Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information

Strong supramolecular synthons assembled by hydrogen bonds and chalcogen bonds

Yu Zhang, Xiaotian Sun and Weizhou Wang*

College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P.
R. China

E-mail: wzw@lynu.edu.cn

Contents

- S1. Methods
 - S1.1. Cocrystal synthesis
 - S1.2. Single-crystal X-ray diffraction
 - S1.3. Computational details
- S2. Supplementary results
- S3. References
- S4. The CheckCIF reports for the six cocrystals

S1. Methods

S1.1. Cocrystal synthesis

The 5-nitroisophthalic acid (purity: \geq 98%), 5-bromoisophthalic acid (purity: \geq 98%), 5-methylisophthalic acid (purity: \geq 98%), 5-aminoisophthalic acid (purity: \geq 98%), 4bromoisophthalic acid (purity: \geqslant 98%), 2,5-thiophenedicarboxylic acid (purity: \geqslant 98%) and 2,1,3-benzoselenadiazole (purity: \geq 98%) were purchased from Alfa Chemical Co., Ltd., Zhengzhou, China. The solvents ethanol (analytical reagent grade) were purchased from local suppliers. All reagents and solvents were used without further purification. The synthetic procedure of each cocrystal is almost the same. Using 20 mL ethanol as solvent, we prepared the solutions of binary mixtures of 2,1,3benzoselenadiazole (0.2 mmol, 0.0366 g) with 5-nitroisophthalic acid (0.2 mmol, 0.0422 g), 5-bromoisophthalic acid (0.2 mmol, 0.0490 g), 5-methylisophthalic acid (0.2 mmol, 0.0360 g), 5-aminoisophthalic acid (0.2 mmol, 0.0362 g), 4-bromoisophthalic acid (0.2 mmol, 0.0490 g) and 2,5-thiophenedicarboxylic acid (0.2 mmol, 0.0344 g), respectively, by gently stirring in the air at room temperature. After 7-8 days, single crystals of six cocrystals suitable for single-crystal X-ray diffraction analyses were successfully synthesized by slowly evaporating these solutions also in the air and at room temperature.

S1.2. Single-crystal X-ray diffraction

Single-crystal X-ray diffraction data were collected on the Bruker D8 or Oxford Diffraction SuperNova area-detector diffractometer equipped with the Mo-K α X-ray source (λ = 0.71073 Å). The data reduction was performed using CrysAlisPro software.^{1,2} The crystal structure was solved and refined with the SHELXS-97/SHELXS-2014 program.³⁻⁵ Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The hydrogen atoms were set in calculated positions and refined as riding atoms with a common fixed isotropic thermal parameter. Crystallographic data of the six cocrystals were listed in the next section. The CIF files of the thirteen cocrystals (CCDC deposition numbers: 2429784-2429789) can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html. At the same time, the CIF files of the six cocrystals were also provided as the electronic supplementary materials. The

checkcif files for the six cocrystal structures can be found in the Supplementary Materials.

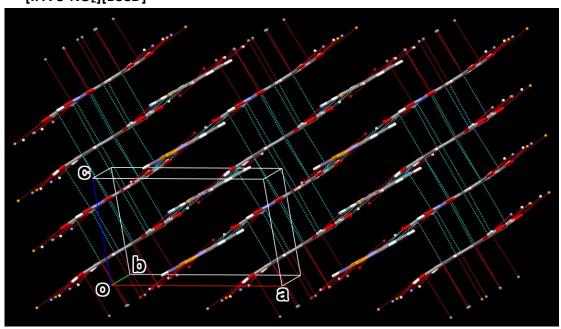
S1.3. Computational details

The geometries of the complexes were not optimized, and taken from the corresponding crystal structures. All the density functional theory (DFT) calculations were carried out at the PBEO-D3(BJ)/def2-TZVPP level of theory with the Gaussian 09 program. Previous studies on the noncovalent interactions have shown that the PBEO-D3(BJ)/def2-TZVPP calculations can give comparable results with the "golden standard" coupled cluster calculations. 11,12 It is well known that the accuracy of the DFT calculations also depends on the number of points used in the numerical integration. An "ultrafine" integration grid (99 radial, 590 angular points) was used for all the DFT calculations to avoid the possible integration grid errors. All the interaction energies have been corrected for basis set superposition error by using the counterpoise scheme of Boys and Bernardi. In this study, the interaction energy refers to the sum of the interaction energy of an O-H···N hydrogen bond and the corresponding N-Se···O chalcogen bond. This combined value represents the strength of the supramolecular synthon, making it unnecessary to separately calculate the interaction energies of the O-H···N hydrogen bond and the N-Se···O chalcogen bond.

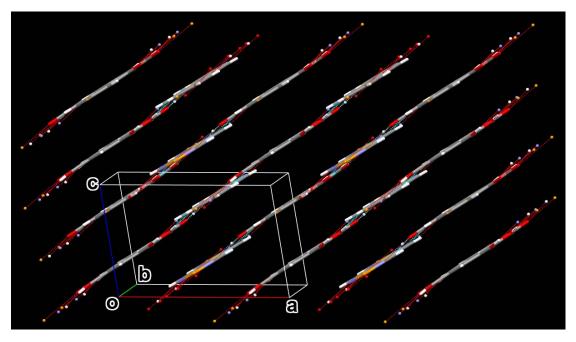
To further confirm the existence of the synthons, the "atoms in molecules" (AIM) analysis has been performed with the PBEO-D3(BJ)/def2-TZVPP electron density.¹⁴ The AIM2000 software was employed to carry out the AIM analysis.¹⁵

S2. Supplementary Results

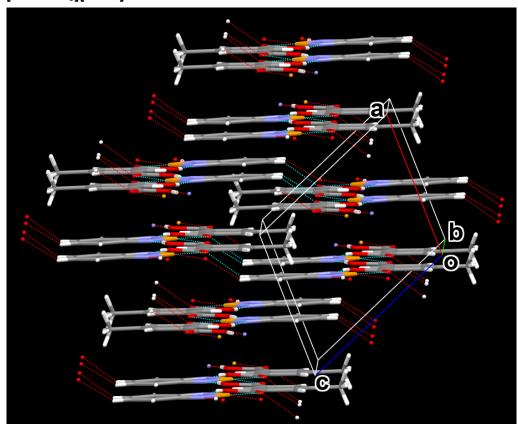
Table S1 The crystallographic data and structure refinement parameters for [IPA-5-NO₂][BSeD], [IPA-5-Br][BSeD], [IPA-5-CH₃][BSeD] and [IPA-5-NH₂][BSeD].


