Supplementary Information

Diverse tetracyanodihydrodipyradinopyradine clathrate crystals assembled from weak intermolecular interactions

Kosuke Watanabe,^{a,b} Haruki Sugiyama^{a,b,c,d} and Yasutomo Segawa*a,b

^a Institute for Molecular Science, Myodaiji, Okazaki, 444-8787, Japan

^b The Graduate University for Advanced Studies, SOKENDAI, Myodaiji, Okazaki, 444-8787, Japan.

^c Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science

and Society, Tokai, Ibaraki 319-1106, Japan

^d Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1, Ookayama, Meguro, Tokyo, Japan

E-mail: segawa@ims.ac.jp

Table of Contents

1.	Experimental section	S2
2.	Computational study	S3
3.	X-ray crystallography	S4–S7
4.	Exposure experiments	S 8
5.	Desorption tracking by TG-DTA	S9–S10
6.	Desorption tracking by PXRD	S11
7.	References	S12

1. Experimental section

Single crystal X-ray diffraction measurements

Details of the crystal data and a summary of the intensity data collection parameters are listed in Table S4. Suitable crystals were mounted with mineral oil on a MiTeGen MicroMounts and transferred to the goniometer of the kappa goniometer of a RIGAKU XtaLAB Synergy Custom system with equipped with mirror monochromated Mo K α radiation ($\lambda = 0.71073$ Å) and HyPix-6000HEIC detector or RIGAKU supernova equipped with mirror monochromated Cu K α radiation ($\lambda = 1.54184$ Å) and EosS2 CCD detector. Cell parameters were determined and refined, and raw frame data were integrated using CrysAlisPro (Rigaku Oxford Diffraction, 2018). The structures were solved by dual methods using SHELXT^{S1} and refined by full-matrix least-squares techniques against F^2 with SHELXL-2018/3^{S2} using Olex2 software package.^{S3} The intensities were corrected for Lorentz and polarization effects. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were refined isotropically as riding model.

Powder X-ray diffraction (PXRD) measurements

PXRD data were recorded by using Rigaku MiniFlex 600-C diffractometer with Cu K α , $\lambda = 1.54184$ Å or Rigaku SmartLab diffractometer with Cu K α , $\lambda = 1.54184$ Å. The 2θ scans were performed with a step size of 0.01° and a speed of 5° min⁻¹, unless otherwise noted.

For comparison, PXRD pattern simulation was performed using the CIF file **HC-TCDP(r.t.)** obtained by single crystal X-ray diffraction and visualized using Mercury 2024.3.1 with a FWHM (Full Width at Half Maximum) value of 0.1°.

Thermogravimetric analysis (TG-DTA) measurements

TG-DTA data were recorded simultaneously on a Rigaku Thermo Plus EVO II TG8120 instrument. The samples were heated from room temperature to 250 °C at 10 °C/min under a dry nitrogen atmosphere (flow rate = 50 mL/min).

2. Computational study

Gaussian

The Gaussian 16 program^{S4} running on a NEC LX 110Rh system was used for all calculations. Structures were optimized at B3LYP/6-31G(d).^{S5,S6} Zero-point energy, enthalpy, and Gibbs free energy at 298.15 K and 1 atm were estimated from the gas-phase studies. Harmonic vibration frequency calculation at the same level was performed to verify all stationary points as local minima (with no imaginary frequency). Uncorrected and thermal-corrected energies of stationary points were shown in Table S1.

Table S1 Uncorrected and thermal-corrected (298 K) energies of stationary points (Hartree).^a

	Ε	E + ZPE	Н	G
TCDP	-1703.92138916	-1703.456075	-1703.417650	-1703.530864

a) *E*: electronic energy; *ZPE*: zero-point energy; $H (= E + ZPE + E_{vib} + E_{rot} + E_{trans} + RT)$: sum of electronic and thermal enthalpies; G (= H - TS): sum of electronic and thermal free energies.

NCI plot

NCI plot^{57,58} was calculated by a NCIPLOT 4.0 program using crystal structures of **TCDP**·acetone and **TCDP**·MeCN.

CrystalExplorer

CE-B3LYP was employed for all crystal data calculations using CrystalExplorer 21.3,^{S9} which included energy decomposition analysis. The following equations 4.1 relate the E_{tot} to the E_{ele} , E_{pol} , E_{dis} , and E_{rep} . The scaling factor in the CE-B3LYP method is given in Table S2.

$$E_{tot} = k_{ele} \cdot E_{ele} + k_{pol} \cdot E_{pol} + k_{dis} \cdot E_{dis} + k_{rep} \cdot E_{rep}$$
(4.1)

Table S2 Scaling factor in this calculation.

	k _{ele}	k_{pol}	<i>k</i> _{dis}	k _{rep}
CE-B3LYP	1.057	0.740	0.871	0.618

Table S3 Energy of interactions between a TCDP molecule and the most interacting TCDP or guest molecule.

kJ∙mol ^{−1}	interaction with	E_{ele}	E_{pol}	E_{dis}	E_{rep}	E_{tot}
	TCDP	-34.7	-8.8	-50.7	37.3	-64.3
ICDFEIDAC	EtOAc*	-20.3	-6.7	-31.1	21.5	-40.2
TCDD. a a store	TCDP	-36.9	-10.9	-65.4	52.1	-71.8
ICDP [*] acetone	acetone	-19.6	-6.9	-26.5	22.7	-34.9
TCDD.honzono	TCDP	-27.3	-7.8	-32.3	21.1	-49.7
I CDP · benzene	benzene	-8.3	-3.2	-37.3	21.1	-30.6
TCDD.M.CN	TCDP	-33.0	-8.6	-40.7	39.6	-52.1
ICDPWIECN	MeCN	-16.0	-5.3	-12.0	14.8	-22.2
TCDD.DCF	TCDP	-30.2	-7.9	-37.5	30.4	-51.7
TUPDUE	DCE	-7.5	-1.4	-13.7	10.3	-14.6

* Average value from two crystallographically independent molecules.

