Supporting Information

Rapid and efficient Sr(II) capture by lanthanide-clusters based metal-organic frameworks containing alkali metal ions

Ying-Ying Zhao,^{a,b,c} Tian-Yu Pan,^{a,b,c} Jun-Hao Tang,^a Wei-Yang Wen,^{a,b} Zhi-Hua Chen,^a Shuang-Jiang Li,^{a,b,c} Chang Wei,^a Hai-Yan Sun,^a Qian-Qian Hu,^{a,c*} Mei-Ling Feng^{a,c*,} and Xiao-Ying Huang^{a,c}

a. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy

of Sciences, Fuzhou, Fujian 350002, China.

Email: <u>huqianqian@fjirsm.ac.cn; fml@fjirsm.ac.cn</u>

b. College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.

c. Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P.R. China.

Contents

- 1. Equations for ion exchange analysis
- 2. Characterization techniques
- 3. Ion exchange experiments
- 4. Crystal structures
- 5. Sr²⁺ Adsorption Kinetics
- 6. Adsorption isotherms
- 7. The effect of pH and irradiation on Sr²⁺ adsorption
- 8. Adsorption and desorption
- 9. Competitive adsorption
- **10.Adsorption**

Mechanism

1. Equations for ion exchange analysis

The equations for ion exchange analysis are summarized as follows:

(1) Removal rate (R %)

$$R = \frac{(C_0 - C_e)}{C_0} \times 100\%$$
 (Eq. S1)

Here, C_0 (mg/L) and C_e (mg/L) are the initial concentration and equilibrium concentration of metal ions, respectively, which can be measured by ICP.

(2) Distribution coefficient (K_d)

$$K_d = \frac{V(C_0 - C_e)}{m \quad C_e}$$
(Eq. S2)

Where C_0 (mg/L) and C_e (mg/L) are the initial and equilibrium concentrations of the target ion, respectively; m (g) and V (mL) are the mass of the adsorbent material and the volume of the solution used in the ion exchange experiment, respectively.

(3) Kinetics model

$$ln \frac{(q_e - q)}{q_e} = -k_1 t$$
(Eq. S3a)
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(Eq. S3b)

Here, q_e and q_t are the amounts of Sr²⁺ ions adsorbed (mg/g) at equilibrium and at time *t*, respectively; *t* is the adsorption time (min); k_1 is the pseudo-first-order rate constant of adsorption (min⁻¹) and k_2 is the pseudo-second-order rate constant of adsorption (g/mg/min).

(4) The adsorption capacity q

$$q = \frac{(C_0 - C_e)V}{m}$$
 (Eq. S4)

Here, V(mL) is the volume of the solution used in the ion exchange experiment, and m(g) is the mass of the adsorbent material.

(5) Adsorption isotherm models

$$q = q_m \frac{bC_e}{1 + bC_e} \quad \text{(Eq. S5a)}$$

$$q = q_m \frac{(bC_e)^{1/n}}{1 + (bC_e)^{1/n}}$$
 (Eq. S5b)
$$q = kc_e^{1/n}$$
 (Eq. S5c)

Where q (mg/g) is the number of ions adsorbed per unit weight of the adsorbent at the equilibrium concentration $C_{\text{e}} \text{ (mg/L)} q_{\text{m}}$ is the maximum adsorption capacity, and b (L/mg) is the Langmuir constant related to the free energy of adsorption, n is a constant that characterizes the heterogeneity of the system.

(6) The desorption rate can be considered as the percentage of the mass of Sr^{2+} ions desorbed off to the mass of Sr^{2+} ions adsorbed on, but considering the loss of solid mass, it can be calculated by the following equation:

$$E = \frac{C_{e}^{de} V_{de}}{m_2 (m_{Sr}^{ad} / m_{ad})} \times 100\%$$
 (Eq. S6)

where C_e^{de} (mg/L) is the Sr²⁺ concentration in the solution after desorption, V_{de} (L) is the volume of solution used during desorption. M_{Sr}^{ad} (mg) is the mass of adsorbed Sr²⁺ ion during the adsorption process, and m_{ad} (mg) is the mass of the solid sample after adsorption of Sr²⁺, m_2 (mg) is the mass of the solid sample used during desorption.

