CrystEngComm/RSC Supporting information

## Mononuclear complexes of dysprosium with 2,6-diacetylpyridine

## bis(isonicotinoylhydrazone): synthesis, crystal structure, magnetic properties

## V.A. Kopotkov,<sup>a\*</sup> L.V. Zorina,<sup>b\*</sup> S.V. Simonov,<sup>b</sup> D.V. Korchagin,<sup>a</sup> M.V. Zhidkov,<sup>a</sup> A.I. Dmitriev,<sup>a</sup> G. Mahmoudi,<sup>c,d,e</sup> E.B. Yagubskii<sup>a\*</sup>

<sup>a</sup>Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry, FRC PCP MC RAS, 1 ac. Semenov av., 142432 Chernogolovka, Russian Federation.

<sup>b</sup>Osipyan Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russian Federation <sup>c</sup>Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55136-83111, Maragheh, Iran <sup>d</sup>Chemistry Department, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey

<sup>e</sup>Department of Technical Sciences, Western Caspian University, Baku 1001, Azerbaijan



Figure S1. IR spectrum of complex 1.



**Figure S2.** Powder X-ray diffraction pattern of polycrystalline samples of **1**: experimental (black), and calculated from single crystal data (red).



Figure S3. IR spectrum of complex 3.



**Figure S4.** Powder X-ray diffraction pattern of polycrystalline samples of **3**: experimental (black), and calculated from single crystal data (red).

| Complay      | Polyhedra [ML8] |          |         |        |        |       |         |  |  |
|--------------|-----------------|----------|---------|--------|--------|-------|---------|--|--|
| Complex      | OP-8            | HPY-8    | HBPY-8  | CU-8   | SAPR-8 | TDD-8 |         |  |  |
| 1            | 34.080          | 21.194   | 5.809   | 6.357  | 5.862  | 5.680 |         |  |  |
| 2, cation I  | 32.038          | 21.807   | 8.786   | 8.962  | 4.767  | 4.007 |         |  |  |
| 2, cation II | 33.612          | 21.481   | 8.322   | 8.694  | 5.103  | 4.615 |         |  |  |
|              |                 |          |         |        |        |       |         |  |  |
|              | JGBF-8          | JETBPY-8 | JBTPR-8 | BTPR-8 | JSD-8  | TT-8  | ETBPY-8 |  |  |
| 1            | 6.989           | 22.123   | 6.140   | 5.904  | 6.859  | 7.196 | 19.485  |  |  |
| 2, cation I  | 7.602           | 23.606   | 4.641   | 4.353  | 4.771  | 9.816 | 20.428  |  |  |
| 2, cation II | 7.228           | 23.405   | 4.699   | 4.292  | 5.477  | 9.512 | 20.120  |  |  |

Table S1. SHAPE\* analysis of the Dy-complexes with 8-vertex polyhedra in 1 and 2.

OP-8 - Octagon  $(D_{8h})$ ; HPY-8 - Heptagonal pyramid  $(C_{7v})$ ; HBPY-8 - Hexagonal bipyramid  $(D_{6h})$ ; CU-8 - Cube  $(O_h)$ ; SAPR-8 - Square antiprism  $(D_{4d})$ ; **TDD-8 - Triangular dodecahedron**  $(D_{2d})$ ; JGBF-8 - Johnson gyrobifastigium J26  $(D_{2d})$ ; JETBPY-8 - Johnson elongated triangular

bipyramid J14 ( $D_{3h}$ ); JBTPR-8 - Biaugmented trigonal prism J50 ( $C_{2\nu}$ ); **BTPR-8 - Biaugmented** trigonal prism ( $C_{2\nu}$ ); JSD-8 - Snub disphenoid J84 ( $D_{2d}$ ); TT-8 - Triakis tetrahedron ( $T_d$ ); ETBPY-8 - Elongated trigonal bipyramid ( $D_{3h}$ )

\* [M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, 'SHAPE: Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools', Version 2.1, 2013, Barcelona]





Triangular dodecahedron  $(D_{2d})$ 

Biaugmented trigonal prism  $(C_{2\nu})$ 

**Table S2.** The N-C and O-C bond lengths (Å) in five-membered  $DyN_2(H)CO$  heterocycles of the pentadentate ligands in complexes 1-4.