3. X-ray crystallography

Table 54 Crystanographic data and structure remement details of obtained crystals.
--

	TCDP · 2EtOAc	TCDP · PhCl	TCDP ·PhI
formura	$C_{30}H_{22}N_{10}\cdot 2(C_4H_8O_2)$	$C_{30}H_{22}N_{10}\cdot C_6H_5Cl$	$C_{30}H_{22}N_{10}\cdot C_{6}H_{5}I$
Fw	698.78	635.12	726.57
$T(\mathbf{K})$	143.15	143.15	143.15
λ (Å)	0.71073	0.71073	0.71073
cryst syst	Orthorhombic	Triclinic	Triclinic
space group	$Pna2_1$	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	26.3360(19)	8.1115(4)	8.1750(4)
<i>b</i> (Å)	9.3587(5)	8.9633(6)	9.1048(5)
<i>c</i> (Å)	15.4039(8)	11.3830(7)	11.3499(6)
α (deg)	90	82.417(5)	81.725(4)
β (deg)	90	78.205(5)	77.867(4)
γ (deg)	90	77.833(5)	76.129(4)
$V(A^3)$	3796.6(4)	788.51(8)	797.93(7)
Z	4	1	1
$D_{\text{calc}} \left(\mathbf{g} \cdot \mathbf{cm}^{-1} \right)$	1.223	1.338	1.512
μ (mm ⁻¹)	0.083	0.165	1.047
F(000)	1472.0	330.0	366.0
cryst size (mm)	$0.10 \times 0.10 \times 0.08$	$0.10 \times 0.10 \times 0.10$	$0.10 \times 0.10 \times 0.10$
2θ range (deg)	5.960 to 54.190	4.670 to 54.202	5.630 to 54.198
reflns collected	16645	9331	8772
indep reflns/ R_{int}	/049/0.0464	3480/0.0558	3512/0.0464
params	4/9	223	235
$GOF \text{ on } F^-$	1.019	1.080	1.019
$R_1, WR_2 [I \ge 20(I)]$ $P_1, WR_2 (all data)$	0.0000, 0.1100	0.0804, 0.2022	0.0317, 0.1290
$\Lambda_1, W\Lambda_2$ (all data)	0.0965, 0.1592	2420020	2420021
	2423323	2429930	2429931
	TCDP · 2acetone	TCDP·2DMF	TCDP·2THF
formura	$\frac{\text{TCDP} \cdot 2\text{acetone}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{3}\text{H}_{6}\text{O})}$	TCDP ·2DMF C ₃₀ H ₂₂ N ₁₀ ·2(C ₃ H ₇ NO)	TCDP·2THF C ₃₀ H ₂₂ N ₁₀ ·2(C ₄ H ₈ O)
formura Fw	TCDP·2acetone C ₃₀ H ₂₂ N ₁₀ ·2(C ₃ H ₆ O) 638.73	TCDP·2DMF C ₃₀ H ₂₂ N ₁₀ ·2(C ₃ H ₇ NO) 668.77	TCDP·2THF C ₃₀ H ₂₂ N ₁₀ ·2(C ₄ H ₈ O) 666.78
formura Fw T (K)	$\frac{\text{TCDP} \cdot 2\text{acetone}}{C_{30}H_{22}N_{10} \cdot 2(C_{3}H_{6}O)}$ 638.73 143.15	TCDP·2DMF C ₃₀ H ₂₂ N ₁₀ ·2(C ₃ H ₇ NO) 668.77 200.15	TCDP·2THF C ₃₀ H ₂₂ N ₁₀ ·2(C ₄ H ₈ O) 666.78 143.15
formura Fw T(K) λ (Å)	$\frac{\text{TCDP} \cdot 2\text{acetone}}{C_{30}H_{22}N_{10} \cdot 2(C_3H_6O)} \\ 638.73 \\ 143.15 \\ 0.71073$	TCDP·2DMF C ₃₀ H ₂₂ N ₁₀ ·2(C ₃ H ₇ NO) 668.77 200.15 1.54184	TCDP·2THF C ₃₀ H ₂₂ N ₁₀ ·2(C ₄ H ₈ O) 666.78 143.15 0.71073
formura Fw T(K) λ (Å) cryst syst	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	TCDP·2DMF C ₃₀ H ₂₂ N ₁₀ ·2(C ₃ H ₇ NO) 668.77 200.15 1.54184 Monoclinic	TCDP·2THF C ₃₀ H ₂₂ N ₁₀ ·2(C ₄ H ₈ O) 666.78 143.15 0.71073 Monoclinic
formura Fw T(K) λ (Å) cryst syst space group	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{TCDP} \cdot 2\text{DMF}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{3}\text{H}_{7}\text{NO})}$ $\frac{668.77}{200.15}$ 1.54184 Monoclinic $P2_{1}/n$	$\frac{\text{TCDP} \cdot 2\text{THF}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O})}$ 666.78 143.15 0.71073 Monoclinic $P2_1/n$
formura Fw T(K) λ (Å) cryst syst space group a (Å)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{TCDP} \cdot 2\text{DMF}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{3}\text{H}_{7}\text{NO})}$ $\frac{668.77}{200.15}$ 1.54184 Monoclinic $\frac{P2_{1}/n}{9.0545(2)}$	$\frac{\text{TCDP} \cdot 2\text{THF}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O})}$ 666.78 143.15 0.71073 Monoclinic P2_1/n 9.0161(4)
formura Fw T(K) $\lambda(Å)$ cryst syst space group a(Å) b(Å)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{TCDP} \cdot 2\text{DMF}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{3}\text{H}_{7}\text{NO})}$ $\begin{array}{c} 668.77\\ 200.15\\ 1.54184\\ \text{Monoclinic}\\ P2_{1}/n\\ 9.0545(2)\\ 12.3215(3)\\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ & 143.15 \\ & 0.71073 \\ \hline \text{Monoclinic} \\ & P2_1/n \\ & 9.0161(4) \\ & 12.1980(6) \end{array}$
formura Fw T(K) $\lambda(Å)$ cryst syst space group a(Å) b(Å) c(Å)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{\text{TCDP} \cdot 2\text{DMF}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{3}\text{H}_{7}\text{NO})}$ 668.77 200.15 1.54184 Monoclinic $P2_{1}/n$ $9.0545(2)$ $12.3215(3)$ $16.3699(3)$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ Monoclinic \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \end{array}$