(7) Separation factor (SF)

$$SF = \frac{K_d^A}{K_d^B}$$
(Eq. S7)

In this equation, K_d^A and K_d^B represent the distribution coefficients of A and B ions, respectively.

2. Characterization techniques

Powder X-ray diffraction (PXRD) patterns were recorded in the angular range of $2\theta = 5 - 65^{\circ}$ on a Rigaku Miniflex II diffractometer with CuK α radiation ($\lambda = 1.54178$ Å). Elemental analyses (EA) of N, C, and H were conducted with the German Elementary Vario EL III instrument. Thermogravimetric analysis (TGA) was performed on a Netzsch STA449C instrument, from room temperature to 800 °C, under N₂ atmosphere, at a heating rate of 10 °C/min. Energy spectrum (EDS), element distribution map, and scanning electron microscope (SEM) images were obtained on the JEOL JSM-6700F scanning electron microscope. X-ray photoelectron spectroscopy (XPS) analysis was performed on the ThermoFisher ESCALAB 250Xi XPS spectrometer; all peaks were corrected to the binding energy of the C1s peak of adventitious carbon at 284.8 eV. Inductively coupled plasma mass spectrometry (ICP-MS) was performed on XSeries II, and inductively coupled plasma optical emission spectroscopy (ICP-OES) was performed on Thermo 7400. pH values of all solutions were tested by Shanghai Leach E-201F. In the γ irradiation experiments, samples were irradiated at an irradiation dose rate of 1.2 kGy/h for 89 h and 175 h (total irradiation dose of 100 kGy and 200 kGy). The γ -ray irradiation was provided by the ⁶⁰Co irradiation source in Suzhou CNNC Huadong Radiation Co., Ltd, China. The pH values of all solutions were measured by Shanghai Leich E-201 F.

3. Ion exchange experiments

(1) Adsorption Kinetics. 50 mg sample of K-Dy or Na-Dy powder was weighed and added to 50 mL of a Sr^{2+} ion solution with an initial concentration of approximately 5 mg/L. The mixture was subjected to magnetic stirring at room temperature. At specific time intervals (1, 2, 3, 5, 10, 20, 30, 60, 90, 120, 180, 300, 360, 480, and 600 min), approximately 2 mL of the solution was withdrawn and filtered. The filtered samples were then diluted for subsequent determination of the Sr^{2+} ion concentration.

(2) Adsorption Isotherms. The K-Dy or Na-Dy samples were ground into a uniform powder. A 10 mg powder sample was mixed with 10 mL of Sr²⁺ ion solutions of varying concentrations (approximately 5 - 800 mg/L). The mixtures were stirred at room temperature for 8 hours. The supernatant was collected and filtered using a syringe filter. The filtrate was then diluted with a 2% HNO₃ aqueous solution to an appropriate concentration for the subsequent determination of the Sr²⁺ ion concentration.

(3) The effect of pH on Sr^{2+} adsorption. The pH of the Sr^{2+} ion solution was adjusted to a range of 2.97 to 11.84 using HNO₃ or NaOH solutions, with the final concentration of Sr^{2+} ions maintained at approximately 5 mg/L. A 10 mg sample of **K-Dy** powder was sequentially added to 10 mL of the Sr^{2+} ion solution at each pH value. The mixtures were subjected to magnetic stirring at room temperature for 8 hours. After the reaction, approximately 2 mL of the supernatant was collected. The remaining suspension was separated by centrifugation to isolate the powder samples.

(4) The effect of irradiation on Sr^{2+} adsorption. The K-Dy and Na-Dy samples were irradiated with γ -rays at 1.2 kGy/h to expose them to γ -irradiation at a dose of 100 or 200 kGy. Subsequently, 10 mg of the original K-Dy and Na-Dy samples and their irradiated samples were weighed and powdered, and then added into 10 mL of 5 mg/L Sr^{2+} ion solution respectively, and stirred for 8 h at room temperature.

