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Table S1. Atomic charges and bond length data of adsorbate molecules CO2, CH4, and 
N2

Adsorbate Parameter Value

C atomic charge 0.6512

O atomic charge -0.3256CO2

C=O bond length (Å) 1.196

C atomic charge -0.24

H atomic charge 0.06CH4

C-H bond length (Å) 1.109

N atomic charge 0
N2

N≡N bond length (Å) 1.12



Table S2. Fitting parameters of single-component gas adsorption isotherms of CO2, 
CH4, N2, and He on Cu-BTC

Adsorbate Temperature (K) Parameter Simulation data Experimental data

nm (mmol·g-1) 17.4858 13.7039

b (kPa-1) 0.0017 0.0042CO2 298

R2 (%) 99.773 99.967

nm (mmol·g-1) 14.6315 15.7576

b (kPa-1) 0.0008 0.0006298

R2 (%) 99.949 99.985

nm (mmol·g-1) 18.287 15.3146

b (kPa-1) 0.0102 0.0147

CH4

200

R2 (%) 99.71 99.647

nm (mmol·g-1) 12.4195 13.5074

b (kPa-1) 0.0004 0.0002298

R2 (%) 99.965 99.994

nm (mmol·g-1) 16.3225 13.0877

b (kPa-1) 0.0025 0.0029

N2

200

R2 (%) 99.855 99.945

kH (mmol·g-1·kPa-1) 0.00027 0.00035
298

R2 (%) 99.992 99.985

kH (mmol·g-1·kPa-1) 0.00045 0.00045
He

200
R2 (%) 99.985 99.981



Fig. S1. SEM images of Cu-BTC powder



Fig. S2. Adsorption-desorption isotherms of N2 on Cu-BTC sample at 77.3 K, used 
for calculating the BET specific surface area, where P is the equilibrium pressure after 
adsorption and P0 is the saturation vapor pressure of the adsorbate at the adsorption 
temperature.



Fig. S3. Pore size distribution of Cu-BTC sample based on (a) pore volume and (b) 
pore area.

  



Fig. S4. The GCMC simulation-derived selectivity adsorption coefficients of Cu-BTC 
for CO2/He (50:50) (a) at 298 K, CH4/He (50:50) (b) at 298 K and 200 K, and N2/He 
(50:50) (c) mixed gases at 298 K.

  
  



Fig. S5. Adsorption configurations of CO2 (a), CH4 (b), N2 (c), and He (d) at the B 
site in Cu-BTC; atom colors: C (gray), O (red), N (blue), H (white), Cu (orange), He 
(green).

  



Fig. S6. Adsorption breakthrough curves of CH4/N2/He (33:33:33) ternary mixed gas 
in Cu-BTC at 298 K (a), 200 K (b), and 150 K (c). The test pressure is 101.324 kPa, 
with the x-axis representing the ratio of time to sample mass and the y-axis 
representing the ratio of outlet to inlet concentration for each component.



BET specific surface area calculation method:
Based on the adsorption-desorption isotherm data in Fig. S2, select multiple 

adsorption equilibrium points. Plot a scatter diagram with P/P0 on the x-axis and 
P/P0/[V(1-P/P0)] on the y-axis, and perform a linear fit for all data points. Here, V is 
the adsorption capacity of the adsorbate on the adsorbent at equilibrium pressure P 
(cm3·g-1). According to the BET adsorption model, the equation of the fitted line can 
be derived as shown in Equation (1):
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Where Vm is the monolayer saturated adsorption capacity of the adsorbent for the 
adsorbate, and C is a constant related to the adsorption performance of the adsorbent. 
The value of Vm can be determined from the slope a and intercept b of the fitted line. 
The calculation formula is given by Equation (2):
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The calculation formula for the BET specific surface area S is shown in Equation (3):

 \* MERGEFORMAT (3)A m m22414S N a V  

Where NA is Avogadro's constant, 6.02×1023 mol-1; am is the cross-sectional area of 
the adsorbate molecule.



Calculation method for the IAST selectivity adsorption coefficient:
IAST draws on Raoult's law and introduces surface spreading pressure to study 

adsorption phase equilibrium. The partial pressure Pi of gas component i is:
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Where xi and πi are the mole fraction and surface spreading pressure of component i in 
the adsorbed phase, respectively. Pi

0 is the pure gas pressure when it has the same 
surface spreading pressure as the mixture. At adsorption phase equilibrium, the 
normalized spreading pressure π* of all components should be equal:
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Where qi
0(P) is the equilibrium uptake of the pure gas, A is the specific surface area of 

the adsorbent, and the total adsorption amount nt is:
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For a binary mixture composed of components 1 and 2, applying IAST requires 
satisfying the following conditions:

 \* MERGEFORMAT (9)1 1 1Py Px
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Where P is the total pressure, Pi (i=1, 2) is the pressure of components 1 and 2 when 
they have the same surface spreading pressure as the mixture, and xi and yi (i=1, 2) 
represent the mole fractions in the adsorbed phase and gas phase, respectively. 
According to Equation (13), the selectivity adsorption coefficient S1/2 can be 
calculated:
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