NO2][BSED], [IPA-5-Br][BSED], [IPA-5-CH3][BSED] and [IPA-5-NH2][BSED].					
Cocrystal	[IPA-5-NO ₂][BSeD]	[IPA-5-Br][BSeD]			
CCDC No.	2429784	2429785			
Empirical formula	$C_{14}H_9N_3O_6Se$	$C_{14}H_9BrN_2O_4Se$			
Formula weight	394.203	428.10			
Crystal size/mm³	$0.3\times0.25\times0.18$	$0.16 \times 0.15 \times 0.13$			
Crystal system	monoclinic	monoclinic			
Space group	P2/c	P2/c			
a/Å	11.3555(4)	11.154(3)			
b/Å	9.1502(3)	9.184(2)			
c/Å	7.1692(4)	7.3865(19)			
α/°	90	90			
<i>β</i> /°	99.648(5)	99.177(9)			
γ/°	90	90			
V/ų	734.38(6)	746.9(3)			
Z	2	2			
$ ho_{ m calc}/ m g\cdot cm^{-3}$	1.783	1.903			
T/K	293(2)	300(2)			
$2artheta$ range for data collection/ $^\circ$	7.28–58.4	5.776-55.656			
Reflections collected	7626	15360			
Independent reflections [R _{int}]	1733 [0.0377]	1758 [0.1080]			
R_1 , wR_2 (I > 2σ (I))	0.0384, 0.0772	0.0515, 0.1006			
R_1 , wR_2 (all data)	0.0504, 0.0829	0.0860, 0.1144			
Goodness-of-fit on F ²	1.076	1.027			

Cocrystal	[IPA-5-CH ₃][BSeD]	[IPA-5-NH ₂][BSeD]
CCDC No.	2429786	2429787
Empirical formula	$C_{15}H_{12}N_2O_4Se$	$C_{14}H_{11}N_3O_4Se$
Formula weight	363.233	364.22
Crystal size/mm ³	$0.26 \times 0.25 \times 0.20$	$0.09 \times 0.08 \times 0.07$
Crystal system	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁ /m	<i>P</i> 2₁/m
a/Å	7.4596(4)	6.8417(7)
b/Å	12.3445(6)	12.3348(11)
c/Å	8.6525(4)	8.5209(7)
α/°	90	90
<i>β</i> /°	112.155(6)	102.207(4)
γ/°	90	90
V/ų	737.94(7)	702.83(11)
Z	2	2
$ ho_{ m calc}/ m g\cdot cm^{-3}$	1.635	1.721
T/K	293(2)	300(2)
2ϑ range for data collection/°	6.76–58.54	13.24-145.57
Reflections collected	7916	1459
Independent reflections [R _{int}]	1873 [0.0301]	1459 [0.0655]
R_1 , wR_2 (I > 2σ (I))	0.0346, 0.0669	0.0821, 0.2303
R_1 , wR_2 (all data)	0.0451, 0.0702	0.0897, 0.2443
Goodness-of-fit on F ²	1.042	1.086


Table S2 The crystallographic data and structure refinement parameters for [IPA-4-Br]₂[BSeD] and [TDCA][BSeD].

Cocrystal	[IPA-4-Br] ₂ [BSeD]	[TDCA][BSeD]
CCDC No.	2429788	2429789
Empirical formula	$C_{11}H_6BrNO_4Se_{0.5}$	$C_{12}H_8N_2O_4SSe$
Formula weight	335.56	355.22
Crystal size/mm ³	$0.30 \times 0.21 \times 0.17$	$0.18 \times 0.15 \times 0.13$
Crystal system	monoclinic	monoclinic
Space group	P2 ₁ /m	P2 ₁ /c
a/Å	3.89920(10)	3.8144(11)
b/Å	37.6399(13)	22.357(7)
c/Å	7.7471(2)	15.964(5)
α/°	90	90
<i>β</i> /°	95.702(3)	93.581(9)
γ/°	90	90
V/ų	1131.38(6)	1358.7(7)
Z	4	4
$ ho_{ m calc}/ m g\cdot cm^{-3}$	1.970	1.737
T/K	293(2)	300(2)
2ϑ range for data collection/°	6.832-58.26	5.114-54.97
Reflections collected	14800	25654
Independent reflections [R _{int}]	2827 [0.0389]	3070 [0.0641]
R_1 , wR_2 (I > 2σ (I))	0.0468, 0.0946	0.0441, 0.0738
R_1 , wR_2 (all data)	0.0702, 0.1024	0.0648, 0.0791
Goodness-of-fit on F ²	1.059	1.106


[IPA-5-NO₂][BSeD]

[IPA-5-Br][BSeD]

[IPA-5-CH₃][BSeD]

[IPA-5-NH₂][BSeD]