(5) Elution and reuse. 200 mg of K-Dy was added to 200 mL of 5 mg/L aqueous Sr²⁺ ion solution

and stirred at room temperature for 4 h. The remaining solid sample was washed with deionised water and anhydrous ethanol, dried naturally, and weighed. The product after Sr^{2+} ion exchange was then eluted with 0.5 M KCl solution with stirring for 12 h. The solid sample was washed and dried naturally to obtain the eluted sample. The sample was cycled three times, and the concentration of Sr^{2+} ions in the solution was determined after each cycle, and the cycled sample was subjected to PXRD test.

(6) **Competitive adsorption.** Initially, mixed solutions containing Sr^{2+} ions along with other metal ions (Na⁺, Cs⁺, Ca²⁺, and Mg²⁺) were prepared, including both single-component and multi-component mixtures. Additionally, low-concentration Sr^{2+} ions (approximately 5 mg/L) were artificially added to tap water (from Fuzhou, China) and river water (from the Wulong River in Fuzhou) to simulate real water samples contaminated with radioactive strontium.

4. Crystal structure

crystal data of K-Tb.

Figure S1. PXRD patterns of K-Dy and Na-Dy samples compared with the simulated one from single

Figure S2. The coordination modes of Dy³⁺ ions (a, b) and IDC³⁻ (c) in K-Dy.

Table S1. Elemental analysis results for K-Dy, K-Dy-Sr, Na-Dy, and Na-Dy-Sr.

K-Dy K-Dy-Sr Na-Dy Na-

	theoretical	actual	theoretical	actual	theoretical	actual	theoretical	actual
С	14.41	15.74	14.27	15.17	14.93	15.10	14.27	13.38
Н	1.89	2.22	1.87	2.53	1.95	2.43	1.87	2.24
Ν	4.80	5.12	4.75	4.78	4.97	4.84	4.75	3.97

5. Sr²⁺ Adsorption Kinetics

Table S2. The Sr²⁺ adsorption kinetics results of **K-Dy** (V/m = 1000 mL/g; at room temperature (RT)).

Time (minute)	$C_{\rm t} ({\rm mg/L})$	<i>q</i> (mg/g)	R ^{Sr} (%)	$K_{\rm d}^{\rm Sr}$ (mL/g)
0	5.00	0	0	0
1	0.015	4.985	99.70	3.32×10^5
2	0.013	4.987	99.74	3.84×10^5
3	0.0055	4.994	99.88	$9.08 imes 10^5$
5	0.0039	4.996	99.92	$1.28 imes 10^6$
10	0.0053	4.995	99.90	9.42×10^5
20	0.0058	4.994	99.88	8.61×10^5
30	0.0050	4.995	99.90	$9.99 imes 10^5$
60	0.0071	4.993	99.86	$7.03 imes 10^5$
90	0.0067	4.993	99.86	$7.45 imes 10^5$
120	0.011	4.989	99.78	4.54×10^5
180	0.017	4.983	99.66	$2.93 imes 10^5$
300	0.026	4.974	99.48	1.91×10^5
360	0.033	4.967	99.34	1.51×10^5
480	0.037	4.963	99.26	$1.34 imes 10^5$
600	0.033	4.967	99.34	1.51×10^5

Table S3. The Sr²⁺ adsorption kinetics results of Na-Dy (V/m = 1000 mL/g; at room temperature (RT)).

