Supporting Information

Improvement of humidity stability of ethyl gallate by cocrystal strategy and study of dissolution behavior of the cocrystal

Ziqi Pan^a, Menglong Zhang^a, Xinyu Hou^a, Huiwen Yang^a, Hua Rong^c, Haibin Song^c,

Yong Zhang^d, Wei Chen^{a,b,*}, Songgu Wu^{a,b,*}

^{*a*} National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,

P. R. China;

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China;

^c College of Chemistry, Nankai University, Tianjin 300071, P. R. China;

^d School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China.

Corresponding Author

Wei Chen – National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China; Phone: +86-22-2740-5754; Email: chenwei@tju.edu.cn

Songgu Wu – National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China; Phone: 13820305713; Email: wusonggu@tju.edu.cn

Content

Fig. S1 PXRD patterns of LAG experiment product with new phases.

Fig. S2 ROC curve for COSMO-RS methodology.

Fig. S3 The HPLC standard curve of pure EG and 2MIE: (a) EG; (b) 2MIE.

Fig. S4 PXRD patterns of EG-2MIE and EG under accelerated conditions (40 °C, 75% RH) for 4 weeks.

Fig. S5 The topological geometric structures of EG-2MIE and EG-Hydrate, with purple, orange, yellow, and green spheres corresponding to the (3, -3), (3, -1), (3, +1), and (3, +3) critical points of electron density (nuclear critical point, bond critical point, ring critical point, and cage critical point), respectively, the orange curve corresponds to the key path.

Table S1. The excess enthalpy (ΔH_{ex}) values and PXRD result of EG and the coformers.

Table S2. Hydrogen bond parameters of EG-2MIE and EG-Hydrate.

Table S3. C–H··· π weak interaction information of EG-2MIE and EG-Hydrate.

Table S4. $\pi \cdots \pi$ weak interaction information of EG-2MIE and EG-Hydrate.

Table S5. Experimental solid-liquid equilibrium data (mass fraction) of EG-2MIE-

EtOH system at 298.15 K, 303.15 K and 308.15 K.

Fig. S1 PXRD patterns of LAG experiment product with new phases.

Fig. S2 ROC curve for COSMO-RS methodology.

Fig. S3 The HPLC standard curve of pure EG and 2MIE: (a) EG; (b) 2MIE.

Fig. S4 PXRD patterns of EG-2MIE and EG under accelerated conditions (40 °C, 75% RH) for 4 weeks.

Fig. S5 The topological geometric structures of EG-2MIE and EG-Hydrate, with purple, orange, yellow, and green spheres corresponding to the (3, -3), (3, -1), (3, +1), and (3, +3) critical points of electron density (nuclear critical point, bond critical point, ring critical point, and cage critical point), respectively, the orange curve corresponds to the key path.

API	Coformer	$\Delta H_{\rm ex}(\rm kcal \cdot mol^{-1})$	New form
EG	piperazine	-5.89	Yes
	triethylenediamine	-5.78	Yes
	nizatidine	-4.94	No
	cytosine	-4.60	Yes
	1-ethyl-2, 3-dioxopiperazine	-4.49	Yes
	palbociclib	-4.39	No
	4-aminobutyric acid	-3.83	Yes
	2-Imidazolidone	-3.50	No
	carbamazepine	-3.12	Yes
	1, 3, 5-triazine-2, 4, 6-triamine	-3.10	Yes
	2-methylimidazole	-3.00	Yes
	glutamine	-2.93	No
	urea	-2.87	Yes
	taurine	-2.61	No
	niacinamide	-2.58	Yes
	lansoprazole	-2.49	No
	2-aminopyrimidine	-2.39	No
	picolinamide	-2.04	No
	benzimidazole	-1.91	Yes
	theophylline	-1.80	Yes
	serine	-1.69	No
	mannitol	-1.37	No
	2-aminonicotinicacid	-1.26	Yes

Table S1. The excess enthalpy (ΔH_{ex}) values and PXRD result of EG and the coformers.