| Complex (ligand)                          | Bond    | Bond length in 3 types of 5-membered heterocycle of the ligand |                         |                        |  |
|-------------------------------------------|---------|----------------------------------------------------------------|-------------------------|------------------------|--|
|                                           |         | (a) N-N(H)-C(Py)= $O^0$                                        | (b) N-N= $C(PyH^+)-O^-$ | (c) $N-N=C(Py)-O^{-1}$ |  |
| $1 (H_2 dapin)^0$                         | N(1)-C  | 1.350(4)                                                       |                         |                        |  |
|                                           | O(1)=C  | 1.232(3)                                                       |                         |                        |  |
|                                           | N(5)=C  |                                                                | 1.313(4)                |                        |  |
|                                           | O(2)-C  |                                                                | 1.278(3)                |                        |  |
| 2, Cation I (Hdapin)                      | N(1)=C  |                                                                | 1.323(4)                |                        |  |
|                                           | O(1)-C  |                                                                | 1.265(4)                |                        |  |
|                                           | N(5)=C  |                                                                |                         | 1.321(4)               |  |
|                                           | O(2)-C  |                                                                |                         | 1.276(4)               |  |
| 2, Cation II (Hdapin)                     | N(8)=C  |                                                                | 1.320(4)                |                        |  |
|                                           | O(6)-C  |                                                                | 1.277(4)                |                        |  |
|                                           | N(12)=C |                                                                |                         | 1.317(4)               |  |
|                                           | O(7)-C  |                                                                |                         | 1.266(4)               |  |
| 3, Cation I (Hdapin)                      | N(1)=C  |                                                                | 1.323(8)                |                        |  |
|                                           | O(1)-C  |                                                                | 1.273(7)                |                        |  |
|                                           | N(5)=C  |                                                                |                         | 1.312(8)               |  |
|                                           | O(2)-C  |                                                                |                         | 1.267(7)               |  |
| 3, Cation II (Hdapin)                     | N(8)=C  |                                                                |                         | 1.310(9)               |  |
|                                           | O(5)-C  |                                                                |                         | 1.291(8)               |  |
|                                           | N(12)=C |                                                                | 1.315(8)                |                        |  |
|                                           | O(6)-C  |                                                                | 1.288(8)                |                        |  |
| <b>4</b> , Cation I (dapin) <sup>2–</sup> | N(1)=C  |                                                                |                         | 1.322(5)               |  |
|                                           | O(1)-C  |                                                                |                         | 1.279(5)               |  |
|                                           | N(5)=C  |                                                                |                         | 1.312(5)               |  |
|                                           | O(2)-C  |                                                                |                         | 1.293(5)               |  |
| 4, Cation II (Hdapin) <sup>-</sup>        | N(8)=C  |                                                                |                         | 1.320(6)               |  |
|                                           | O(5)-C  |                                                                |                         | 1.274(6)               |  |
|                                           | N(12)=C |                                                                | 1.326(6)                |                        |  |
|                                           | O(6)-C  |                                                                | 1.283(6)                |                        |  |



**Figure S5.** The chains of the cation complexes in the structure **1**. C-H...N hydrogen bonds (blue dashed lines) and C...C contacts < 3.6 A (black dotted lines) are shown.