	1		0,	1 ()/
Time (minute)	$C_{\rm t} ({\rm mg/L})$	q (mg/g)	R ^{Sr} (%)	$K_{\rm d}^{\rm Sr}$ (mL/g)
0	5.28	0	0	0
1	0.0215	5.259	99.59	2.45×10^{5}
2	0.0125	5.268	99.76	4.21×10^{5}
3	0.0073	5.273	99.86	7.22×10^{5}
5	0.0044	5.276	99.92	$1.20 imes 10^6$
10	0.0035	5.277	99.93	$1.53 imes 10^6$
20	0.0042	5.276	99.92	1.26×10^6
30	0.0043	5.276	99.92	1.23×10^{6}
60	0.0043	5.276	99.92	1.23×10^{6}
90	0.0145	5.266	99.73	3.63×10^{5}
120	0.0210	5.259	99.60	2.50×10^{5}

180	0.0270	5.253	99.49	1.95×10^5
300	0.0300	5.250	99.43	$1.75 imes 10^5$
360	0.0300	5.250	99.43	1.75×10^5
480	0.0310	5.249	99.41	1.69×10^{5}
600	0.0330	5.247	99.38	$1.59 imes 10^5$

Figure S3. The fitting results with the pseudo-first-order kinetic model for the Sr^{2+} ions removal kinetics of **K-Dy** (a) and **Na-Dy** (c). The fitting results with the pseudo-second-order kinetic model for the Sr^{2+} ions removal kinetics of **K-Dy** (b) and **Na-Dy** (d).

6. Adsorption isotherms

Table S4. Isothermal adsorption experimental results of Sr²⁺ capture by **K-Dy** (V/m = 1000 mL/g; 8 h contact time; at RT).

$C_0 (\mathrm{mg/L})$	$C_{\rm e} ({\rm mg/L})$	<i>q</i> (mg/g)
5.33	0.0078	5.32
11.00	0.033	10.97
51.65	2.93	48.72
104.30	44.34	59.96
203.37	135.61	67.76
325.75	249.55	76.20
403.47	335.07	68.40
834.58	752.73	81.85

Table S5. Isothermal adsorption experimental results of Sr^{2+} capture by **Na-Dy** (V/m = 1000 mL/g; 8 h contact time; at RT).

$C_0 (\text{mg/L})$	$C_{\rm e} ({\rm mg/L})$	<i>q</i> (mg/g)
5.20	0.22	4.98
11.30	0.11	11.19
51.82	0.47	51.35
103.74	29.04	74.70
321.46	233.82	87.64
413.38	329.09	84.29
620.75	543.50	77.25
815.50	739.25	76.25

Table S6. Isotherm fitting parameters for Sr^{2+} capture by **K-Dy** (V/m = 1000 mL/g; 8 h contact time; at

RT).

	T!	E	Lauranian Error dliab
	Langmuir	Freundlich	Langemiur-Freundlich
R ²	0.9406	0.9334	0.9785
q (mg/g)	71.72 ± 3.59	-	83.04 ± 8.48
b	0.7123	-	0.4554
n	-	6.6596	2.4226
k	-	31.4769	-

Table S7. Isotherm fitting parameters for Sr^{2+} capture by Na-Dy (V/m = 1000 mL/g; 8 h contact time; at RT).

	Langmuir	Freundlich	Langemiur-Freundlich
R ²	0.9159	0.3242	0.9676
q (mg/g)	80.96 ± 4.67	-	79.93 ± 3.14
b	1.7295	-	2.4526
n	-	42.6736	0.2672
k	-	70.2673	-

7.	The	effect	of pH	and	irradiation	on	Sr ²⁺	adsorp	otion
----	-----	--------	-------	-----	-------------	----	------------------	--------	-------

Table S8. The pH effect adsorption results of K-Dy for Sr^{2+} removal (V/m = 1000 mL/g; at RT; 8 h

