Crystal growth and magnetic properties of hexagonal $Ba_4CuNb_3O_{12}$ single crystal

Yuhu Huang¹, Wen Xie^{1,2}, Fei Zheng³, Chao Zhang^{4*}, and Han-Shu Xu^{2,1*}

¹Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

² Department of Applied Physics, Anhui Medical University, Hefei 230032, China

³ School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

⁴ Instrumentation and Service Center for Physical Science, Westlake University, Hangzhou 310024, China

zhangchao68@westlake.edu.cn xhs@ustc.edu.cn

Fig. S1 The ratio of metal elements in $Ba_4CuNb_3O_{12}$ single crystals.

Fig. S2 XPS spectral of $Ba_4CuNb_3O_{12}$. (a) Ba 3d spectral. (b) Nb 3d spectral. (c) Cu 2p spectral. (d) O 1s spectral.

Fig. S3 Schematic diagram of superexchange interaction of different Cu ions.

Fig. S4 The real part of AC susceptibility χ' of Ba₄CuNb₃O₁₂ single crystal at different frequencies.