formura Fw T(K) $\lambda(A)$ cryst syst space group a(A) b(A) c(A) a(deg)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot 2 \textbf{DMF} \\ \hline \textbf{C}_{30} \textbf{H}_{22} \textbf{N}_{10} \cdot 2 (\textbf{C}_{3} \textbf{H}_{7} \textbf{NO}) \\ \hline \textbf{668.77} \\ 200.15 \\ 1.54184 \\ \textbf{Monoclinic} \\ P2_{1}/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ & 90 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
formura Fw T (K) $\lambda (Å)$ cryst syst space group a (Å) b (Å) c (Å) a (deg) $\beta (deg)$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot 2 \textbf{DMF} \\ \hline C_{30} H_{22} N_{10} \cdot 2 (C_3 H_7 \textbf{NO}) \\ 668.77 \\ 200.15 \\ 1.54184 \\ \textbf{Monoclinic} \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ & 90 \\ 99.256(4) \\ \end{array}$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) μ (Å)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot 2 \textbf{DMF} \\ \hline \textbf{C}_{30} \textbf{H}_{22} \textbf{N}_{10} \cdot 2 (\textbf{C}_{3} \textbf{H}_{7} \textbf{NO}) \\ 668.77 \\ 200.15 \\ 1.54184 \\ \textbf{Monoclinic} \\ P2_{1}/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1002 \text{ of } (\textbf{T}) \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ 90 \\ 99.256(4) \\ 90 \\ 1740.10(14) \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot 2 \textbf{DMF} \\ \hline \textbf{C}_{30} \textbf{H}_{22} \textbf{N}_{10} \cdot 2 (\textbf{C}_{3} \textbf{H}_{7} \textbf{NO}) \\ \hline 668.77 \\ 200.15 \\ 1.54184 \\ \textbf{Monoclinic} \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ & 143.15 \\ & 0.71073 \\ \hline \text{Monoclinic} \\ & P2_1/n \\ & 9.0161(4) \\ & 12.1980(6) \\ & 16.1054(7) \\ & 90 \\ & 99.256(4) \\ & 90 \\ & 1748.18(14) \end{array}$
formura Fw T(K) $\lambda(Å)$ cryst syst space group a(Å) b(Å) c(Å) a(deg) $\beta(deg)$ $\gamma(deg)$ $V(Å^3)$ Z	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot 2 \textbf{DMF} \\ \hline \textbf{C}_{30} \textbf{H}_{22} \textbf{N}_{10} \cdot 2 (\textbf{C}_{3} \textbf{H}_{7} \textbf{NO}) \\ \hline 668.77 \\ 200.15 \\ 1.54184 \\ \textbf{Monoclinic} \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ 90 \\ 99.256(4) \\ 90 \\ 1748.18(14) \\ 2 \\ 1.267 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot 2 \textbf{DMF} \\ \hline \textbf{C}_{30} \textbf{H}_{22} \textbf{N}_{10} \cdot 2 (\textbf{C}_{3} \textbf{H}_{7} \textbf{NO}) \\ 668.77 \\ 200.15 \\ 1.54184 \\ \textbf{Monoclinic} \\ P2_{1}/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ 90 \\ 99.256(4) \\ 90 \\ 1748.18(14) \\ 2 \\ 1.267 \\ 0.982 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) E(000)	$\begin{array}{r} \textbf{TCDP} \cdot 2acetone \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_6O) \\ \hline 638.73 \\ 143.15 \\ 0.71073 \\ \hline Monoclinic \\ P2_1/n \\ 8.7836(4) \\ 12.5914(5) \\ 15.6251(9) \\ 90 \\ 96.763(5) \\ 90 \\ 1716.08(14) \\ 2 \\ 1.236 \\ 0.081 \\ 672.0 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2 \textbf{DMF} \\ \hline \textbf{C}_{30} \textbf{H}_{22} \textbf{N}_{10} \cdot 2 (\textbf{C}_{3} \textbf{H}_{7} \textbf{NO}) \\ 668.77 \\ 200.15 \\ 1.54184 \\ \textbf{Monoclinic} \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ 704.0 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ 90 \\ 99.256(4) \\ 90 \\ 1748.18(14) \\ 2 \\ 1.267 \\ 0.083 \\ 704.0 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm)	$\begin{array}{c} \hline \textbf{TCDP} \cdot 2acetone \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_6O) \\ \hline 638.73 \\ 143.15 \\ 0.71073 \\ \hline Monoclinic \\ P2_1/n \\ 8.7836(4) \\ 12.5914(5) \\ 15.6251(9) \\ 90 \\ 90 \\ 96.763(5) \\ 90 \\ 1716.08(14) \\ 2 \\ 1.236 \\ 0.081 \\ 672.0 \\ 0.10 \times 0.10 \times 0.10 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2DMF \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_7NO) \\ 668.77 \\ 200.15 \\ 1.54184 \\ Monoclinic \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ 704.0 \\ 0.10 \times 0.08 \times 0.08 \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ 90 \\ 99.256(4) \\ 90 \\ 1748.18(14) \\ 2 \\ 1.267 \\ 0.083 \\ 704.0 \\ 0 \ 10 \times 0.03 \times 0.02 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg)	$\begin{array}{r} \textbf{TCDP} \cdot 2acetone \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_{3}H_{6}O) \\ \hline 638.73 \\ 143.15 \\ 0.71073 \\ \hline Monoclinic \\ P2_{1}/n \\ 8.7836(4) \\ 12.5914(5) \\ 15.6251(9) \\ 90 \\ 90 \\ 96.763(5) \\ 90 \\ 1716.08(14) \\ 2 \\ 1.236 \\ 0.081 \\ 672.0 \\ 0.10 \times 0.10 \times 0.10 \\ 5.682 \text{ to } 54.206 \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2 \text{DMF} \\ \hline \textbf{C}_{30} \text{H}_{22} \text{N}_{10} \cdot 2(\text{C}_{3} \text{H}_{7} \text{NO}) \\ 668.77 \\ 200.15 \\ 1.54184 \\ \text{Monoclinic} \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ 704.0 \\ 0.10 \times 0.08 \times 0.08 \\ 8.988 \text{ to } 136.438 \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{THF} \\ \hline \textbf{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ & 143.15 \\ & 0.71073 \\ \hline \textbf{Monoclinic} \\ & P2_1/n \\ & 9.0161(4) \\ & 12.1980(6) \\ & 16.1054(7) \\ & 90 \\ & 99.256(4) \\ & 90 \\ & 1748.18(14) \\ & 2 \\ & 1.267 \\ & 0.083 \\ & 704.0 \\ & 0.10 \times 0.03 \times 0.03 \\ & 5.908 \text{ to } 54.206 \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) refine collected	$\begin{array}{r} \textbf{TCDP} \cdot 2acetone \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_6O) \\ \hline 638.73 \\ 143.15 \\ 0.71073 \\ \hline Monoclinic \\ P2_1/n \\ 8.7836(4) \\ 12.5914(5) \\ 15.6251(9) \\ 90 \\ 90 \\ 96.763(5) \\ 90 \\ 1716.08(14) \\ 2 \\ 1.236 \\ 0.081 \\ 672.0 \\ 0.10 \times 0.10 \times 0.10 \\ 5.682 \text{ to } 54.206 \\ 11316 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2 DMF \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_7NO) \\ 668.77 \\ 200.15 \\ 1.54184 \\ Monoclinic \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ 704.0 \\ 0.10 \times 0.08 \times 0.08 \\ 8.988 \text{ to } 136.438 \\ 6480 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{THF} \\ \hline \textbf{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \textbf{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ 90 \\ 99.256(4) \\ 90 \\ 1748.18(14) \\ 2 \\ 1.267 \\ 0.083 \\ 704.0 \\ 0.10 \times 0.03 \times 0.03 \\ 5.908 \text{ to } 54.206 \\ 13406 \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/ P_{calc}	$\begin{array}{r} \textbf{TCDP} \cdot 2acetone \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_6O) \\ \hline 638.73 \\ 143.15 \\ 0.71073 \\ \hline Monoclinic \\ P2_1/n \\ 8.7836(4) \\ 12.5914(5) \\ 15.6251(9) \\ 90 \\ 96.763(5) \\ 90 \\ 1716.08(14) \\ 2 \\ 1.236 \\ 0.081 \\ 672.0 \\ 0.10 \times 0.10 \times 0.10 \\ 5.682 \text{ to } 54.206 \\ 11316 \\ 3772/0 0.716 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2 DMF \\ \hline C_{30}H_{22}N_{10} \cdot 2 (C_3H_7NO) \\ 668.77 \\ 200.15 \\ 1.54184 \\ \hline Monoclinic \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ 704.0 \\ 0.10 \times 0.08 \times 0.08 \\ 8.988 \text{ to } 136.438 \\ 6480 \\ 330/0 0241 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ & 143.15 \\ & 0.71073 \\ \hline \text{Monoclinic} \\ P_{21}/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ & 90 \\ 99.256(4) \\ & 90 \\ 1748.18(14) \\ & 2 \\ & 1.267 \\ & 0.083 \\ & 704.0 \\ 0.10 \times 0.03 \times 0.03 \\ & 5.908 \text{ to } 54.206 \\ & 13406 \\ & 3855/0 0547 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/ R_{int}	$\begin{array}{r} \textbf{TCDP} \cdot 2acetone \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_6O) \\ \hline 638.73 \\ 143.15 \\ 0.71073 \\ \hline Monoclinic \\ P2_1/n \\ 8.7836(4) \\ 12.5914(5) \\ 15.6251(9) \\ 90 \\ 96.763(5) \\ 90 \\ 1716.08(14) \\ 2 \\ 1.236 \\ 0.081 \\ 672.0 \\ 0.10 \times 0.10 \times 0.10 \\ 5.682 \text{ to } 54.206 \\ 11316 \\ 3772/0.0716 \\ 222 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2 DMF \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_7NO) \\ 668.77 \\ 200.15 \\ 