contact	time).
---------	--------

Initial all	$C_0^{ m Sr}$	$C_{\rm e}^{ m Sr}$	a(ma/a)	DSr(0/)	V Sr (m I / σ)	Leaching percentage
пппат рн	(mg/L)	(mg/L)	q (mg/g)	К ³⁴ (70)	$\mathbf{A}_{d}^{\text{s.r}}$ (IIIL/g)	of Dy (%)
1.99	5.60	5.53	0.070	1.25	12.66	44.64
2.97	5.16	0.11	5.05	97.87	$4.59 imes 10^4$	0.40
3.94	5.14	0.015	5.12	99.61	3.41×10^5	0.41
4.93	5.03	0.015	5.02	99.80	$3.35 imes 10^5$	0.46
5.90	5.08	0.020	5.06	99.61	2.53×10^5	0.42
7.20	5.02	0.024	5.00	99.60	2.08×10^5	0.69
8.00	4.92	0.012	4.91	99.80	$4.09 imes 10^5$	0.36
9.00	4.90	0.027	4.87	99.39	$1.80 imes 10^5$	0.24
10.00	4.91	0.012	4.90	99.80	$4.08 imes 10^5$	0.34
10.91	4.94	0.018	4.92	99.60	2.73×10^5	0.56
11.84	4.81	0.060	4.75	98.75	$7.92 imes 10^4$	0.090

Table S9. The results of Sr^{2+} adsorption for **K-Dy** before and after irradiations (V = 10 mL, m = 10 mg,

V/m = 1000 mL/g; 8 h contact time; at RT).

		$C_0^{\mathrm{Sr}} (\mathrm{mg/L})$	$C_{\rm e}^{\rm Sr}$ (mg/L)	$q^{ m Sr}$ (mg/g)	$K_{\rm d}^{\rm Sr}$ (mL/g)	R^{Sr} (%)
	Pristine	4.80	0.0094	4.7906	5.10×10^5	99.80
K-Dy	100 kGy γ	4.80	0.0099	4.7901	4.84×10^5	99.79
	200 kGy γ	4.80	0.017	4.783	2.81×10^5	99.65

Figure S4. (a) PXRD patterns of **K-Dy** synthesized and its corresponding samples in Sr^{2+} solutions with different pH values. (b) PXRD patterns of the pristine and γ (100 and 200 kGy) irradiated samples of **K-Dy**.

8. Adsorption and desorption

Number of -			Adsorption			Desorption				
	т	V	$C_0^{ m Sr}$	$C_{ m e}^{ m Sr}$	$R^{ m Sr}$	m_1	V_1	$C_{\rm e}^{\rm Sr}$	E^{Sr}	
	(mg)	(mL)	(mg/L)	(mg/L)	(%)	(mg)	(mL)	(mg/L)	(%)	
1	200	200	5.60	0.07	98.80	160	160	4.71	85.14	
2	130	130	5.68	0.02	99.60	100	100	5.54	97.96	
3	70	70	5.74	0.03	99.50	40	40	5.31	93.17	

Table S10. The adsorption and desorption results for K-Dy at each cycle.

Figure S5. (a) EDS analysis results and (b) elemental distribution mappings of K-Dy after desorption.(c) PXRD patterns of K-Dy after adsorption and desorption.

9. Competitive adsorption

Table S11. The Sr²⁺ and Na⁺ adsorption results of **K-Dy** under different Na/Sr molar ratios (V/m = 1000

Molar		C		C		V	$\downarrow V$			
Ratio	\mathbf{Sr}^{2+}	C ₀	$\pm C_0$	C _e	± C _e	Λ _d	$\pm \mathbf{\Lambda}_{d}$	R(%)	$\pm R(\%)$	
(Na/Sr)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)			
9		5.69	0.0566	0.01	0.0008	1.01×10^{6}	140232.94	99.90	0.0139	
44		5.21	0.0636	0.02	0.0028	3.10× 10 ⁵	55452.06	99.67	0.0583	
92		5.26	0.0424	0.03	0.0000	1.63×10^5	1325.83	99.39	0.0049	
476		5.22	0.0849	0.30	0.0007	1.63×10^4	320.84	94.20	0.1078	
	N _o +	C_0	$\pm C_0$	$C_{\rm e}$	$\pm C_{\rm e}$	$K_{ m d}$	$\pm K_{\rm d}$	$\mathcal{D}(0/)$	$\perp D(0/)$	<u>ar</u>
	INA	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)	K (70)	$\pm K(70)$	Sr Sr/Na
		13.46	0.3606	9.85	0.1697	3.66×10^2	13.08	26.78	0.7011	2754.16
		60.01	0.5091	52.73	0.0283	$1.38 imes 10^2$	9.04	12.13	0.6984	2243.89
		126.75	1.2021	114.25	1.0607	$1.09 imes 10^2$	0.22	9.86	0.0180	1493.26
		651.65	7.4246	618.70	3.2527	$5.33 imes 10^1$	17.54	5.05	1.5810	304.98

mL/g; at RT; 8 h contact time).