| D          | Н                    | А          | Symmetry code for A | D-H, Å  | HA, Å              | DA, Å                  | D-HA, Å |
|------------|----------------------|------------|---------------------|---------|--------------------|------------------------|---------|
| N1         | U1N                  | 014        |                     | 0.82(2) | 2 50(2)            | 2 010(4)               | 150.0   |
| NT<br>N7   | ПIN<br>U7N           | 014        | X-1, y, Z           | 0.82(3) | 2.39(3)            | 3.019(4)               | 139.9   |
| IN /<br>N7 | П/N<br>Ц7N           |            | 1-x, 2-y, -Z        | 0.80(4) | 2.02(4)<br>2.10(4) | 2.087(3)               | 140.5   |
| $\Gamma$   | П/N<br>Ц1            | 09a<br>014 | 1-X, 2-Y, -Z        | 0.80(4) | 2.10(4)            | 2.092(0)<br>3.230(4)   | 107.0   |
| $C^{2}$    | 111<br>LI2           | $O_{14}$   | x - 1, y, z         | 0.95    | 2.30               | 3.239(4)<br>3.482(5)   | 170.4   |
| $C_3$      | 113<br>112           | 09         | -x, 1-y, -z         | 0.95    | 2.34               | 3.462(3)               | 170.7   |
| C3         | 115<br>Н7а           | 09a<br>07  | -x, 1-y, -z         | 0.93    | 2.21               | 3.090(9)<br>3.308(4)   | 134.1   |
| C7         | 117a<br>Ц7a          | 014        | x = 1, y, Z         | 0.98    | 2.52               | 3.300(4)<br>3.312(4)   | 137.1   |
| C10        | П/а<br>Ц10           | 014        | x - 1, y, Z         | 0.98    | 2.30               | 3.312(4)<br>2 201(4)   | 140.2   |
| C10        | ППО<br>Ц11           | 013        | 1 - x, 1 - y, 1 - Z | 0.93    | 2.40               | 3.391(4)<br>2.302(4)   | 140.6   |
| C11        | ПП<br>П12            |            | 1-X, 1-Y, 1-Z       | 0.93    | 2.00               | 3.392(4)               | 140.0   |
| C12        | П12<br>Ц15а          | Гоа        | x, y, z             | 0.93    | 2.30               | 3.30(3)                | 152.0   |
| C13        | H130                 | 00         | x, y+1, z           | 0.98    | 2.32               | 3.420(4)<br>3.001(4)   | 133.4   |
| $C_{20}$   | П20<br>Ц21           | 06         | x, y+1, z           | 0.93    | 2.57               | 3.091(4)               | 152.0   |
| $C_{21}$   | П21<br>Ц22           | 00         | x, y+1, z           | 0.93    | 2.00               | 3.334(4)<br>3.422(4)   | 100.1   |
| $C_{23}$   | п23<br>Ц22           |            | x-1, y, Z           | 0.93    | 2.03               | 3.422(4)<br>2.200(4)   | 130.4   |
| $C_{25}$   | 1125<br>Ц25          | $\Gamma_1$ | $x \pm 1, y, z$     | 0.95    | 2.39               | 3.309(4)<br>2.045(10)  | 132.9   |
| $C_{25}$   | П25<br>Ц25           | UTTa<br>E6 | x - 1, y - 1, Z     | 0.93    | 2.15               | 2.943(10)<br>2.221(6)  | 140.7   |
| $C_{25}$   | П25<br>Ц25           | ГU<br>N6   | X-1, y-1, Z         | 0.93    | 2.01               | 3.231(0)<br>2.204(4)   | 123.7   |
| C35        | H33<br>H29           | 0100       | x+1, y, Z           | 0.93    | 2.01               | 3.394(4)               | 137.7   |
| C30        | ПЗ0<br>Ц20           | O10a       | x, y, Z             | 0.93    | 2.23               | 3.040(9)               | 145.1   |
| C39        | П39<br>1141          | 02<br>E7   | X, Y, Z             | 0.93    | 2.34               | 3.370(3)               | 140.9   |
| C41        | П41<br>1141          | Г/<br>Б7а  | x-1, y, z           | 0.93    | 2.30               | 5.500(3)               | 1/2.0   |
| C41        | П41<br>1142          | г/а<br>07  | X-1, y, Z           | 0.93    | 2.33               | 5.402(17)              | 149.1   |
| C45        | П43<br>Ц47           | 07         | 1-X, 1-Y, 1-Z       | 0.95    | 2.30               | 5.505(4)               | 105.5   |
| C47        | П4/<br>1152          |            | x, y, z             | 0.93    | 2.50               | 3.437(3)               | 1/1.5   |
| C33        | ПЭЭ<br>1155          | г9а<br>014 | 1-X, 2-Y, 1-Z       | 0.93    | 2.51               | 5.51(2)                | 145.0   |
| C55<br>C57 | ПЭЭ<br>1157          | 014<br>N4  | x, y+1, Z           | 0.93    | 2.00               | 5.319(4)               | 104.2   |
| C57        | П <i>З /</i><br>1157 | IN4<br>N5  | x, y, z             | 0.93    | 2.00               | 5.497(4)               | 147.8   |
| C57        |                      | NJ<br>E4   | X, Y, Z             | 0.95    | 2.52               | 3.380(4)               | 149.9   |
| C01        |                      | F4<br>E4a  | 1-X, 2-Y, -Z        | 0.95    | 2.55               | 3.319(8)               | 138.2   |
| C61        |                      | F4a        | 1-X, 2-Y, -Z        | 0.95    | 2.56               | 3.195(17)              | 124.2   |
| C05        | H03                  | 02<br>N5   | x, y, Z             | 0.95    | 2.40               | 3.322(4)               | 151.7   |
| C73        | H/3                  | IND<br>NG  | X-1, Y, Z           | 0.95    | 2.49               | 5.442(6)<br>2.292(1.4) | 1/5.2   |
| C/3a       | н/за                 | N5         | x-1, y, z           | 0.95    | 2.46               | 5.382(14)              | 163.1   |