1.54184 \\ \hline Monoclinic \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ 704.0 \\ 0.10 \times 0.08 \times 0.08 \\ 8.988 \text{ to } 136.438 \\ 6480 \\ 330/0.0241 \\ 278 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ 90 \\ 99.256(4) \\ 90 \\ 1748.18(14) \\ 2 \\ 1.267 \\ 0.083 \\ 704.0 \\ 0.10 \times 0.03 \times 0.03 \\ 5.908 \text{ to } 54.206 \\ 13406 \\ 3855/0.0547 \\ 239 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/ R_{int} params GOF on F^2	$\begin{array}{r} \textbf{TCDP} \cdot 2acetone \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_6O) \\ \hline 638.73 \\ 143.15 \\ 0.71073 \\ \hline Monoclinic \\ P2_1/n \\ 8.7836(4) \\ 12.5914(5) \\ 15.6251(9) \\ 90 \\ 90 \\ 96.763(5) \\ 90 \\ 1716.08(14) \\ 2 \\ 1.236 \\ 0.081 \\ 672.0 \\ 0.10 \times 0.10 \times 0.10 \\ 5.682 \text{ to } 54.206 \\ 11316 \\ 3772/0.0716 \\ 222 \\ 1.041 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2DMF \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_7NO) \\ 668.77 \\ 200.15 \\ 1.54184 \\ \hline Monoclinic \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ 704.0 \\ 0.10 \times 0.08 \times 0.08 \\ 8.988 \text{ to } 136.438 \\ 6480 \\ 330/0.0241 \\ 278 \\ 1.029 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ 90 \\ 99.256(4) \\ 90 \\ 1748.18(14) \\ 2 \\ 1.267 \\ 0.083 \\ 704.0 \\ 0.10 \times 0.03 \times 0.03 \\ 5.908 \text{ to } 54.206 \\ 13406 \\ 3855/0.0547 \\ 239 \\ 1.008 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/ R_{int} params GOF on F^2 R_1 w R_2 [$I \ge 2 \sigma$ (D]	$\begin{array}{r} \textbf{TCDP} \cdot 2acetone \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_6O) \\ \hline 638.73 \\ 143.15 \\ 0.71073 \\ \hline Monoclinic \\ P2_1/n \\ 8.7836(4) \\ 12.5914(5) \\ 15.6251(9) \\ 90 \\ 90 \\ 96.763(5) \\ 90 \\ 1716.08(14) \\ 2 \\ 1.236 \\ 0.081 \\ 672.0 \\ 0.10 \times 0.10 \times 0.10 \\ 5.682 \text{ to } 54.206 \\ 11316 \\ 3772/0.0716 \\ 222 \\ 1.041 \\ 0.0623 \\ 0.1608 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2 DMF \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_7NO) \\ 668.77 \\ 200.15 \\ 1.54184 \\ Monoclinic \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ 704.0 \\ 0.10 \times 0.08 \times 0.08 \\ 8.988 \text{ to } 136.438 \\ 6480 \\ 330/0.0241 \\ 278 \\ 1.029 \\ 0.0529 \\ 0.1458 \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/n \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ 90 \\ 99.256(4) \\ 90 \\ 1748.18(14) \\ 2 \\ 1.267 \\ 0.083 \\ 704.0 \\ 0.10 \times 0.03 \times 0.03 \\ 5.908 \text{ to } 54.206 \\ 13406 \\ 3855/0.0547 \\ 239 \\ 1.008 \\ 0.0591 \\ 0.1201 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/ R_{int} params GOF on F^2 R_1 , wR_2 [$I \ge 2\sigma(I)$] R_1 , wR_2 (all data)	$\begin{array}{r} \textbf{TCDP} \cdot 2acetone \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_6O) \\ \hline 638.73 \\ 143.15 \\ 0.71073 \\ \hline Monoclinic \\ P2_1/n \\ 8.7836(4) \\ 12.5914(5) \\ 15.6251(9) \\ 90 \\ 90 \\ 96.763(5) \\ 90 \\ 1716.08(14) \\ 2 \\ 1.236 \\ 0.081 \\ 672.0 \\ 0.10 \times 0.10 \times 0.10 \\ 5.682 \text{ to } 54.206 \\ 11316 \\ 3772/0.0716 \\ 222 \\ 1.041 \\ 0.0623, 0.1608 \\ 0.0931, 0.1837 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2DMF \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_3H_7NO) \\ 668.77 \\ 200.15 \\ 1.54184 \\ \hline Monoclinic \\ P2_1/n \\ 9.0545(2) \\ 12.3215(3) \\ 16.3699(3) \\ 90 \\ 92.908(2) \\ 90 \\ 1823.96(7) \\ 2 \\ 1.218 \\ 0.652 \\ 704.0 \\ 0.10 \times 0.08 \times 0.08 \\ 8.988 \text{ to } 136.438 \\ 6480 \\ 330/0.0241 \\ 278 \\ 1.029 \\ 0.0529, 0.1458 \\ 0.0606, 0.1565 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{THF} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_4\text{H}_8\text{O}) \\ & 666.78 \\ & 143.15 \\ & 0.71073 \\ \hline \text{Monoclinic} \\ P_{2_1/n} \\ 9.0161(4) \\ 12.1980(6) \\ 16.1054(7) \\ & 90 \\ 99.256(4) \\ & 90 \\ 1748.18(14) \\ & 2 \\ & 1.267 \\ & 0.083 \\ & 704.0 \\ 0.10 \times 0.03 \times 0.03 \\ & 5.908 \text{ to } 54.206 \\ & 13406 \\ & 3855/0.0547 \\ & 239 \\ & 1.008 \\ & 0.0591, 0.1201 \\ & 0.0985, 0.1343 \\ \end{array}$