Table S12. The Sr²⁺ and Cs⁺ adsorption results of **K-Dy** under different Cs/Sr molar ratios (V/m = 1000

Molar		C		C		V	+ <i>V</i>			
Ratio	\mathbf{Sr}^{2+}	<i>C</i> ₀	$\pm C_0$	C _e	$\pm C_e$	K _d	$\pm K_d$	R (%)	$\pm R(\%)$	
(Cs/Sr)	(mg/L)		(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)			
10		5.05	0.0707	0.2650	0.0071	1.81×10^4	241.75	94.75	0.0666	
100		5.04	0.0566	0.0315	0.0078	1.64×10^5	38898.22	99.38	0.1473	
513		4.97	0.0071	0.1445	0.0106	$3.35 imes 10^4$	2577.97	97.09	0.2178	
970		5.21	0.0566	0.4395	0.0035	$1.09 imes 10^4$	33.35	91.56	0.0237	
	C +	C_0	$\pm C_0$	$C_{\rm e}$	$\pm C_{\rm e}$	K_{d}	$\pm K_{\rm d}$	$\mathbf{D}(0/)$	D(0/)	SF _{Sr/Cs}
	Cs	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)	R (%)	$\pm R(\%)$	
		76.10	0.2828	55.00	0.0000	$3.84 imes 10^2$	5.14	27.73	0.2686	47.08
		765.00	2.8284	658.00	1.4142	1.63×10^2	6.80	13.99	0.5029	1007.26
		3865.00	7.0711	3850.00	7.0711	$3.90 imes 10^{\circ}$	0.01	0.39	0.0007	8586.63
		7660.00	56.5685	7540.00	28.2843	$1.59 imes 10^1$	3.69	1.57	0.3577	682.31

mL/g; at RT; 8 h contact time).

Molar		G		G		17	. 77		
Ratio	Sr^{2+}	C_0	$\pm C_0$	C_{e}	$\pm C_{e}$	K _d	$\pm K_{\rm d}$	R(%)	$\pm R(\%)$
(Mg/Sr)		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)		
1		5.14	0.2121	0.07	0.0000	$7.57 imes 10^4$	3166.15	98.70	0.0538
9		5.12	0.0283	0.12	0.0014	$4.17 imes 10^4$	738.59	97.66	0.0406
44		5.17	0.0354	1.60	0.0071	2.24×10^3	7.81	69.12	0.0745
91		5.38	0.0424	2.60	0.0354	1.07×10^3	11.90	51.77	0.2768
	N 2+	C_0	$\pm C_0$	C_{e}	$\pm C_{\rm e}$	$K_{ m d}$	$\pm K_{\rm d}$	D (0/)	$\pm R(\%)$
	Mg	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)	R (%)	
		1.91	0.2333	0.12	0.0113	$1.48 imes 10^4$	3375.22	93.51	1.3888
		12.62	0.1344	1.02	0.0141	1.14×10^4	303.22	91.91	0.1982
		63.59	0.5374	47.68	0.1273	$3.34 imes 10^2$	14.83	25.02	0.8338
		135.35	1.0607	115.95	0.9192	1.67×10^2	0.11	14.33	0.0078

Table S13. The Sr²⁺ and Mg²⁺ adsorption results of **K-Dy** under different Mg/Sr molar ratios (V/m = 1000 mL/g; at RT; 8 h contact time).