**Table S3.** Hydrogen bond geometry in complex 1.

| D          | Н    | А          | Symmetry      | D-H, Å | HA, Å | DA, Å     | D-HA, Å |
|------------|------|------------|---------------|--------|-------|-----------|---------|
| NC         | UCN  | 026        | code for A    | 0.99   | 1.04  | 2 (09(5)  | 164.4   |
| INO<br>N12 | HOIN | 030<br>N7  | 1-X, 1-Y, 1-Z | 0.88   | 1.84  | 2.098(5)  | 104.4   |
| NIS<br>C2  | HISN | N/         | X, Y, Z       | 0.88   | 1.89  | 2.703(4)  | 1/4.9   |
| $C_2$      |      | 020a       | 1-X, 1-Y, 1-Z | 0.95   | 2.60  | 3.433(10) | 140.0   |
| C2         | H2   | 033        | 1-X, 1-Y, 1-Z | 0.95   | 2.43  | 3.308(0)  | 152.9   |
| CII<br>C15 |      | 013        | X, Y-1, Z     | 0.95   | 2.48  | 3.187(3)  | 131.0   |
| C15<br>C20 | H15a | 019        | x, y, z       | 0.98   | 2.05  | 3.280(5)  | 122.0   |
| C20        | H20  | 015        | x, y, z       | 0.95   | 2.39  | 3.233(3)  | 125.1   |
| C21        | H21  | 021        | x, y, z       | 0.95   | 2.45  | 3.325(6)  | 152.5   |
| C24        | H24  | 011        | x, y, z       | 0.95   | 2.48  | 3.277(6)  | 141.1   |
| C30        | H30  | 019        | x, y, z       | 0.95   | 2.48  | 3.232(6)  | 136.4   |
| C31        | H31  | O26a       | x, y-1, z     | 0.95   | 2.54  | 3.444(17) | 159.3   |
| C32        | H32  | 024        | x, y-1, z     | 0.95   | 2.65  | 3.380(6)  | 133.7   |
| C38        | H38  | 013        | 1-x, 1-y, 1-z | 0.95   | 2.54  | 3.383(6)  | 148.2   |
| C39        | H39  | 01         | x, y, z       | 0.95   | 2.29  | 3.235(4)  | 174.6   |
| C43        | H43  | 012        | x, y-1, z     | 0.95   | 2.52  | 3.251(5)  | 133.9   |
| C47        | H47  | N5         | x, y, z       | 0.95   | 2.53  | 3.461(5)  | 165.3   |
| C57        | H57  | 05         | x, y, z       | 0.95   | 2.63  | 3.566(4)  | 170.0   |
| C63        | H63  | 02         | x, y, z       | 0.95   | 2.42  | 3.301(5)  | 154.8   |
| C68        | H68  | O24        | 1-x, 1-y, 1-z | 0.95   | 2.55  | 3.434(6)  | 155.2   |
| C68        | H68  | O23        | 1-x, 1-y, 1-z | 0.95   | 2.65  | 3.338(6)  | 129.3   |
| C91        | H91  | 016        | x, y+1, z     | 0.95   | 2.59  | 3.324(5)  | 134.1   |
| C104       | H104 | O20        | x+1, y+1, z   | 0.95   | 2.56  | 3.355(5)  | 142.0   |
| C105       | H105 | O22        | x+1, y+1, z   | 0.95   | 2.60  | 3.483(6)  | 154.2   |
| C107       | H107 | O26        | x+1, y, z     | 0.95   | 2.61  | 3.318(6)  | 131.4   |
| C112       | H112 | O17        | x, y, z       | 0.95   | 2.56  | 3.505(6)  | 175.3   |
| C112       | H112 | O18        | x, y, z       | 0.95   | 2.64  | 3.346(5)  | 131.7   |
| C118       | H118 | 016        | 2-x, 1-y, -z  | 0.95   | 2.63  | 3.462(6)  | 146.4   |
| C119       | H119 | <b>O</b> 7 | x, y, z       | 0.95   | 2.33  | 3.268(4)  | 170.2   |
| C122       | H122 | 016        | x, y+1, z     | 0.95   | 2.63  | 3.249(5)  | 123.3   |
| C123       | H123 | 015        | x, y+1, z     | 0.95   | 2.61  | 3.329(5)  | 132.5   |
| C127       | H127 | N8         | x, y, z       | 0.95   | 2.53  | 3.450(5)  | 162.2   |
| C129       | H129 | O33        | x, y, z       | 0.95   | 2.36  | 3.112(6)  | 135.5   |
| C137       | H137 | O10        | x, y, z       | 0.95   | 2.59  | 3.532(4)  | 170.0   |
| C145       | H145 | O6         | x, y, z       | 0.95   | 2.64  | 3.439(5)  | 142.5   |
| C146       | H146 | O17        | x, y, z       | 0.95   | 2.58  | 3.210(6)  | 123.9   |
| C154       | H154 | O20        | 1-x, 1-y, -z  | 0.95   | 2.35  | 3.259(6)  | 160.3   |
| O26a       | H26a | O31a       | x, y, z       | 0.84   | 2.51  | 3.07(2)   | 125.2   |
| C158       | H15j | O31a       | x, y, z       | 0.99   | 2.16  | 2.89(3)   | 129.3   |
| O27        | H27a | O21        | x, y, z       | 0.84   | 1.94  | 2.752(6)  | 162.0   |