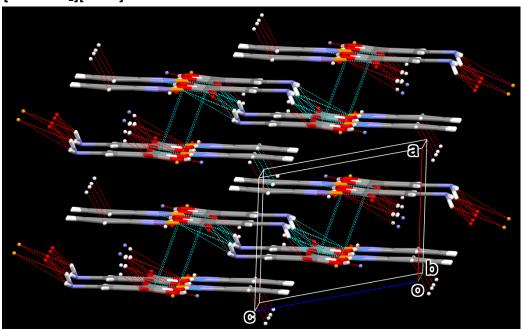
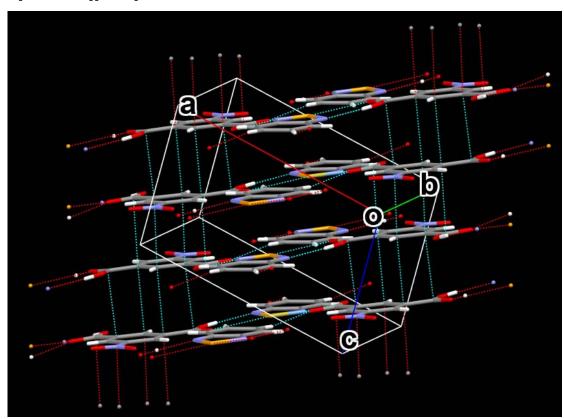
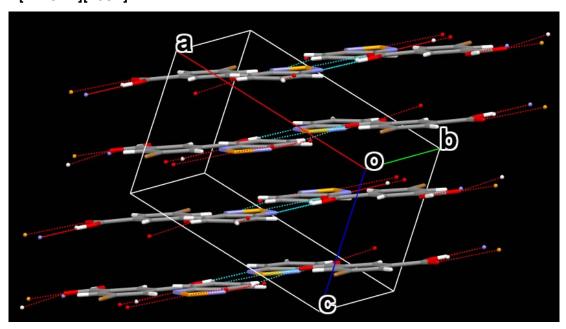
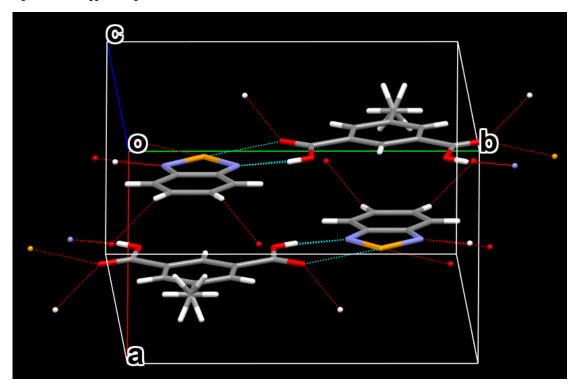




Fig. S1 The 2 \times 2 \times 2 unit cells of [IPA-5-NO₂][BSeD], [IPA-5-Br][BSeD], [IPA-5-CH₃][BSeD] and [IPA-5-NH₂][BSeD]. Color code: H, white; C, gray; O, red; N, Blue; Se, orange; Br, brown.


[IPA-5-NO₂][BSeD]

[IPA-5-Br][BSeD]

[IPA-5-CH₃][BSeD]

[IPA-5-NH₂][BSeD]

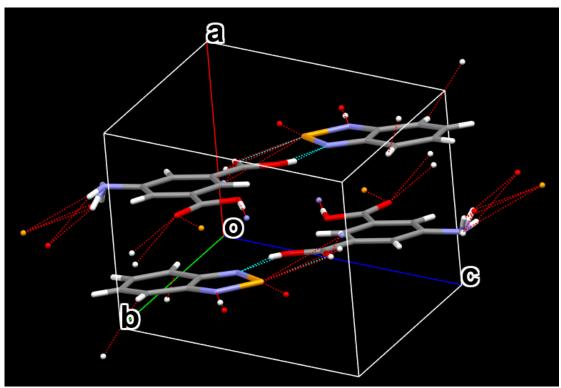
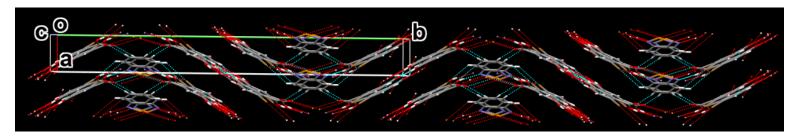



Fig. S2 The $\pi \cdots \pi$ stacking interactions in the crystal structures of [IPA-5-NO₂][BSeD], [IPA-5-Br][BSeD], [IPA-5-CH₃][BSeD] and [IPA-5-NH₂][BSeD]. Color code: H, white; C, gray; O, red; N, Blue; Se, orange; Br, brown.

[IPA-4-Br]₂[BSeD]

[TDCA][BSeD]

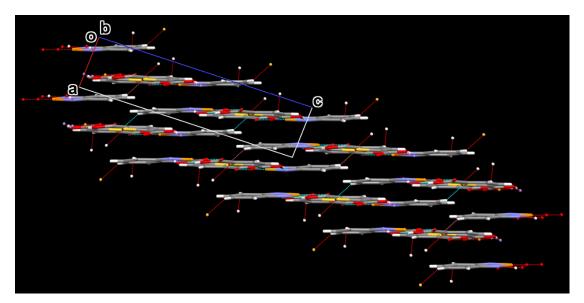
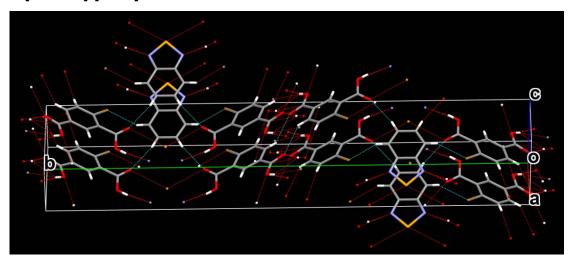



Fig. S3 The 2 \times 2 \times 2 unit cells of [IPA-4-Br]₂[BSeD] and [TDCA][BSeD]. Color code: H, white; C, gray; O, red; N, Blue; S yellow; Se, orange; Br, brown.

[IPA-4-Br]₂[BSeD]

[TDCA][BSeD]

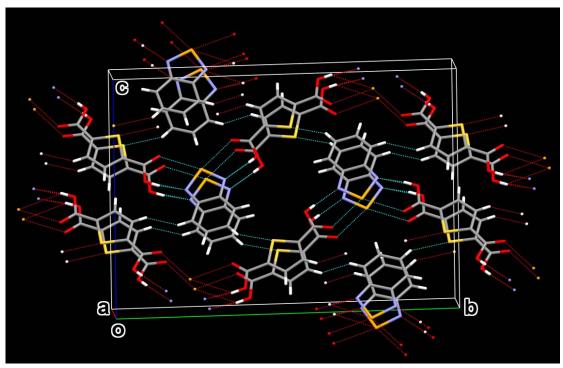


Fig. S4 The $\pi \cdots \pi$ stacking interactions in the crystal structures of [IPA-4-Br]₂[BSeD] and [TDCA][BSeD]. Color code: H, white; C, gray; O, red; N, Blue; S yellow; Se, orange; Br, brown.

