Supporting Information

Sub-micrometer-thick hydrophobic zeolite corrosionresistant coatings synthesized by solvothermal secondary growth

Ruilan Xu,^{a,b} Yongxuan Wang,^{a,b} Junhui Cai,^a Rui Wang,^a Ye Liu,^a Jingjing Kou,^a Rongrong Zhang,^c Xintu Lin,^a and Yong Peng^{*a,b}

- [a] College of Science, Nanchang Institute of Technology, Nanchang 330099, P. R. China
- [b] College of Civil and Architecture Engineering, Nanchang Institute of Technology, Nanchang 330099, P. R. China
- [c] Jiangsu Quanzheng Inspection and Testing Co., Ltd., No. 8 Baiyun Road, Nantong 226000, P. R. China
- * Corresponding author. E-mail: pengyong@nit.edu.cn

1. Experimental Section

1.1 Materials

Tetrapropylammonium hydroxide (TPAOH, 25%), tetraethyl silicate (TEOS, 98%), ethylene glycol (EG, 99%), diethylene glycol (DEG, 99%), triethylene glycol (TEG, 99%) and tetraethylene glycol (tEG, 99%) were purchased from Aladdin. Stainless-steel plates (SSP, 20 mm × 20 mm) were immerged in 30 % H_2O_2 solution and heated at 90 °C for 3 h, then washed with copious DI water and dried at 60 °C.

1.2 Preparation methods

The synthesis solution with the molar composition of 1TEOS : 0.32TPAOH : $165H_2O$ was prepared by introducing 9.2 g TEOS into aqueous solution containing 11.26 g TPAOH and 120 g H₂O. After being aged under stirring for 4 h, the mixture was poured into a Teflon lined stainless-steel autoclave and crystallized at 175 °C for 2 h. Afterward, the solid products were centrifuged, washed with distilled water and dried at 60 °C in an oven overnight. The average size (along *c*-axis) of the MFI seed crystals is about 1 µm, as shown in Figure S1a.

MFI seed layer on SSP support was fabricated by manual assembly technique. The seeded support was vertically placed in a Teflon-lined autoclave for secondary growth. The molar composition of the synthesis solution was TEOS : TPAOH : H_2O : diols = 1 : 0.2 : 100 : x, where x = 0 - 100. After stirring for 4 hours, the solution was transferred to the autoclave and heated in an oven at 175 °C for 4 hours. After synthesis, the film was washed with deionized water and dried at 60 °C. If necessary, the obtained film was calcined at 450 °C for 12 h with the heating and cooling rate of 1 °C/min to remove structure directing agent. The MFI zeolite film prepared by adding EG with molar amount of 20 was denoted as EG-20. Other samples synthesized using diols were named by analogy.

1.3 Sample characterization

Scanning electron microscope (ZEISS Sigma 300, Hitachi TM 3030) was used to observe the surface and the cross-sectional morphology of the films. X-ray diffraction (XRD) patterns were collected on Bruker D8 Advance diffractometer with Cu Kα radiation. The ICP-OES analysis for the synthesis solution was carried out on Agilent 5110. Equilibrium water contact angle test was conducted on Chengde Dingsheng JY-82C video tester. FT-IR and XPS characterization of MFI zeolite crystals was performed on Thermo Fisher Nicolet iS10 and Thermo Scientific K-Alpha, respectively. The element content analysis was carried out on Elementar UNICUBE. The corrosion resistance of MFI zeolite films and bare SSP was characterized on a CHI660E

electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd.). The electrochemical polarization and electrochemical impedance spectroscopy (EIS) measurements were conducted in a three-electrode system. The testing solution used in the work is a 3.5 wt% sodium chloride solution, simulating the marine environment.

2. Supplementary Figures and Tables

Figure S1. SEM images and XRD patterns of (a) *b*-axis-oriented MFI zeolite seed layer and (b) film EG-0 covered by twin crystals. (*) Peaks from SSP. (A zoom-in figure of the diffraction peaks is inserted.)

Figure S2. XRD patterns of MFI zeolite films synthesized by solvothermal secondary growth using different diols. (*) Peaks from SSP.

Figure S4. SEM images of MFI zeolite films synthesized at 175 °C for 2 h (a), 3 h (b), 5 h (c), and 6 h (d) with synthesis solution composition of 1TEOS : 0.2TPAOH : 100H₂O: 80EG. SEM images of MFI zeolite crystals at the edge of the films synthesized for 5 h (e) and 6 h (f).

Figure S5. N_2 adsorption/desorption isotherms of the zeolite EG-80-C. (a) before and (b) after calcination.

Figure S6. C1s XPS spectra of the zeolite EG-80-C. (a) before and (b) after calcination.

Figure S7. Bode plots from EIS tests on the bare SSP and the zeolite films coated SSPs.

Diols	Molar amount	Growth rate ($\mu m h^{-1}$)				
EG	20	1.17				
	40	0.87				
	80	0.53				
	80 ^b	0.54				
	80°	0.53				
	100	0.40				
DEG	20	1.10				
	40	0.70				
	60	0.50				
	80	0.27				
	20	1.07				
TEG	40	0.63				
	60	0.44				
	80	0.23				
tEG	20	1.00				
	40	0.50				
	50	0.20				
	60	0.00				
^a The growth r	ate was calculated	according to the				
formula of (crystal size - seed size)/(synthesis time -						
1). The seed size is 1 μ m. The samples were						
synthesized at least twice to reduce the uncertainty.						
The samples were synthesized at 175 °C for 4 h unless						
otherwise specified.						
^b Synthesis time: 5 h.						
^c Synthesis time: 6 h.						

Table S1 The length growth rate of MFI seed crystals on SSP by using different molar amount of diols.^a

Table S2 Textural	properties	of EG-80-C 2	zeolite before	and after	calcination.
-------------------	------------	--------------	----------------	-----------	--------------

EG-80-C	${ m S_{micro}}^{ m a}$ [m ² g ⁻¹]	S_{BET}^{b} [m ² g ⁻¹]	V_{micro}^{a} [cm ³ g ⁻¹]	V_{meso}^{c} [cm ³ g ⁻¹]	V_{pore}^{d} [cm ³ g ⁻¹]		
Before calcination	0.587	3.76	0.0002	0.007	0.0072		
After calcination	107.3	368.4	0.063	0.134	0.197		
^a t-Plot method. ^b BET method. ^c V _{meso} = V _{total} - V _{micro} . ^d Volume adsorbed at $p/p_0 = 0.995$.							