API	Coformer	$\Delta H_{\rm ex}({\rm kcal}\cdot{\rm mol}^{-1})$	New form
	N-acetylglycine	-1.10	Yes
	oleanolic acid	-1.09	No

D–Н…А	D-H (Å)	H…A (Å)	D…A (Å)	D−H…A (°)	Symmetry
EG-2MIE					
O_5 - H_5 ···O ₉	0.66	2.18	2.6575(15)	131	
$O_{10} - H_{10} - O_4$	0.65	2.14	2.6457(14)	136	
O_9 – H_9 ···· N_4	0.82	1.91	2.6709(15)	154	
O_4 - H_4 ··· N_2	0.82	1.90	2.7062(18)	166	
O_8 – H_8 ···O ₇	0.84	2.01	2.8067(15)	158	1 + x, y, z
C_{10} - H_{10A} ···O ₈	0.97	2.59	3.2176(18)	123	-1 + x, y, z
O_3 - H_3 ··· O_2	0.88	1.91	2.7615(15)	163	-1 + x, y, z
$N_3 – H_{3A} \cdots O_4$	0.88	1.88	2.7431(16)	166	1 - x, 1 - y, 2 - z
N_1 – H_1 ···O ₉	0.88	1.93	2.7380(2)	152	1 - x, 1 - y, 1 - z
C_1 – H_{1B} ···O ₅	0.96	2.51	3.4410(3)	163	1 - x, 1 - y, 1 - z
EG-Hydrate					
O_3 - H_3 ··· O_{13}	0.84	1.83	2.6647(11)	175	
O_4 - H_4 ··· O_{12}	0.84	1.95	2.7307(12)	153	
O_5 - H_5 ··· O_7	0.84	1.97	2.6486(12)	137	
O_8 - H_8 ···O ₁₂	0.84	1.86	2.6902(12)	170	
O_9 – H_{9A} ···O ₈	0.84	2.08	2.7887(12)	142	1 - x, -y, 2 - z
$O_{10} - H_{10} \cdots O_2$	0.84	1.81	2.6539(12)	178	-1 + x, y, 1 + z
O_{11} - H_{11C} ··· O_5	0.87	1.87	2.7358(11)	173	
O_{11} - H_{11D} ··· O_{13}	0.87	2.02	2.8643(12)	164	1 - x, 1 - y, 1 - z
$O_{12} - H_{12A} \cdots O_{14}$	0.87	1.91	2.7805(12)	174	2 - x, -y, 1 - z
$O_{12} - H_{12B} \cdots O_{15}$	0.87	1.97	2.8250(12)	168	1 – x, –y, 1 – z
O_{13} - H_{13A} ···O_{15}	0.87	1.88	2.7475(12)	177	
O_{13} - H_{13B} ··· O_{14}	0.87	1.90	2.7687(12)	174	
O_{14} - H_{14A} ··· O_{11}	0.87	1.92	2.7853(12)	178	2 - x, 1 - y, 1 - z
$O_{14}H_{14B}O_9$	0.87	2.23	2.9704(12)	142	1 + x, y, -1 + z
O ₁₄ -H _{14B} ····O ₁₀	0.87	2.11	2.8528(12)	143	1 + x, y, -1 + z

Table S2. Hydrogen bond parameters of EG-2MIE and EG-Hydrate.

D–H···A	D-H (Å)	$H \cdots A(Å)$	$D \cdots A(Å)$	$D-H\cdots A(^{\circ})$	Symmetry
$O_{15} - H_{15A} \cdots O_{11}$	0.87	1.89	2.7616(12)	178	x, -1 + y, z
$O_{15}H_{15B}O_3$	0.87	2.05	2.8892(12)	161	2 - x, -y, 1 - z
$C_{14} – H_{14} \cdots O_4$	0.95	2.48	3.4226(14)	172	

Table S3. C–H^{...} π weak interaction information of EG-2MIE and EG-Hydrate.