S3. Notes and references

- 1 CrysAlisPro, Rigaku Oxford Diffraction, Version 1.171.36.32, England, 2013.
- 2 CrysAlisPro, Rigaku Oxford Diffraction, Version 1.171.38.41r, England, 2015.
- 3 G. M. Sheldrick, *SHELXS-97: Program for X-ray Crystal Structure Solution*, University of Gottingen: Gottingen, Germany, 1997.
- 4 G. M. Sheldrick, SHELXS-97: Program for X-ray Crystal Structure Refinement, University of Gottingen: Gottingen, Germany, 1997.
- 5 G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- 6 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6169.
- 7 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 8 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- 9 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- 10 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
- 11 W. Wang, T. Sun, Y. Zhang and Y. B. Wang, J. Chem. Phys., 2015, 143, 114312.
- 12 W. Wang, Y. Zhang and Y. B. Wang, Int. J. Quantum Chem., 2017, 117, e25345.
- 13 S. F. Boys and F. Bernardi, *Mol. Phys.* 1970, **19**, 553–566.
- 14 R. F. W. Bader, Atoms in Molecules, A Quantum Theory, Clarendon Press, Oxford, 1990.
- 15 F. Biegler-König, J. Schönbohm and D. Bayles, J. Comput. Chem., 2001, 22, 545–559.

S4. The CheckCIF reports for the six cocrystals.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 2429784

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: 2429784

Bond precision:	C-C = 0.0037 A	Wav	relength=	0.71073
Cell:	a=11.3555(4)	b=9.1502(3)	c=7.1692(4)
	alpha=90	beta=99.64	8 (5)	gamma=90
Temperature:	293 K			
	Calculated	Re	ported	
Volume	734.38(6)	73	34.38(6)	
Space group	P 2/c	P	1 2/c 1	
Hall group	-P 2yc	-P	2yc	
Moiety formula	C8 H5 N O6, C6 H4	N2 Se C6	H4 N2 S	Se, C8 H5 N O6
Sum formula	C14 H9 N3 O6 Se	C1	.4 H9 N3	06 Se
Mr	394.20	39	4.20	
Dx,g cm-3	1.783	1.	783	
Z	2	2		
Mu (mm-1)	2.595	2.	595	
F000	392.0	39	2.3	
F000'	392.01			
h,k,lmax	15,12,9	15	,12,9	
Nref	1988	17	33	
Tmin, Tmax	0.464,0.627	0.	772,1.00	0
Tmin'	0.455			
Correction method AbsCorr = MULTI-	od= # Reported T Li	mits: Tmin=0).772 Tma	x=1.000
Data completenes	ss= 0.872	Theta(max)	= 29.200	
R(reflections) =	0.0384(1484)			wR2(reflections) = 0.0829(1733)
S = 1.076	Npar= 11	.2		0.0029(1/33)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

```
Alert level C
PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full value Low .
                                                                     0.961 Why?
PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ
                                                                    Please Check
             Calc: C8 H5 N O6, C6 H4 N2 Se
             Rep.: C6 H4 N2 Se, C8 H5 N O6
PLAT250_ALERT_2_C Large U3/U1 Ratio for <U(i,j) > Tensor(Resd 1)
                                                                       2.7 Note
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance .....
                                                                     3.227 Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L=
                                                          0.600
                                                                        49 Report
              12 0 2, 12
                            1 2, 12 2
                                          2,
                                               4 1 3,
                                                          5 1 3,
                                                                   10
                                                                       1
                                                                          3.
                             2
                                   11
                                       3
              11
                  1
                     3,
                         11
                               3,
                                          3,
                                               4
                                                  0
                                                     4,
                                                          4
                                                             1
                                                               4,
                                                                    5
                                                                       0
                                                                          4,
               5
                  1
                         5
                             2
                                       0
                                               6
                                                  1
                                                             2
                                                                    7
                     4.
                               4,
                                    6
                                          4,
                                                     4,
                                                          6
                                                               4.
                                                                       0
                                                                          4.
                  1
                     4,
                          7
                             2
                               4,
                                    8
                                       0
                                          4,
                                               8
                                                  1
                                                     4,
                                                          8
                                                             2
                                                                    9
                                                                       0
                                                             1
               9
                                                                    5
                  1
                     4,
                         10
                             0
                               4,
                                   10
                                       1
                                          4,
                                              10
                                                  2
                                                     4,
                                                          4
                                                                       1
                                                          8 2 5,
                               5,
               6
                     5,
                         7
                                    7 2
                                               8 1
                                                     5,
                  1
                            1
                                          5,
                                                                       1
                                                          4 0 6,
                  2 5,
                                    2 0 6,
                                               3 0 6,
                         1
                            0
                                                                    4 1
                               6,
                                                                          6,
                 0 6,
               5
                            1
                               6.
                                    6 0 6,
                                               6 1 6,
                  0
```

Alert level G

```
PLAT068_ALERT_1_G Reported F000 Differs from Calcd (or Missing)...
                                                                     Please Check
PLAT073_ALERT_1_G H-atoms ref., but hydrogen treatment Reported as
                                                                     constr Check
PLAT199_ALERT_1_G Reported _cell_measurement_temperature .... (K)
                                                                        293 Check
PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature .... (K)
                                                                        293 Check
PLAT769_ALERT_4_G CIF Embedded Explicitly Supplied Scattering Data
                                                                     Please Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
                                                                          3 Note
               0 1 0, 1 0 0, 1 1 0,
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
                                                                        203 Note
PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value ......
                                                                      2.520 Note
             Predicted wR2: Based on SigI**2 3.29 or SHELX Weight
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
PLAT982_ALERT_1_G The Se-f' = -0.0811 Deviates from IT-Value =
                                                                    -0.0929 Check
                            2.3083 Deviates from IT-Value =
PLAT983_ALERT_1_G The Se-f"=
                                                                    2.2259 Check
```

```
0 ALERT level A = Most likely a serious problem - resolve or explain
```

O ALERT level B = A potentially serious problem, consider carefully

⁵ $\pmb{\mathsf{ALERT}}$ $\pmb{\mathsf{level}}$ $\pmb{\mathsf{C}}$ = Check. Ensure it is not caused by an omission or oversight