Table S14. The Sr²⁺ and Ca²⁺ adsorption results of K-Dy under different Ca/Sr molar ratios (V/m = 1000

Molar		C		0		V	- <i>V</i>		
Ratio	Sr^{2+}	\mathcal{L}_0	$\pm C_0$	C_{e}	$\pm C_{e}$	K_{d}	$\pm K_{d}$	R(%)	$\pm R(\%)$
(Ca/Sr)	(mg/L)		(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)		
1		5.13	0.1273	0.08	0.0092	6.02×10^4	8158.92	98.35	0.2201
8		5.45	0.0212	0.12	0.0028	$4.29 imes 10^4$	1172.99	97.72	0.0608
41		5.43	0.0778	2.91	0.0354	8.67×10^2	4.05	46.45	0.1161
81		5.48	0.0495	3.90	0.0141	$4.04 imes 10^2$	17.78	28.76	0.9023
	Ca^{2+}	C_0	$\pm C_0$	C_{e}	$\pm C_{\rm e}$	$K_{\rm d}$	$\pm K_{\rm d}$	$\mathbf{D}(0/)$	- P (0()
	Ca-	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)	K (70)	$\pm K(70)$
		3.13	0.2475	0.22	0.0481	$1.35 imes 10^4$	4263.68	92.81	2.1079
		20.35	0.0849	1.08	0.0636	$1.80 imes 10^4$	1043.56	94.72	0.2907
		101.35	0.4950	76.49	0.7212	$3.25 imes 10^2$	6.02	24.53	0.3431
		203.90	0.4243	173.15	0.6364	1.78×10^2	6.78	15.08	0.4888

mL/g; at RT; 8 h contact time).

Table S15. The Sr²⁺ adsorption results of **K-Dy** in the presence of Sr²⁺, Na⁺, Cs⁺, Mg²⁺, Ca²⁺ ions with the same mass concentration (V/m = 1000 mL/g; at RT; 8 h contact time).

Ion	C_0	$\pm C_0$	Ce	$\pm C_{\rm e}$	$K_{ m d}$	$\pm K_{ m d}$	D(0/)	$+ \mathbf{D}(0/)$
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)	K (%)	$\pm R(\%)$
Sr^{2+}	5.91	0.1231	0.09	0.0236	$6.50 imes 10^4$	15576.91	98.44	0.3676

Cs^+	4.91	0.0000	3.35	0.0016	4.66×10^{2}	0.72	31.78	0.0336
Na ⁺	4.33	0.0002	2.86	0.1344	5.13×10^2	70.97	33.82	3.1044
Mg^{2+}	6.10	0.0830	1.21	0.0156	4.04×10^3	133.41	80.14	0.5259
Ca^{2+}	14.53	0.3052	10.09	0.2620	$4.39 imes 10^2$	7.14	30.53	0.3445

Table S16. The results of Sr^{2+} ions removal efficiency by K-Dy in actual water samples contaminated

with Sr^{2+} ions (V/m = 1000 mL/g, at RT; 8 h contact time).

Water	C_0	$\pm C_0$	Ce	$\pm C_{\rm e}$	$K_{ m d}$	$\pm K_{ m d}$	$\mathbf{D}(0/)$	+ D(0/)
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mL/g)	(mL/g)	R (%)	$\pm \Lambda$ (70)
Ultrapure water	2.20	0.0212	0.01	0.0001	$3.37 imes 10^5$	9010.69	99.70	0.0079
River water	5.08	0.0171	0.05	0.0014	$9.63 imes 10^4$	2928.88	98.97	0.0310
Tap water	5.13	0.0629	0.10	0.0239	$5.36 imes 10^4$	12842.19	98.12	0.4429

10. Adsorption Mechanism

Figure S6. PXRD patterns for the pristine K-Dy and K-Dy-Sr.

Figure S7. The scanning electron microscopy images and the elemental distribution mappings of **K-Dy** (a) and **K-Dy-Sr** (b).

Figure S8. EDS analysis results of K-Dy (a) and K-Dy-Sr (b).