**Table S4.** Hydrogen bond geometry in complex 2.



Figure S6. Projection of structure 2 along the a-axis. Hydrogen atoms are omitted for clarity. Layers of cations I and cations II alternate along c.

| Structure                  | HP-7   | HPY-7  | PBPY-7 | COC-7 | CTPR-7 | JPBPY-7 | JETPY-7 |
|----------------------------|--------|--------|--------|-------|--------|---------|---------|
| 3, cation I<br>3 cation II | 31.387 | 19.696 | 1.545  | 7.454 | 6.029  | 4.177   | 20.547  |
| 4, cation I                | 31.375 | 20.366 | 1.455  | 8.031 | 6.392  | 3.916   | 20.410  |
| <b>4</b> , cation II       | 32.037 | 20.474 | 1.615  | 7.846 | 5.871  | 4.324   | 18.411  |

HP-7 - Heptagon  $(D_{7h})$ ; HPY-7 - Hexagonal pyramid  $(C_{6\nu})$ ; **PBPY-7 - Pentagonal bipyramid**  $(D_{5h})$ ; COC-7 - Capped octahedron  $(C_{3\nu})$ ; CTPR-7 - Capped trigonal prism  $(C_{2\nu})$ ; JPBPY-7 - Johnson pentagonal bipyramid J13  $(D_{5h})$ ; JETPY-7 - Johnson elongated triangular pyramid J7  $(C_{3\nu})$ 

\* [M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, 'SHAPE: Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools', Version 2.1, 2013, Barcelona]

