## The growth of Cs<sub>3</sub>Cu<sub>2</sub>Br<sub>5</sub> and CsCu<sub>2</sub>Br<sub>3</sub> single crystals by

## cooling crystallization for scintillator application

Benlan Zeng<sup>a,b</sup>, Yongning Liu<sup>b</sup>, Sirui Bao<sup>a</sup>, Chencai Wang<sup>b</sup>, Run Xu<sup>c\*</sup>, Jinkun Liu<sup>b</sup>, Yan Zhu<sup>a,b\*</sup>

<sup>a</sup> Shanghai Technical Institute of Electronics & Information, Shanghai 201411, China
 <sup>b</sup> Faculty of Materials Science and Technology, Kunming University of Science and Technology, Kunming 650093, China

<sup>c</sup> School of Materials Science and Engineering, Shanghai University, Shanghai 200444,

China



## **Supporting Information**

Fig. S1 Tyndall effect in solution



Fig. S2 XPS analysis of (a) Cs 3d, (b) Cu 2p, and (c) Br 3d of  $Cs_3Cu_2Br_5$  crystal powder.



Fig. S3 TG and DTG curves of Cs<sub>3</sub>Cu<sub>2</sub>Br<sub>5.</sub>

|                                                 | Preparation<br>method | Crystal<br>picture | Excitation<br>(nm) | Emission<br>(FWHM)<br>(nm) | TRPL<br>(us) | Light yield<br>(photon·MeV <sup>-1</sup> ) | Energy<br>resolution | Afterglow            | Reference |
|-------------------------------------------------|-----------------------|--------------------|--------------------|----------------------------|--------------|--------------------------------------------|----------------------|----------------------|-----------|
| Cs <sub>3</sub> Cu <sub>2</sub> Br <sub>5</sub> | AVC                   |                    | 298                | 458(80)                    | 15.77        | /                                          | /                    | /                    | 1         |
|                                                 | EC                    | C.                 | 301                | 464(78)                    | 20.03        | /                                          | /                    | /                    | 2         |
|                                                 | VB                    |                    | 311                | 453(69)                    | 13.6         | 4000                                       | /                    | Comparable to<br>BGO | 3         |
|                                                 | LTC                   |                    | 310                | 456(83)                    | 15.6         | 6384                                       | 17.50%               | 6%@10ms              | Our work  |
| CsCu <sub>2</sub> Br <sub>3</sub>               | LTC                   |                    | 266                | 580(68)                    | /            | 5800                                       | /                    | 0.07 %@3ms           | Our work  |

Table S1 Current research on  $Cs_3Cu_2Br_5$  single crystals

Cooling crystallization method: LTC; Evaporation crystallization method: EC; Bridgman method: VB; Antisolvent method: AVC

|                                                 | Sample state              | Excitation<br>(nm) | Emission<br>(FWHM)<br>(nm) | TRPL<br>(us) | E <sub>b</sub><br>(meV) | PLQY(%) | Reference |
|-------------------------------------------------|---------------------------|--------------------|----------------------------|--------------|-------------------------|---------|-----------|
|                                                 |                           | 300                | 460(78)                    | 16.88        | /                       | 27.38   | 4         |
|                                                 |                           | 298                | 460(83)                    | /            | 630                     | 23      | 5         |
|                                                 | powder                    | 298                | 455(75)                    | /            | 400                     | 50.1    | 6         |
|                                                 | -                         | 290                | 461(82)                    | 29           | 720                     | 17.3    | 7         |
| Cs <sub>3</sub> Cu <sub>2</sub> Br <sub>5</sub> |                           | 290                | 451(93)                    | /            | /                       | /       | 8         |
|                                                 | -                         | 290                | 458(79)                    | 21.69        | /                       | 11.6    | 9         |
|                                                 | nanocrystals              | 268                | 459(85)                    | 18.4         | /                       | 6.3     | 10        |
|                                                 | -                         | 290                | 451(93)                    | /            | /                       | /       | 11        |
|                                                 | film                      | 270                | 463                        | /            | /                       | /       | 12        |
| CsCu <sub>2</sub> Br <sub>3</sub>               | polycrystalline<br>ingots | 325                | 533(106)                   | 0.018        | 155                     | 18.3    | 13        |

Table S2 the reported research work on Cs<sub>3</sub>Cu<sub>2</sub>Br<sub>5</sub> and CsCu<sub>2</sub>Br<sub>3</sub> (non-single crystal)

## References

- 1 X. Zheng, J. Huang, Y. Liu, T. Wang, S. Han, Z. Wang, B. Teng and S. Ji, *Adv. Photonics Res.*, 2022, **3**(4), 2100289.
- 2 D. Liang, L. Tan, S. Lu, Z. Sun, H. Wang, W. Cai and Z. Zang, ACS Appl. Mater. Inter., 2023, 15, 24622-24628.
- 3 Q. Wang, J. Kang, S. Cheng, G.Ren, X. Zhu and Y. Wu, J. Synth. Cryst., 2021, 50, 1919-1924.
- 4 Y. Zhou, Z. Wang, G. Pan, M. Xu, C. Wang, Y. Chen, X. Yang, Z. Xu, J. Zhao, Q. Li and H Feng, *Cryst. Growth Des.*, 2023, **23**, 8024-8033.
- 5 X. Huang, S. Wang, B. Devakumar and N. Ma, Mater. Today Chem., 2022, 23, 100678.
- 6 R. Roccanova, A. Yangui, H. Nhalil, H. Shi, M. Du and B. Saparov, ACS Appl. Electron. Mater., 2019, 1(3), 269-274.
- 7 L. Lian, M. Zheng, P. Zhang, Z. Zheng, K. Du, W. Lei, J. Gao, G. Niu, D. Zhang, T. Zhai, S. Jin, J. Tang,
  X. Zhang and J. Zhang, *Chem. Mater.*, 2020, **32**(8), 3462-3468.
- 8 T. Le, M. Kim, H. Lee, J. Lee, C. Kim, W. Nie and H. Yoon, Chem. Eng. J., 2023, 467, 143523.
- 9 Y. Zhou, S. Wu, G. Huang, J. Zeng, B. Meteku, X. Tan, H. Lu, F. Li, Z. Cai, X. Wang and M. Zhang, J. Alloys Compd., 2022, 918, 165565.
- 10 M. Ng, P. Geng, S. Shivarudraiah, L. Guo and J. Halpert, Adv. Opt. Mater., 2022, 10(21), 2201031.
- 11 T. Le, S. Lee, H. Jo, M. Kim, J. Lee, M. Chang and H. Yoon, ACS Appl. Nano Mater., 2021, 4(8), 7621-7627.
- 12 S. He, L. Zhang, D. Tian, Z. Zhou, A. Guo, B. Xia, Y. Zhu and F. Zhao, J. Alloys Compd., 2023, 937, 168538.
- 13 R. Roccanova, A. Yangui, H. Nhalil, H. Shi, M. Du and B. Saparov, ACS Appl. Electron. Mater., 2019, 1(3), 269-274.