¹¹ ALERT level G = General information/check it is not something unexpected

⁷ ALERT type 1 CIF construction/syntax error, inconsistent or missing data

² ALERT type 2 Indicator that the structure model may be wrong or deficient

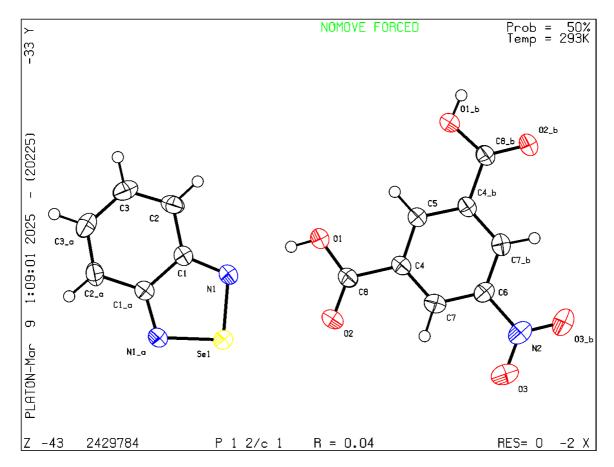
⁴ ALERT type 3 Indicator that the structure quality may be low

² ALERT type 4 Improvement, methodology, query or suggestion

¹ ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 02/02/2025; check.def file version of 02/02/2025

Datablock 2429784 - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 2429785

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: 2429785

Bond precision:	C-C = 0.0063 A	Ţ	Wavelength=	=0.71073
Cell:	a=11.154(3)			
	alpha=90	beta=99.1	77 (9)	gamma=90
Temperature:	300 K			
	Calculated		Reported	
Volume	747.0(3)		746.9(3)	
Space group	P 2/c		P 1 2/c 1	
Hall group	-P 2yc		-P 2yc	
Moiety formula	C8 H5 Br O4, C6 H	H4 N2 Se	C6 H4 N2 S	Se, C8 H5 Br O4
Sum formula	C14 H9 Br N2 O4 S	Se	C14 H9 Br	N2 O4 Se
Mr	428.09		428.10	
Dx,g cm-3	1.903		1.903	
Z	2		2	
Mu (mm-1)	5.206		5.207	
F000	416.0		416.0	
F000'	415.46			
h,k,lmax	14,12,9		14,11,9	
Nref	1780		1758	
Tmin, Tmax	0.452,0.508		0.343,0.7	46
Tmin'	0.418			
Correction method AbsCorr = MULTI-	od= # Reported T L -SCAN	imits: Tmi	n=0.343 Tm	ax=0.746
Data completenes	ss= 0.988	Theta(ma	ax) = 27.828	3
R(reflections) =	0.0515(1231)			wR2(reflections) = 0.1144(1758)
S = 1.027	Npar= 1	103		0.1144(1/00)

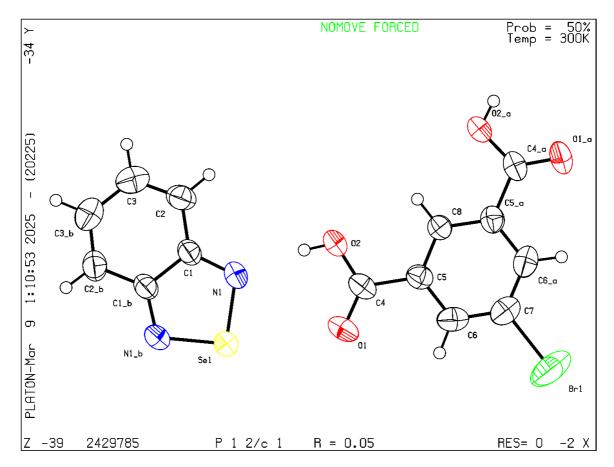
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

→ Alert level C	
PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ Pleas	e Check
Calc: C8 H5 Br O4, C6 H4 N2 Se	
Rep.: C6 H4 N2 Se, C8 H5 Br O4	
	7 Check
	7 Ang.
	5 Ang.
	4 Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 2 0 0, -2 0 2, 0 0 2,	3 Report
2 0 0, -2 0 2, 0 0 2,	
Alert level G	
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	1 Report
H2	
PLAT012_ALERT_1_G N.O.Kshelx_res_checksum Found in CIF Pleas	
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 0 1 0, 1 0 0,	2 Note
,	4 Note
	3 Note
2 0 0, -2 0 2, 0 0 2,	
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File	1 Note
2 0 0,	
	7 Note
Predicted wR2: Based on SigI**2 7.54 or SHELX Weight 11.14	
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	2 Info
PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by	2 Check
0 ALERT level A = Most likely a serious problem - resolve or explain	
0 ALERT level B = A potentially serious problem, consider carefully	
6 ALERT level C = Check. Ensure it is not caused by an omission or oversi	ght
9 ALERT level G = General information/check it is not something unexpected	d
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing dat	a
4 ALERT type 2 Indicator that the structure model may be wrong or deficie	
5 ALERT type 3 Indicator that the structure quality may be low	
1 ALERT type 4 Improvement, methodology, query or suggestion	
3 ALERT type 5 Informative message, check	

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 02/02/2025; check.def file version of 02/02/2025

Datablock 2429785 - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 2429786_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: 2429786_auto

```
C-C = 0.0031 A
Bond precision:
                                           Wavelength=0.71073
                  a=7.4596(4)
Cell:
                                  b=12.3445(6)
                                                       c=8.6525(4)
                  alpha=90
                                 beta=112.155(6)
                                                      gamma=90
                  293 K
Temperature:
                Calculated
                                            Reported
                737.94(7)
Volume
                                            737.94(7)
Space group
               P 21/m
                                            P 1 21/m 1
Hall group
                −P 2yb
                                            -P 2yb
Moiety formula C9 H8 O4, C6 H4 N2 Se
                                          C6 H4 N2 Se, C9 H8 O4
Sum formula
               C15 H12 N2 O4 Se
                                            C15 H12 N2 O4 Se
Mr
                363.23
                                           363.23
                                            1.635
Dx,g cm-3
                1.635
                2
                                            2.
Mu (mm-1)
               2.564
                                            2.564
F000
                364.0
                                            364.2
F000'
                363.98
h,k,lmax
                10,16,11
                                            9,16,11
Nref
                2098
                                            1873
Tmin, Tmax
                0.519,0.599
                                            0.847,1.000
Tmin'
                0.508
Correction method= # Reported T Limits: Tmin=0.847 Tmax=1.000
AbsCorr = MULTI-SCAN
Data completeness= 0.893
                                   Theta(max) = 29.270
                                                      wR2 (reflections) =
R(reflections) = 0.0346(1609)
                                                      0.0702 ( 1873)
S = 1.042
                          Npar= 108
```