| D     | Н    | А    | Symmetry      | D-H, Å | HA, Å | DA, Å                | D-HA, Å |
|-------|------|------|---------------|--------|-------|----------------------|---------|
| N6    | H6   | N13  | 1-x 1-y -7    | 0.88   | 1.80  | 2 677(8)             | 174 5   |
| N14   | H14  | N7   | 2-x 1-y 1-z   | 0.88   | 1.80  | 2.677(0)<br>2.695(7) | 171.2   |
| $C^2$ | H2   | 010  | 1-x 1-y -7    | 0.95   | 2 42  | 3208(9)              | 139.8   |
| C2    | H2   | 011  | 1-x 1-y -z    | 0.95   | 2.57  | 3.200(9)<br>3.429(9) | 151.0   |
| C3    | H3   | 020  | X V Z         | 0.95   | 2.25  | 3.15(4)              | 158.6   |
| C3    | H3   | 018a | X. V. Z       | 0.95   | 2.47  | 3.19(2)              | 132.6   |
| C3    | H3   | 019a | X. V. Z       | 0.95   | 2.22  | 3.14(4)              | 163.7   |
| C10   | H10  | 011  | x-1, y-1, z   | 0.95   | 2.60  | 3.520(8)             | 163.5   |
| C12   | H12  | 013  | x-1, y-1, z   | 0.95   | 2.42  | 3.35(1)              | 168.6   |
| C15   | H15a | 013  | x-1, y-1, z   | 0.98   | 2.65  | 3.36 (1)             | 130.2   |
| C19   | H19  | 017  | X. V. Z       | 0.95   | 2.31  | 3.21 (1)             | 158.0   |
| C19   | H19  | O17a | X, V, Z       | 0.95   | 2.20  | 3.01(2)              | 143.1   |
| C20   | H20  | 012  | 2-x, 1-y, 1-z | 0.95   | 2.47  | 3.31 (1)             | 147.3   |
| C23   | H23a | O2   | X, V, Z       | 0.99   | 2.54  | 3.53(1)              | 171.7   |
| C31   | H31b | F12  | 1-x, -y, -z   | 0.99   | 2.55  | 3.33(2)              | 135.7   |
| C40   | H40  | O17a | x-1, y, z     | 1.00   | 2.27  | 3.23(2)              | 161.4   |
| C47   | H47a | O2   | X, Y, Z       | 0.99   | 2.54  | 3.512(9)             | 166.4   |
| C51   | H51a | O15a | x-1, y, z     | 0.99   | 2.40  | 3.27(2)              | 145.3   |
| C53   | H53a | 01   | x, y, z       | 0.99   | 2.64  | 3.62(2)              | 166.8   |
| C52a  | H52a | O16a | x-1, y, z     | 1.00   | 2.56  | 3.48(4)              | 153.7   |
| C62   | H62  | O20  | 1-x, 1-y, -z  | 0.95   | 2.34  | 3.19(5)              | 148.4   |
| C62   | H62  | O19a | 1-x, 1-y, -z  | 0.95   | 2.35  | 3.23(5)              | 153.0   |
| C63   | H63  | O10  | x, y, z       | 0.95   | 2.23  | 3.12(1)              | 155.7   |
| C67   | H67a | F10a | x-1, y, z     | 0.98   | 2.60  | 3.37(1)              | 135.0   |
| C70   | H70  | O18  | x-1, y, z     | 0.95   | 2.56  | 3.48(1)              | 163.8   |
| C70   | H70  | O19  | x-1, y, z     | 0.95   | 2.45  | 3.08(1)              | 123.7   |
| C70   | H70  | O20a | x-1, y, z     | 0.95   | 2.54  | 3.13(2)              | 120.5   |
| C71   | H71  | 016  | x, y, z       | 0.95   | 2.50  | 3.15(2)              | 125.7   |
| C72   | H72  | 015  | x-1, y, z     | 0.95   | 2.37  | 3.31(2)              | 174.2   |
| C72   | H72  | O15a | x-1, y, z     | 0.95   | 2.48  | 3.41(2)              | 167.5   |
| C79   | H79  | O12  | x, y, z       | 0.95   | 2.20  | 3.13(1)              | 163.2   |
| C80   | H80  | 017  | 2-x, 1-y, 1-z | 0.95   | 2.30  | 3.21(2)              | 159.3   |
| C80   | H80  | O17a | 2-x, 1-y, 1-z | 0.95   | 2.38  | 3.21(2)              | 145.7   |
| C83   | H83a | 06   | x, y, z       | 0.99   | 2.59  | 3.56(1)              | 166.1   |
| C94   | H94  | 019  | x, y, z       | 1.00   | 2.25  | 3.22(2)              | 162.9   |
| C97   | H97b | F7a  | x+1, y, z     | 0.99   | 2.23  | 3.13(2)              | 150.5   |
| C100  | H100 | 012  | x, y, z       | 1.00   | 2.55  | 3.55(1)              | 176.2   |
| C107  | H10k | 06   | x, y, z       | 0.99   | 2.61  | 3.58(1)              | 168.9   |
| C113  | H11e | 05   | x, y, z       | 0.99   | 2.48  | 3.44(2)              | 161.4   |

**Table S6.** Hydrogen bond geometry in complex **3**.



**Figure S7.** Projection of structure **3** along the *b*-axis. Hydrogen atoms are omitted for clarity. Cationic and anionic layers alternate along *a*.



