Electronic Supplementary Information Facile construction of magnetic α -Fe₂O₃/SiO₂ composite aerogels for enhanced adsorption and visible light photocatalytic activity Kaiwen Wu^a, Jichao Shi^{a*1}, Daqing Wang^a, Honghao Ni^a, Runping Jia^a, Yufeng Liu^a, Lin Lin^b, Dandan Wu^a, Shufang Chang^a, Yaqi Wang^a and Qin Xin^a ^a School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, P.R. China. ^bSchool of Chemistry and Chemical Engineering, Shanghai Institute of Technology, Shanghai 200235, P.R. China. *Corresponding authors Jichao Shi, Email: jcshi@sit.edu.cn - ¹ Fax: +86 21 60873117, Tel: +86 21 60873117 Fig. S1. The photos of the synthesized Fe₂O₃/SiO₂ composite aerogel samples (SF1, SF2 and SF3) and their counterparts calcined at 500 °C (SF1-500, SF2-500 and SF3-500). Fe₂O₃/SiO₂ composite aerogel attracted by magnet (a) and (b). Fig. S2. FTIR spectra of the sample Fe₂O₃. Fig. S3. TEM image of the SF1-500.