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

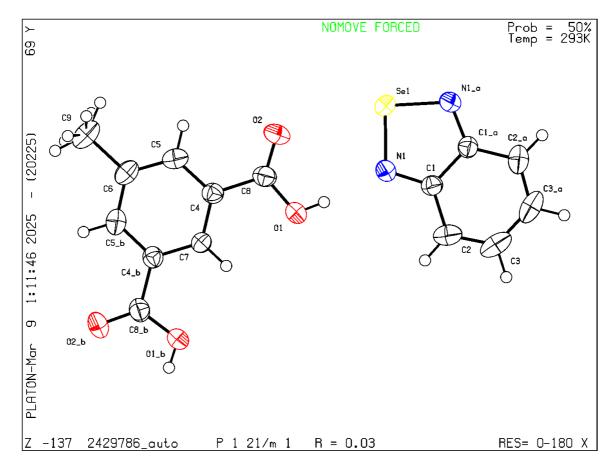
Click on the hyperlinks for more details of the test.

```
Alert level C
PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ
                                                                   Please Check
             Calc: C9 H8 O4, C6 H4 N2 Se
             Rep.: C6 H4 N2 Se, C9 H8 O4
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance .....
                                                                    3.051 Check
PLAT910_ALERT_3_C Missing # of FCF Reflection(s) Below Theta(Min).
                                                                         5 Note
               1 0 0, 0 2 0, -1 0 1, 0 0 1, 0 1 1,
Alert level G
PLAT068_ALERT_1_G Reported F000 Differs from Calcd (or Missing)...
                                                                    Please Check
PLAT073_ALERT_1_G H-atoms ref., but hydrogen treatment Reported as
                                                                    constr Check
PLAT199_ALERT_1_G Reported _cell_measurement_temperature .... (K)
                                                                       293 Check
PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature .... (K)
                                                                       293 Check
PLAT299_ALERT_4_G Atom Site Occupancy Constrained at ......
                                                                       0.5 Check
             H9A
                    H9B
                            H9C
PLAT367_ALERT_2_G Long? C(sp?)-C(sp?) Bond C6
                                                                      1.52 Ang.
                                                    - C9
PLAT769_ALERT_4_G CIF Embedded Explicitly Supplied Scattering Data
                                                                    Please Note
PLAT789_ALERT_4_G Atoms with Negative _atom_site_disorder_group #
                                                                         3 Check
PLAT822_ALERT_4_G CIF-embedded .res Contains Negative PART Numbers
                                                                         1 Check
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
                                                                       203 Note
PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value ......
                                                                     2.967 Note
             Predicted wR2: Based on SigI**2 2.36 or SHELX Weight
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                         4 Info
PLAT982_ALERT_1_G The Se-f' = -0.0811 Deviates from IT-Value =
                                                                   -0.0929 Check
PLAT983_ALERT_1_G The Se-f"=
                            2.3083 Deviates from IT-Value =
                                                                    2.2259 Check
   0 ALERT level A = Most likely a serious problem - resolve or explain
   0 ALERT level B = A potentially serious problem, consider carefully
```

- 3 ${f ALERT}$ level ${f C}$ = Check. Ensure it is not caused by an omission or oversight
- 14 **ALERT level G** = General information/check it is not something unexpected
- 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 2 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 2 ALERT type 3 Indicator that the structure quality may be low
- 5 ALERT type 4 Improvement, methodology, query or suggestion
- 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 02/02/2025; check.def file version of 02/02/2025

Datablock 2429786_auto - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 2429787

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: 2429787

C-C = 0.0075 A	7	Wavelength=	=1.54178
300 K			
Calculated		Reported	
702.83(11)		702.83(11)	1
P 21/m		P 1 21/m 1	L
-P 2yb		-P 2yb	
C8 H7 N O4, C6 H4	N2 Se	C6 H4 N2 S	Se, C8 H7 N O4
C14 H11 N3 O4 Se		C14 H11 N3	3 04 Se
364.22		364.22	
1.721		1.721	
2		2	
3.842		3.842	
364.0		364.0	
363.43			
8,15,10		8,15,10	
1473		1459	
0.743,0.764		0.388,0.75	54
0.674			
od= # Reported T L -SCAN	imits: Tmi	n=0.388 Tma	ax=0.754
ss= 0.990	Theta(ma	ax) = 72.785	5
0.0821(1188)			wR2(reflections) = 0.2443(1459)
Npar= 1	.10		0.2110(1100)
	a=6.8417(7) alpha=90 300 K Calculated 702.83(11) P 21/m -P 2yb C8 H7 N O4, C6 H4 C14 H11 N3 O4 Se 364.22 1.721 2 3.842 364.0 363.43 8,15,10 1473 0.743,0.764 0.674 od= # Reported T L -SCAN ss= 0.990 0.0821(1188)	a=6.8417(7) b=12.3348 alpha=90 beta=102.3300 K Calculated 702.83(11) P 21/m -P 2yb C8 H7 N O4, C6 H4 N2 Se C14 H11 N3 O4 Se 364.22 1.721 2 3.842 364.0 363.43 8,15,10 1473 0.743,0.764 0.674 od= # Reported T Limits: Tmitscan cs= 0.990 Theta(masses)	a=6.8417(7) b=12.3348(11) alpha=90 beta=102.207(4) 300 K Calculated Reported 702.83(11) 702.83(11) P 21/m P 1

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

PLAT094_ALERT_2_B Ratio of Maximum / Minimum Residual Density 4.32 Report

Author Response: Twinned structure.

PLAT097_ALERT_2_B Large Reported Max. (Positive) Residual Density 3.52 eA-3

Author Response: See above.