	TCDP · 4benzene	TCDP · 4thiophene	TCDP·2Ph ₂ O
formura	$C_{30}H_{22}N_{10}\cdot 4(C_6H_6)$	$C_{30}H_{22}N_{10}\cdot 4(C_4H_4S)$	$C_{30}H_{22}N_{10}\cdot 2(C_{12}H_{10}O)$
Fw	835.01	859.10	862.97
$T(\mathbf{K})$	200.15	143.15	143.15
$\lambda(\dot{A})$	1.54184	0.71073	0.71073
cryst syst	Triclinic	Triclinic	Triclinic
space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a(Å)	10.4303(7)	10.4879(5)	9.6542(6)
$h(\mathbf{A})$	11,1097(10)	10.8573(5)	114847(10)
$c(\mathbf{A})$	11.7866(10)	11.2117(5)	11.5991(9)
α (deg)	65.920(9)	68.012(4)	112.246(8)
β (deg)	69 939(7)	68 117(4)	95 182(6)
γ (deg)	85 587(7)	86 081(4)	103 220(7)
$V(Å^3)$	1168 12(19)	$1094\ 75(10)$	1136 23(17)
Z	1	1	1
D_{cale} (g·cm ⁻¹)	1 187	1 303	1 261
$\mu (\text{mm}^{-1})$	0.566	0.263	0.080
F(000)	440.0	448.0	452.0
cryst size (mm)	$0.05 \times 0.03 \times 0.03$	$0.15 \times 0.15 \times 0.15$	$0.05 \times 0.05 \times 0.20$
2A range (deg)	8 742 to 136 492	6 080 to 52 744	5 272 to 54 204
reflue collected	7472	13745	15682
inden reflns/Rint	4263/0 0331	4471/0 0454	5008/0 1057
narams	205/0.0551	274	301
$GOE \text{ on } F^2$	0.990	1 076	1 194
$R_1 = WR_2 [I > 2\sigma(I)]$	0.0614 0.1388	0.0997_0.2865	0 1422 0 2521
$R_1, wR_2 [1 - 20(1)]$ $R_1, wR_2 (all data)$	0.1042 0.1705	0.1227 0.3145	0.2316 0.2901
CCDC Number	2429935	2429936	2429937
CODE Number	2129935	2129950	2129937
	TCDP · 2 pyridine	TCDP ·DCM	TCDP·2DCE
formura	$\frac{\text{TCDP} \cdot 2\text{pyridine}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_5\text{H}_5\text{N})}$	TCDP·DCM C ₃₀ H ₂₂ N ₁₀ ·CH ₂ Cl ₂	TCDP·2DCE C ₃₀ H ₂₂ N ₁₀ ·2(C ₂ H ₄ Cl ₂)
formura Fw	TCDP ·2pyridine C ₃₀ H ₂₂ N ₁₀ ·2(C ₅ H ₅ N) 680.77	TCDP·DCM C ₃₀ H ₂₂ N ₁₀ ·CH ₂ Cl ₂ 607.50	TCDP·2DCE C ₃₀ H ₂₂ N ₁₀ ·2(C ₂ H ₄ Cl ₂) 720.48
formura Fw T (K)	TCDP·2pyridine C ₃₀ H ₂₂ N ₁₀ ·2(C ₅ H ₅ N) 680.77 143.15	TCDP·DCM C ₃₀ H ₂₂ N ₁₀ ·CH ₂ Cl ₂ 607.50 143.15	TCDP·2DCE C ₃₀ H ₂₂ N ₁₀ ·2(C ₂ H ₄ Cl ₂) 720.48 143.15
formura Fw T(K) λ (Å)	TCDP·2pyridine C ₃₀ H ₂₂ N ₁₀ ·2(C ₅ H ₅ N) 680.77 143.15 1.54184	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30} H_{22} N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \end{array}$	TCDP·2DCE C ₃₀ H ₂₂ N ₁₀ ·2(C ₂ H ₄ Cl ₂) 720.48 143.15 0.71073
formura Fw T(K) λ (Å) cryst syst	$\frac{\text{TCDP} \cdot 2\text{pyridine}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_5\text{H}_5\text{N})} \\ 680.77 \\ 143.15 \\ 1.54184 \\ \text{Triclinic}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	TCDP·2DCE C ₃₀ H ₂₂ N ₁₀ ·2(C ₂ H ₄ Cl ₂) 720.48 143.15 0.71073 Monoclinic
formura Fw T(K) λ (Å) cryst syst space group	$\begin{array}{c} \textbf{TCDP} \cdot 2pyridine \\ C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ 680.77 \\ 143.15 \\ 1.54184 \\ Triclinic \\ P-1 \end{array}$	$\frac{\text{TCDP} \cdot \text{DCM}}{C_{30}H_{22}N_{10} \cdot \text{CH}_2\text{Cl}_2}$ 607.50 143.15 0.71073 Monoclinic $C2/c$	$\frac{\text{TCDP} \cdot 2\text{DCE}}{\text{C}_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_2\text{H}_4\text{Cl}_2)}$ 720.48 143.15 0.71073 Monoclinic $P2_1/c$
formura Fw T(K) λ (Å) cryst syst space group a (Å)	$\begin{array}{c} \textbf{TCDP} \cdot 2pyridine \\ C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ 680.77 \\ 143.15 \\ 1.54184 \\ Triclinic \\ P-1 \\ 9.3409(8) \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å)	$\begin{array}{c} \textbf{TCDP} \cdot 2pyridine \\ C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ 680.77 \\ 143.15 \\ 1.54184 \\ Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ \hline C2/c \\ 14.1431(5) \\ 9.8855(3) \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å)	$\begin{array}{r} \textbf{TCDP} \cdot 2pyridine \\ C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ 680.77 \\ 143.15 \\ 1.54184 \\ Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \end{array}$	$\begin{array}{c} \hline \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{2}\text{H}_{4}\text{Cl}_{2}) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \textbf{Monoclinic} \\ P2_{1}/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \end{array}$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \end{array}$	$\begin{array}{c} \hline \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_2H_4Cl_2) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \textbf{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \end{array}$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ \hline C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ \end{array}$	$\begin{array}{c} \hline \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_2\text{H}_4\text{Cl}_2) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \textbf{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ \end{array}$
formura Fw T (K) $\lambda (Å)$ cryst syst space group a (Å) b (Å) c (Å) a (deg) $\beta (deg)$ $\gamma (deg)$ $V (Å^3)$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_2\text{H}_4\text{Cl}_2) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \end{array}$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z	$\begin{array}{r} \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \end{array}$	$\begin{array}{c} \hline \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_2\text{H}_4\text{Cl}_2) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \textbf{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \end{array}$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹)	$\begin{array}{r} \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \end{array}$	$\begin{array}{c} \hline \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_2H_4Cl_2) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \textbf{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ \end{array}$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹)	$\begin{array}{r c} \hline \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \end{array}$	$\begin{array}{c} \hline \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_2\text{H}_4\text{Cl}_2) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \textbf{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ \end{array}$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000)	$\begin{array}{r c} \hline \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ 712.0 \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \\ 1256.0 \\ \end{array}$	$\begin{array}{r} \hline \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{2}\text{H}_{4}\text{Cl}_{2}) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \textbf{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ 744.0 \\ \end{array}$
