SUPPLEMENTARY CONTENT (S1)

Revealing the influence of Fe substitution on structural and magnetic features of orthomanganite DyMn₂O₅

Vishwajit M. Gaikwad*

Department of Physics Amolakchand Mahavidyalaya Yavatmal, Maharashtra, 445001, India

*Corresponding Author E-mail: vish9823@gmsail.com

FIG.S1. XRD patterns of $DyMn_{2-x}Fe_xO_5$ (x = 0 to 1).

FIG.S2. (a-f) Refined XRD patterns of $DyMn_{2-x}Fe_xO_5$ (x=0-0.5) (g) Magnified view of (121) reflection (h,i) Variation of lattice constant 'c' and cell volume (V) with Fe composition.

Sample	Bond angles (°)	$M_{s}\left(\mu_{B} ight)$	K ₁ (erg/cm ³)
DMO	Mn1-O3-Mn2 ~122.28 (2) Mn1-O4-Mn2 ~121.51(1) Mn2-O1-Mn2 ~99.97(3) Mn1-O3-Mn1 ~115.18(1)	13.36	0.50×10^{6}
DMO:Fe-0.1	Mn1-O3-Fe/Mn2 ~122.26(3) Mn1-O4-Fe/Mn2 ~108.72(2) Fe/Mn2-O1-Fe/Mn2 ~130.31(2) Mn1-O3-Mn1 ~102.43(1)	12.89	0.47×10^{6}
DMO:Fe-0.2	Mn1-O3-Fe/Mn2 ~121.6(2) Mn1-O4-Fe/Mn2 ~106.2(1) Fe/Mn2-O1-Fe/Mn2 ~98.5(3) Mn1-O3-Mn1 ~94.8(1)	11.74	0.43×10^{6}
DMO:Fe-0.3	Mn1-O3-Fe/Mn2 ~134.41(1) Mn1-O4-Fe/Mn2 ~127.10(2) Fe/Mn2-O1-Fe/Mn2 ~122.25(1) Mn1-O3-Mn1 ~90.24(3)	10.78	0.40×10^{6}
DMO:Fe-0.4	Mn1-O3-Fe/Mn2 ~136.81(1) Mn1-O4-Fe/Mn2 ~129.86(2) Fe/Mn2-O1-Fe/Mn2 ~114.79 (1) Mn1-O3-Mn1 ~84.30(2)	14.18	0.53×10^{6}
DMO:Fe-0.5	Mn1-O3-Fe/Mn2 ~131.39(1) Mn1-O4-Fe/Mn2 ~124.16(1) Fe/Mn2-O1-Fe/Mn2 ~110.75(2) Mn1-O3-Mn1 ~93.88(3)	13.78	0.52×10^{6}

TABLE.S1. Values of bond angles present in the unit cell of $DyMn_{2-x}Fe_xO_5$ (x=0-0.5) samples along with magnetic parameters like saturation magnetization (M_s) and magnetic anisotropy constant (K₁).

FIG.S3. (a-f) Inverse of susceptibility versus temperature curves of $DyMn_{2-x}Fe_xO_5$ (x=0-0.5) samples along with Curie-Weiss fit.

To explore the exact magnetic nature of $DyMn_{2-x}Fe_xO_5$ (x=0-0.5) samples, Curi-Weiss law ($\chi = C/T-\theta$) was applied to the plot of the inverse of susceptibility versus temperature (Fig. S3).

Curie-Weiss fit yields Weiss temperature ($\theta = -23$ K) and the observed effective magnetic moment of 10.54 μ_B for DMO sample. The small value of Weiss temperature ($\theta = -23 K$) reflects anti-ferromagnetic (AFM) character of DMO samples as already confirmed through M-T studies (Fig. 8). The theoretical value of μeff (th) is also calculated by considering the magnetic moments of Dy³⁺ (10.62 µB), Mn³⁺ (4.9 µB) and Mn⁴⁺ (3.87 µB) (AIP Adv. 7, 055830 (2017)). µeff (obs) (10.54 $\mu B/f.u.$) is found to be lower than μeff (th) (12.32 $\mu B/f.u.$). This difference could be due to the analysis carried out near T_N and short-range AFM ordering (Materials Chemistry and Physics 317 (2024) 129198). Curie-Weiss fit suggests that Fe substitution lead to enhance Weiss temperature (θ) from -255 K >> T_N (for Fe: 0.1) to -882 K >> T_N (for for Fe: 0.3). The large magnitude of Weiss temperature at the negative side depicts frustrated AFM behaviour of Fesubstituted samples that found to be similar to the Fe substituted BiMn₂O₅ as reported in (Journal of Magnetism and Magnetic Materials 452 (2018) 120-128). The value of Weiss temperature is found to be reduced for Fe: 0.4 and not escalated at that extent for Fe: 0.5 substituted samples. This is because for Fe: 0.4 and 0.5 samples, Fe³⁺ substitution is sufficient to enhance the strength of Mn⁴⁺-O-Fe³⁺-O-Mn⁴⁺ interaction as already discussed in section of low temperature (5K) M-H analysis. The effective magnetic moment for Fe-substituted samples cannot be correctly predicted due to the frustrated AFM behaviour of the samples.