C−H···Cg _i *	$H{\cdots}Cg_{i}({\rm \AA})$	C–H···Cg _i (°)	Symmetry
EG-2MIE			
C_9 – H_{9A} ···C g_4	2.94	118	1 - x, 2 - y, 2 - z
EG-Hydrate			
C_2 - H_{2A} ··· Cg_2	2.77	153	1 - x, 1 - y, 1 - z

*EG-2MIE: $Cg_4=N_3-C_6-N_4-C_7-C_8$; EG-Hydrate: $Cg_2=C_{13}-C_{14}-C_{15}-C_{16}-C_{17}-C_{18}$.

Table S4. $\pi \cdots \pi$ weak interaction information of EG-2MIE and EG-Hydrate.

$Cg_i \cdots Cg_j$	$\begin{array}{c} Cg_i \cdots Cg_j \\ (\text{\AA}) \end{array}$	Dihedral Angle between Cg_i and Cg_j (°)	Slippage (Å)	Symmetry
EG-2MIE				
$Cg_4 \cdots Cg_4$	3.68	0	0.528	1 - x, 1 - y, 2 - z
EG-Hydrate				
$Cg_1 {\cdots} Cg_1$	3.50	0	1.159	2 - x, 1 - y, 1 - z

*EG-2MIE: $Cg_4=N_3-C_6-N_4-C_7-C_8$; EG-Hydrate: $Cg_1=C_4-C_5-C_6-C_7-C_8-C_9$.

 Table S5. Experimental solid-liquid equilibrium data (mass fraction) of EG-2MIE-EtOH system

at 298.15 K, 303.15 K and 308.15 K.

	Μ			
T(K) -	EG	2MIE	Ethanol	Equilibrium solid phase
298.15	0.6232	0.0000	0.3768	EG
	0.5897	0.0068	0.4035	EG
	0.4793	0.0109	0.5098	EG + Cocrystal
	0.3161	0.0115	0.6724	Cocrystal
	0.2844	0.0149	0.7007	Cocrystal
	0.1687	0.0202	0.8111	Cocrystal
	0.1016	0.0294	0.8690	Cocrystal

Mass fraction				
T(K) -	EG	2MIE	Ethanol	Equilibrium solid phase
	0.0736	0.0352	0.8912	Cocrystal
	0.0312	0.0566	0.9122	Cocrystal
	0.0118	0.0852	0.9030	Cocrystal
	0.0104	0.1249	0.8647	Cocrystal
	0.0108	0.4290	0.5602	2MIE + Cocrystal
	0.0056	0.4706	0.5238	2MIE
	0.0000	0.5272	0.4728	2MIE
303.15	0.6396	0.0000	0.3604	EG
	0.5629	0.0076	0.4295	EG
	0.5168	0.0107	0.4725	EG + Cocrystal
	0.4256	0.0114	0.5630	Cocrystal
	0.3370	0.0124	0.6506	Cocrystal
	0.2183	0.0191	0.7626	Cocrystal
	0.1697	0.0235	0.8068	Cocrystal
	0.1046	0.0362	0.8592	Cocrystal
	0.0542	0.0546	0.8912	Cocrystal
	0.0334	0.0834	0.8832	Cocrystal
	0.0153	0.1511	0.8336	Cocrystal
	0.0160	0.4688	0.5152	2MIE + Cocrystal
	0.0121	0.5016	0.4863	2MIE
	0.0000	0.6099	0.3901	2MIE
308.15	0.7993	0.0000	0.2007	EG
	0.6722	0.0079	0.3199	EG
	0.5250	0.0143	0.4607	EG + Cocrystal
	0.4528	0.0108	0.5364	Cocrystal
	0.4073	0.0138	0.5789	Cocrystal
	0.3363	0.0143	0.6494	Cocrystal
	0.2622	0.0129	0.7249	Cocrystal
	0.1224	0.0234	0.8542	Cocrystal
	0.0686	0.0504	0.8810	Cocrystal
	0.0262	0.1028	0.8710	Cocrystal
	0.0125	0.2102	0.7773	Cocrystal

T(K)	EG	2MIE	Ethanol	Equilibrium solid phase
	0.0089	0.4850	0.5061	2MIE + Cocrystal
	0.0049	0.5388	0.4563	2MIE
	0.0000	0.6922	0.3078	2MIE