formura Fw T (K) $\lambda (Å)$ cryst syst space group a (Å) b (Å) c (Å) a (deg) $\beta (deg)$ $\gamma (deg)$ $V (Å^3)$ Z $D_{calc} (g \cdot cm^{-1})$ $\mu (mm^{-1})$ F(000) cryst size (mm)	$\begin{array}{r c} \hline \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ 712.0 \\ 0.15 \times 0.08 \times 0.02 \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \\ 1256.0 \\ 0.10 \times 0.05 \times 0.05 \end{array}$	$\begin{array}{r} \hline \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_2\text{H}_4\text{Cl}_2) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \textbf{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ 744.0 \\ 0.10 \times 0.10 \times 0.02 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg)	$\begin{array}{r} \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ 712.0 \\ 0.15 \times 0.08 \times 0.02 \\ 5.796 \text{ to } 136.502 \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \\ 1256.0 \\ 0.10 \times 0.05 \times 0.05 \\ 5.096 \text{ to } 54.206 \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{2}\text{H}_{4}\text{Cl}_{2}) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ 744.0 \\ 0.10 \times 0.10 \times 0.02 \\ 4.872 \text{ to } 50.692 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected	$\begin{array}{r} \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ 680.77 \\ 143.15 \\ 1.54184 \\ Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ 712.0 \\ 0.15 \times 0.08 \times 0.02 \\ 5.796 \text{ to } 136.502 \\ 6592 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \\ 1256.0 \\ 0.10 \times 0.05 \times 0.05 \\ 5.096 \text{ to } 54.206 \\ 14879 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{2}\text{H}_{4}\text{Cl}_{2}) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ P2_{1}/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ 744.0 \\ 0.10 \times 0.10 \times 0.02 \\ 4.872 \text{ to } 50.692 \\ 13167 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D _{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/R _{int}	$\begin{array}{r} \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ 712.0 \\ 0.15 \times 0.08 \times 0.02 \\ 5.796 \text{ to } 136.502 \\ 6592 \\ 6592 \\ 6592/- \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \\ 1256.0 \\ 0.10 \times 0.05 \times 0.05 \\ 5.096 \text{ to } 54.206 \\ 14879 \\ 3278/0.0280 \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{2}\text{H}_{4}\text{Cl}_{2}) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_{1}/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ 744.0 \\ 0.10 \times 0.10 \times 0.02 \\ 4.872 \text{ to } 50.692 \\ 13167 \\ 3239/0.0242 \\ \end{array}$
formura Fw T (K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D _{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/R _{int} params	$\begin{array}{r c} \hline \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ 712.0 \\ 0.15 \times 0.08 \times 0.02 \\ 5.796 \text{ to } 136.502 \\ 6592 \\ 6592/- \\ 476 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \\ 1256.0 \\ 0.10 \times 0.05 \times 0.05 \\ 5.096 \text{ to } 54.206 \\ 14879 \\ 3278/0.0280 \\ 211 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{2}\text{H}_{4}\text{Cl}_{2}) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P_{21/c} \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ 744.0 \\ 0.10 \times 0.10 \times 0.02 \\ 4.872 \text{ to } 50.692 \\ 13167 \\ 3239/0.0242 \\ 237 \\ \end{array}$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/ R_{int} params GOF on F^2	$\begin{array}{r c} \hline \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ 712.0 \\ 0.15 \times 0.08 \times 0.02 \\ 5.796 \text{ to } 136.502 \\ \hline 6592 \\ 6592/- \\ 476 \\ 1.072 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \\ 1256.0 \\ 0.10 \times 0.05 \times 0.05 \\ 5.096 \text{ to } 54.206 \\ 14879 \\ 3278/0.0280 \\ 211 \\ 1.021 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot 2\textbf{DCE} \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_2H_4Cl_2) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ 744.0 \\ 0.10 \times 0.10 \times 0.02 \\ 4.872 \text{ to } 50.692 \\ 13167 \\ 3239/0.0242 \\ 237 \\ 1.040 \\ \end{array}$
formura Fw T(K) λ (Å) cryst syst space group a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cm ⁻¹) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/ R_{int} params GOF on F^2 R_1, wR_2 [$I > 2\sigma(I)$]	$\begin{array}{r} \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ 712.0 \\ 0.15 \times 0.08 \times 0.02 \\ 5.796 \text{ to } 136.502 \\ \hline 6592 \\ 6592/- \\ 476 \\ 1.072 \\ 0.0787, 0.2206 \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \\ 1256.0 \\ 0.10 \times 0.05 \times 0.05 \\ 5.096 \text{ to } 54.206 \\ 14879 \\ 3278/0.0280 \\ 211 \\ 1.021 \\ 0.0492, 0.1203 \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{2}\text{H}_{4}\text{Cl}_{2}) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ 744.0 \\ 0.10 \times 0.10 \times 0.02 \\ 4.872 \text{ to } 50.692 \\ 13167 \\ 3239/0.0242 \\ 237 \\ 1.040 \\ 0.0412, 0.1034 \\ \end{array}$
formura Fw T (K) $\lambda (Å)$ cryst syst space group a (Å) b (Å) c (Å) a (deg) $\beta (deg)$ $\gamma (deg)$ $V (Å^3)$ Z $D_{calc} (g \cdot cm^{-1})$ $\mu (mm^{-1})$ F(000) cryst size (mm) 2θ range (deg) reflns collected indep reflns/ R_{int} params GOF on F^2 $R_1, wR_2 [I > 2\sigma(I)]$ R_1, wR_2 (all data)	$\begin{array}{r} \textbf{TCDP} \cdot 2pyridine \\ \hline C_{30}H_{22}N_{10} \cdot 2(C_5H_5N) \\ \hline 680.77 \\ 143.15 \\ 1.54184 \\ \hline Triclinic \\ P-1 \\ 9.3409(8) \\ 12.7905(11) \\ 16.1963(14) \\ 70.868(8) \\ 83.072(7) \\ 82.513(7) \\ 1806.3(3) \\ 2 \\ 1.252 \\ 0.630 \\ 712.0 \\ 0.15 \times 0.08 \times 0.02 \\ 5.796 \text{ to } 136.502 \\ 6592 \\ -476 \\ 1.072 \\ 0.0787, 0.2206 \\ 0.1146, 0.2491 \\ \end{array}$	$\begin{array}{c} \textbf{TCDP} \cdot \textbf{DCM} \\ \hline C_{30}H_{22}N_{10} \cdot \textbf{CH}_2 \textbf{Cl}_2 \\ 607.50 \\ 143.15 \\ 0.71073 \\ \textbf{Monoclinic} \\ C2/c \\ 14.1431(5) \\ 9.8855(3) \\ 22.1824(12) \\ 90 \\ 106.036(4) \\ 90 \\ 2980.7(2) \\ 4 \\ 1.354 \\ 0.258 \\ 1256.0 \\ 0.10 \times 0.05 \times 0.05 \\ 5.096 \text{ to } 54.206 \\ 14879 \\ 3278/0.0280 \\ 211 \\ 1.021 \\ 0.0492, 0.1203 \\ 0.0634, 0.1277 \\ \end{array}$	$\begin{array}{r} \textbf{TCDP} \cdot 2\text{DCE} \\ \hline C_{30}\text{H}_{22}\text{N}_{10} \cdot 2(\text{C}_{2}\text{H}_{4}\text{Cl}_{2}) \\ 720.48 \\ 143.15 \\ 0.71073 \\ \hline \text{Monoclinic} \\ P2_1/c \\ 12.2866(4) \\ 8.6175(3) \\ 16.7215(5) \\ 90 \\ 90.982(3) \\ 90 \\ 1770.21(10) \\ 2 \\ 1.352 \\ 0.375 \\ 744.0 \\ 0.10 \times 0.10 \times 0.02 \\ 4.872 \text{ to } 50.692 \\ 13167 \\ 3239/0.0242 \\ 237 \\ 1.040 \\ 0.0412, 0.1034 \\ 0.0479, 0.1073 \\ \end{array}$