**Figure S8.** Projection of structure **4** along the *c*-axis. Hydrogen atoms are omitted for clarity. An open channel along *c* is visible in the center of the drawn lattice.

| D    | Н    | А   | Symmetry code for A | D-H, Å | HA, Å | DA, Å    | D-HA, Å |
|------|------|-----|---------------------|--------|-------|----------|---------|
| N14  | H14N | N6  | X. V. Z             | 0.88   | 1.88  | 2,738(5) | 164.3   |
| C2   | H2   | 013 | 1-x, 1-v, 1-z       | 0.95   | 2.52  | 3.175(6) | 126.0   |
| C4   | H4   | 015 | 1-x, 1-y, 1-z       | 0.95   | 2.53  | 3.469(6) | 170.5   |
| C10  | H10b | 013 | 1-x, 1-y, 1-z       | 0.98   | 2.34  | 3.258(6) | 155.5   |
| C13  | H13  | N13 | 0.5-x, y+0.5, 0.5-z | 0.95   | 2.67  | 3.549(5) | 153.9   |
| C14  | H14  | 011 | X, V, Z             | 0.95   | 2.36  | 3.313(5) | 176.5   |
| C15  | H15  | 012 | X, Y, Z             | 0.95   | 2.35  | 3.287(5) | 167.0   |
| C19  | H19  | 09  | 0.5-x, y+0.5, 0.5-z | 0.95   | 2.52  | 3.379(5) | 150.5   |
| C43  | H43  | O14 | x, 1-y, z-0.5       | 1.00   | 2.49  | 3.327(5) | 141.3   |
| C56  | H56a | O14 | x, 1-y, z-0.5       | 0.99   | 2.56  | 3.538(6) | 169.0   |
| C62  | H62a | 01  | X, Y, Z             | 0.99   | 2.64  | 3.610(5) | 166.3   |
| C66  | H66b | F3  | x, 1-y, z+0.5       | 0.99   | 2.60  | 3.490(5) | 149.7   |
| C23  | H23  | 016 | X, Y, Z             | 0.95   | 2.43  | 3.374(5) | 172.9   |
| C25  | H25  | O17 | 1-x, -y, 1-z        | 0.95   | 2.42  | 3.359(5) | 160.1   |
| C31  | H31b | 016 | x, y, z             | 0.98   | 2.62  | 3.346(6) | 130.7   |
| C31  | H31c | F7a | x, y, z             | 0.98   | 2.62  | 3.49(2)  | 147.8   |
| C34  | H34  | N7  | 0.5-x, y-0.5, 0.5-z | 0.95   | 2.52  | 3.389(5) | 152.2   |
| C35  | H35  | 09  | x, y, z             | 0.95   | 2.17  | 3.099(5) | 165.3   |
| C36  | H36  | O12 | X, Y, Z             | 0.95   | 2.43  | 3.200(5) | 138.1   |
| C36  | H36  | O14 | x, y, z             | 0.95   | 2.51  | 3.168(5) | 126.2   |
| C37  | H37  | O14 | x, y, z             | 0.95   | 2.64  | 3.227(5) | 120.2   |
| C39  | H39  | F1  | 0.5-x, y-0.5, 0.5-z | 0.95   | 2.61  | 3.351(5) | 135.6   |
| C40  | H40  | 011 | 0.5-x, y-0.5, 0.5-z | 0.95   | 2.30  | 3.239(5) | 170.0   |
| C80  | H80b | 05  | X, Y, Z             | 0.99   | 2.62  | 3.566(4) | 160.8   |
| C91  | H91  | 016 | 1-x, y, 0.5-z       | 1.00   | 2.61  | 3.596(5) | 168.0   |
| C96  | H96a | N11 | X, Y, Z             | 0.99   | 2.64  | 3.455(5) | 140.0   |
| C98  | H98a | N9  | x, y, z             | 0.99   | 2.67  | 3.593(5) | 155.2   |
| C114 | H111 | F1  | 0.5-x, 0.5-y, 1-z   | 0.99   | 2.47  | 3.274(5) | 138.0   |

 Table S7. Hydrogen bond geometry in complex 4.