Alert level C DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ Please Check Calc: C8 H7 N O4, C6 H4 N2 Se Rep.: C6 H4 N2 Se, C8 H7 N O4 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds 0.0075 Ang. PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 2.500 Check 7 Report PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 2 0 0, 2 1 0, 0 2 0, -2 0 1, -1 3 1, 0 0 2, 5 0 6,

Alert level G PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 3 Report H2B Н1 H2A PLAT012_ALERT_1_G N.O.K. _shelx_res_checksum Found in CIF Please Check PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.18 Report PLAT299_ALERT_4_G Atom Site Occupancy Constrained at 0.5 Check H2A H2B PLAT480_ALERT_4_G Long H...A H-Bond Reported H3 ..02 2.75 Ang. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle(s) in CIF ... 36.30 Deg. 1_555 4_575 H2A -N2 -H2B 1_555 5 Check PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle(s) in CIF ... 36.30 Deg. H2B -N2 -H2A 1_555 1_555 4_575 8 Check ! Info PLAT870_ALERT_4_G ALERTS Related to Twinning Effects Suppressed .. PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 2 Note 0 0 1, 0 1 1, PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 5 Note PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF 2 Note 2 0 0, -2 0 1, PLAT931_ALERT_5_G CIFcalcFCF Twin Law [1 0 4] Est.d BASF 0.28 Check PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 1.0 Low PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value 3.472 Note Predicted wR2: Based on SigI**2 7.04 or SHELX Weight 22.50

```
O ALERT level A = Most likely a serious problem - resolve or explain

2 ALERT level B = A potentially serious problem, consider carefully

5 ALERT level C = Check. Ensure it is not caused by an omission or oversight

14 ALERT level G = General information/check it is not something unexpected

3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

3 ALERT type 2 Indicator that the structure model may be wrong or deficient

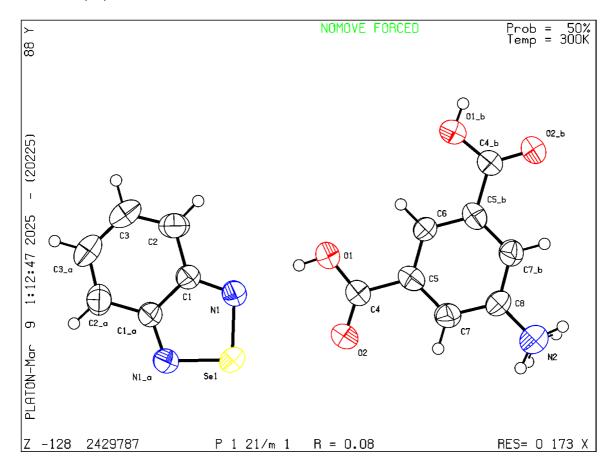
6 ALERT type 3 Indicator that the structure quality may be low

6 ALERT type 4 Improvement, methodology, query or suggestion

3 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 02/02/2025; check.def file version of 02/02/2025

Datablock 2429787 - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 2429788_auto

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: 2429788_auto

Bond precision:	C-C = 0.0054 A	Wavelength	=0.71073
Cell:		b=37.6399(13)	
	alpha=90	beta=95.702(3)	gamma=90
Temperature:	293 K		
	Calculated	Reported	
Volume	1131.38(6)	1131.38(6)
Space group	P 21/m	P 1 21/m	1
Hall group	-P 2yb	-P 2yb	
Moiety formula	2(C8 H5 Br O4), C6	6 H4 N2 Se C8 H5 Br	04, C3 H2 N Se0.5
Sum formula	C22 H14 Br2 N2 O8	Se C11 H6 Br	N 04 Se0.50
Mr	673.11	335.56	
Dx,g cm-3	1.976	1.970	
Z	2	4	
Mu (mm-1)	5.245	5.245	
F000	656.0	652.0	
F000'	655.04		
h,k,lmax	5,51,10	5,50,10	
Nref	3108	2827	
Tmin, Tmax	0.277,0.410	0.650,1.0	00
Tmin'	0.199		
Correction method AbsCorr = MULTI-	_	mits: Tmin=0.650 Tm	ax=1.000
Data completenes	ss= 0.910	Theta(max) = 29.13	0
R(reflections) =	0.0468(2139)		wR2(reflections) = 0.1024(2827)
S = 1.059	Npar= 1	65	0.1024(2027)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

```
Alert level C
PLAT041_ALERT_1_C Calc. and Reported SumFormula
                                               Strings Differ
                                                                    Please Check
             Calc: C22 H14 Br2 N2 O8 Se
             Rep.: C11 H6 Br N O4 Se0.50
PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ
             Calc: 2(C8 H5 Br O4), C6 H4 N2 Se
             Rep.: C8 H5 Br O4, C3 H2 N Se0.5
PLAT043\_ALERT\_1\_C Calculated and Reported Mol. Weight Differ by ..
                                                                      1.99 Check
PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)...
                                                                     Please Check
PLAT250_ALERT_2_C Large U3/U1 Ratio for <U(i,j) > Tensor(Resd 1)
                                                                       2.2 Note
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance .....
                                                                      6.864 Check
PLAT910_ALERT_3_C Missing # of FCF Reflection(s) Below Theta(Min).
                                                                         7 Note
               0 2 0, 0 4 0, 0 6 0, 0 0 1, 0 1 1, 0 2 1,
               0 3 1,
Alert level G
FORMU01\_ALERT\_1\_G There is a discrepancy between the atom counts in the
           _chemical_formula_sum and _chemical_formula_moiety. This is
           usually due to the moiety formula being in the wrong format.
           Atom count from _chemical_formula_sum: C11 H6 Br1 N1 O4 Se0.5
           Atom count from _chemical_formula_moiety:C11 H7 Br1 N1 O4 Se0.5
FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the
           _chemical_formula_sum and the formula from the _atom_site* data.
           Atom count from _chemical_formula_sum:C11 H6 Br1 N1 O4 Se0.5
           Atom count from the _atom_site data: C11 H7 Br1 N1 O4 Se0.5
CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected.
CELLZ01_ALERT_1_G ALERT: Large difference may be due to a
           symmetry error - see SYMMG tests
          From the CIF: _cell_formula_units_Z
          From the CIF: _chemical_formula_sum    C11 H6 Br N O4 Se0.50
          TEST: Compare cell contents of formula and atom_site data
                  Z*formula cif sites diff
          atom
                    44.00
                             44.00 0.00
                    24.00
                              28.00
                                    -4.00
                     4.00
                              4.00
                                    0.00
          Ν
                    4.00
                              4.00
                                      0.00
          Ω
                    16.00
                              16.00
                                      0.00
          Se
                    2.00
                              2.00
                                      0.00
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms ......
                                                                          1 Report
             H2
                         _shelx_res_checksum Found in CIF .....
PLAT012_ALERT_1_G No
                                                                    Please Check
PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ...
                                                                     0.500 Check
PLAT199_ALERT_1_G Reported _cell_measurement_temperature .... (K)
                                                                        293 Check
PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature ..... (K)
                                                                        293 Check
PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. #
                                                                          2 Note
             C6 H4 N2 Se
```

Predicted wR2: Based on SigI**2 2.52 or SHELX Weight 9.67

274 Note

4.058 Note

PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600

PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value

