0.98H_2O$		60	93	4
K ₇ HNb ₆ O ₁₉		RT	99	5

$\label{eq:hardenergy} \begin{split} & [H_2N(CH_3)_2]_2Na_{18}Cs_2H_{13}[(Cs_7(H_2O)_6)@~\{(PO_4)@~\\ & (Ni_4(OH)_3(WO_4))_3@(B-\alpha-PW_9O_{34})_3\}_2]\cdot 30H_2O \end{split}$		30	99	6
$[H_2N(CH_3)_2]_2Na_3H_5[{Ti(C_2O_4)(H_2O)}{Ti(C_2O_4)}(B-\beta-SbW_9O_{33})_2]\cdot 22H_2O$		30	99	7
$ \begin{array}{c} K_2 Na_{14} H_{10} [\{ Ni_6 (OH)_3 (H_2 O)_6 (GeW_9 O_{34}) \} \{ Ni_8 (\mu_6 - O) \\ (OH)_3 (H_2 O) BO (OH)_2 B_2 O_3 (OH)_2 (GeW_9 O_{34})_2 \}]_2 \cdot 46 H_2 O \end{array} $		30	100	8
$\begin{array}{c} K_{4}Na_{4}H_{12}[(\{Ni_{8}(\mu_{6}\text{-}O)\}@\{B_{4}O_{8}(OH)_{3}\}_{2})@(B-\alpha-GeW_{9}O_{34})_{2}]\cdot16H_{2}O\end{array}$		30	100	9
1	50	RT	100	This paper

References

1 S. Zhao, Y. Chen and Y. F. Song, Appl. Catal., A., 2014, 475, 140–146.

2 A. Yoshida, S. Hikichi and N. Mizuno, J. Organomet. Chem., 2007, 692, 455-459.

3 W. Ge, X. Wang, L. Zhang, L. Du, Y. Zhou and J. Wang, Catal. Sci. Technol., 2016, 6, 460–467.

4 Y. Jia, Y. Fang, Y. Zhang, H. N. Miras and Y. F. Song, Chem. - Eur. J., 2015, 21, 14862-14870.

5 Q. Xu, Y. Niu, G. Wang, Y. Li, Y. Zhao, V. Singh, J. Niu and J. Wang, Mol. Catal., 2018, 453, 93–99.

6C. Lian, H. L. Li and G. Y. Yang, Inorg. Chem., 2022, 61, 11335–11341.

7 H. L. Li, C. Lian and G. Y. Yang, *Tungsten*, 2024, 6, 465–471.

8C. Lian, H. L. Li and G. Y. Yang, Sci. China. Chem., 2023, 66, 1394–1399.

9C. Lian and G. Y. Yang, Inorg. Chem., 2023, 62, 21409-21415.