**Figure S9**. The main magnetic axis of ground KD of **3** orientation (magenta) obtained within the *ab initio* SA-CASSCF/RASSI-SO/SINGLE\_ANISO calculation. Color code: green = Dy, magenta = P, red = O, blue = N, gray = C, white = H.

| Complex |        | 1     |       |        |        | 3      |       |        |
|---------|--------|-------|-------|--------|--------|--------|-------|--------|
| KD      | Energy | $g_x$ | $g_y$ | $g_z$  | Energy | $g_x$  | $g_y$ | $g_z$  |
| 1       | 0.0    | 0.305 | 0.822 | 19.144 | 0.0    | 0.024  | 0.042 | 19.907 |
| 2       | 105.4  | 2.447 | 4.127 | 12.487 | 307.2  | 11.776 | 6.981 | 1.569  |
| 3       | 134.3  | 2.210 | 3.545 | 15.006 | 351.3  | 10.020 | 7.390 | 0.912  |
| 4       | 177.9  | 0.040 | 3.432 | 12.869 | 424.1  | 11.046 | 7.218 | 2.629  |
| 5       | 211.8  | 0.988 | 2.694 | 10.088 | 486.2  | 9.950  | 7.775 | 1.440  |
| 6       | 327.7  | 0.094 | 4.322 | 11.657 | 556.9  | 8.027  | 6.505 | 2.691  |
| 7       | 372.4  | 0.538 | 3.026 | 14.519 | 625.2  | 2.067  | 3.995 | 12.309 |
| 8       | 395.9  | 0.332 | 1.339 | 17.388 | 804.4  | 0.122  | 0.229 | 18.532 |

**Table S8.** The computed energy levels  $(cm^{-1})$  with the associated g-tensors of the eight lowest KDs for 1 and 3.

**Table S9.** SINGLE\_ANISO computed wave function decomposition analysis for lowest KDs of Dy(III) ion in **1** and **3**.

|    | wave function decomposition analysis (main (> 10%) contributio ns) |                                             |  |  |  |  |  |
|----|--------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| KD | 1                                                                  | 3                                           |  |  |  |  |  |
| 1  | 0.918  ±15/2>                                                      | 0.996  ±15/2>                               |  |  |  |  |  |
| 2  | 0.265  ±13/2> + 0.281  ±1/2>                                       | 0.430  ±13/2> + 0.387  ±1/2> + 0.124  ±3/2> |  |  |  |  |  |
|    | + 0.109  ±5/2> + 0.101  ±3/2>                                      |                                             |  |  |  |  |  |
| 3  | 0.322  ±3/2> + 0.222  ±5/2> + 0.127  ±1/2>                         | 0.462  ±13/2> + 0.185  ±5/2> + 0.140  ±3/2> |  |  |  |  |  |
|    | + 0.105  ±9/2> + 0.103  ±7/2>                                      | + 0.117  ±1/2>                              |  |  |  |  |  |
| 4  | 0.312  ±1/2> + 0.173  ±13/2> + 0.157  ±5/2>                        | 0.435  ±3/2> + 0.185  ±1/2> + 0.167  ±11/2> |  |  |  |  |  |
|    | + 0.129  ±7/2> + 0.109  ±3/2>                                      | + 0.113 \pm 9/2>                            |  |  |  |  |  |
| 5  | 0.289  ±13/2> + 0.214  ±3/2> + 0.141  ±11/2>                       | 0.358  ±5/2> + 0.215  ±7/2> + 0.133  ±1/2>  |  |  |  |  |  |
|    | + 0.109  ±5/2> + 0.106  ±7/2>                                      |                                             |  |  |  |  |  |
| 6  | 0.500  ±11/2> + 0.201  ±9/2> + 0.122  ±13/2>                       | 0.564  ±11/2> + 0.182  ±5/2> + 0.143  ±7/2> |  |  |  |  |  |
| 7  | 0.373  ±9/2> + 0.193  ±7/2> + 0.141  ±11/2>                        | 0.556  ±9/2> + 0.284  ±7/2> + 0.123  ±11/2> |  |  |  |  |  |
|    | + 0.113  ±5/2>                                                     |                                             |  |  |  |  |  |
| 8  | 0.328  ±9/2> + 0.268  ±5/2> + 0.152  ±9/2>                         | 0.238  ±7/2> + 0.200  ±9/2> + 0.205  ±5/2>  |  |  |  |  |  |
|    | + 0.133  ±3/2>                                                     | + 0.159  ±3/2> + 0.120  ±1/2>               |  |  |  |  |  |





**Figure S10.** Computed possible magnetization relaxation pathways for **1** (a) and **3** (b). The red arrows show the QTM and TA-QTM via ground and higher excited KD, respectively. The blue arrow shows the Orbach process for the relaxation. The green arrows show the mechanism of magnetic relaxation.