```
O ALERT level A = Most likely a serious problem - resolve or explain

O ALERT level B = A potentially serious problem, consider carefully

ALERT level C = Check. Ensure it is not caused by an omission or oversight

ALERT level G = General information/check it is not something unexpected

ALERT type 1 CIF construction/syntax error, inconsistent or missing data

ALERT type 2 Indicator that the structure model may be wrong or deficient

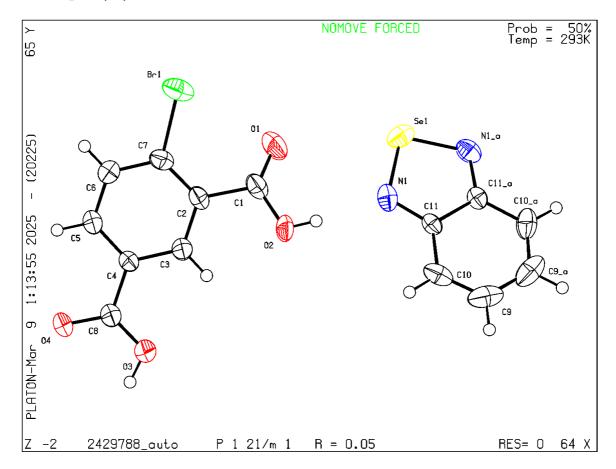
ALERT type 3 Indicator that the structure quality may be low

ALERT type 4 Improvement, methodology, query or suggestion

ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 02/02/2025; check.def file version of 02/02/2025

Datablock 2429788_auto - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 2429789

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: 2429789

Bond precision:	C-C = 0.0051 A	Ţ	Wavelength=	-0.71073
Cell:	a=3.8144(11) alpha=90			
Temperature:	300 K	pela-93.	301 (9)	ganilla-90
	Calculated		Reported	
Volume	1358.7(7)		1358.7(7)	
Space group	P 21/c		P 1 21/c 1	
Hall group	-P 2ybc		-P 2ybc	
_	C6 H4 O4 S, C6 H4	N2 Se	C6 H4 N2 S	Se, C6 H4 O4 S
Sum formula	C12 H8 N2 O4 S Se		C12 H8 N2	O4 S Se
Mr	355.22		355.22	
Dx,g cm-3	1.737		1.737	
Z	4		4	
Mu (mm-1)	2.931		2.931	
F000	704.0		704.0	
F000'	704.43			
h,k,lmax	4,29,20		4,29,20	
Nref	3094		3070	
Tmin, Tmax	0.596,0.683		0.559,0.74	16
Tmin'	0.584			
Correction metho AbsCorr = MULTI-	od= # Reported T Li -SCAN	mits: Tmi	n=0.559 Tma	ax=0.746
Data completenes	ss= 0.992	Theta(ma	ax) = 27.485	
R(reflections)=	0.0441(2387)			wR2(reflections) = 0.0791(3070)
S = 1.106	Npar= 18	39		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

```
🖣 Alert level A
```

PLAT430_ALERT_2_A Short Inter D...A Contact Sel ...02 . 2.89 Ang. $x,y,z = 1_{555}$ Check

Author Response: It is a chalcogen bond which can not be recognized by the software.

Alert level C PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ Please Check Calc: C6 H4 O4 S, C6 H4 N2 Se Rep.: C6 H4 N2 Se, C6 H4 O4 S

PLAT354_ALERT_3_C Short O-H (X0.82,N0.98A) O1 - H1 . 0.71 Ang.

PLAT601_ALERT_2_C Unit Cell Contains Solvent Accessible VOIDS <= 35 Ang**3

PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 5.049 Check

PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 7 Report

1 0 0, 1 1 0, 1 0 2, 0 1 2, 1 1 2, 2 1 2,

0 2 2,

PLAT977_ALERT_2_C Check Negative Difference Density on H4 . -0.46 eA-3

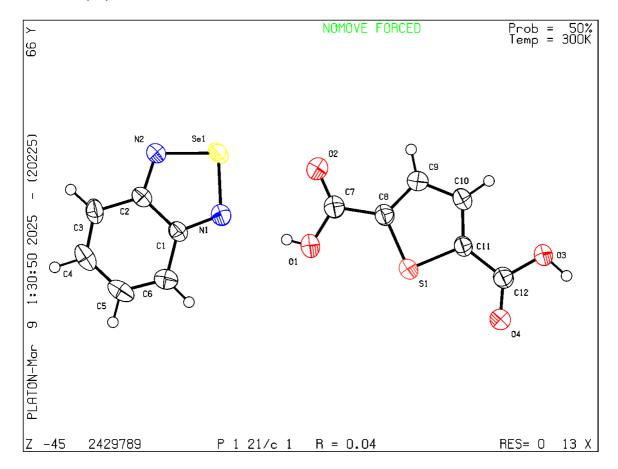
Alert level G

PLAT012_ALERT_1_G N.O.K. _shelx_res_checksum Found in CIF Please Check PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 3 Note 0 2 0, 0 1 1, 0 2 1, PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 13 Note PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF 1 Note 1 1 2, PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File 1 Note 0 1 2, PLAT954_ALERT_1_G Reported (CIF) and Actual (FCF) Kmax Differ by . 1 Units PLAT969_ALERT_5_G The 'Henn et al.' R-Factor-gap value 2.579 Note Predicted wR2: Based on SigI**2 3.06 or SHELX Weight 7.15 PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 4 Info

- 1 **ALERT level A** = Most likely a serious problem resolve or explain
- 0 ALERT level B = A potentially serious problem, consider carefully
- 6 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight
- 8 **ALERT level G** = General information/check it is not something unexpected
- 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 5 ALERT type 2 Indicator that the structure model may be wrong or deficient
- ${\bf 5}$ ALERT type ${\bf 3}$ Indicator that the structure quality may be low
- 1 ALERT type 4 Improvement, methodology, query or suggestion
- 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 02/02/2025; check.def file version of 02/02/2025

Datablock 2429789 - ellipsoid plot