	TCDP·2MeCN	TCDP · PhMe	TCDP ·ODCB
formura	$C_{30}H_{22}N_{10}\cdot 2(C_2H_3N)$	$C_{30}H_{22}N_{10}\cdot C_7H_8$	$C_{30}H_{22}N_{10}\cdot C_6H_4Cl_2$
Fw	604.68	614.71	669.57
<i>T</i> (K)	143.15	143.15	143.15
λ (Å)	0.71073	0.71073	0.71073
cryst syst	Monoclinic	Monoclinic	Monoclinic
space group	$P2_{1}/c$	$P2_1/c$	$P2_1/c$
$a(\text{\AA})$	11.1575(5)	11.6712(2)	11.7987(4)
$b(\dot{A})$	8.9502(4)	18.7282(3)	19.0987(4)
c(Å)	16.0650(8)	24.0317(5)	23.8997(6)
α (deg)	90	90	90
β (deg)	90.969(4)	103.377(2)	103.244(3)
γ (deg)	90	90	90
$V(Å^3)$	2137.7(2)	5110.35(15)	5242.3(3)
Z	2	6	6
D_{calc} (g·cm ⁻¹)	1.252	1.198	1.273
$\mu (\text{mm}^{-1})$	0.080	0.075	0.227
F(000)	632.0	1932.0	2076.0
crvst size (mm)	0.10 imes 0.10 imes 0.10	$0.15 \times 0.10 \times 0.08$	0.10 imes 0.10 imes 0.10
2θ range (deg)	5.836 to 54.200	4.212 to 55.756	4.868 to 54.204
reflns collected	10328	58548	53311
indep reflns/ R_{int}	3549/0.0318	12179/0.0329	11561/0.0588
params	212	791	670
GOF on F^2	1.074	1.021	1.050
$R_1, wR_2 [I > 2\sigma(I)]$	0.0441, 0.1089	0.0502, 0.1309	0.0775, 0.2194
R_1 , wR_2 (all data)	0.0624, 0.1184	0.0625, 0.1382	0.1134, 0.2429
CCDC Number	2429941	2429942	2429943
	2129911	212//12	
	НС-ТСДР	HC-TCDP(rod	om temperature)
formura	HC-TCDP a C ₃₀ H ₂₂ N ₁₀	HC-TCDP(roo C ₃₀ H	$\frac{1}{1}$
formura Fw	$\begin{array}{c} \textbf{HC-TCDP} \\ \textbf{a} & C_{30}H_{22}N_{10} \\ & 522.57 \end{array}$	HC-TCDP(roo C ₃₀ F 52	$\frac{1}{1}$
formur Fw T(K)	$\begin{array}{c c} \hline & \mathbf{HC-TCDP} \\ \hline \mathbf{a} & \mathbf{C}_{30}\mathbf{H}_{22}\mathbf{N}_{10} \\ & 522.57 \\ & 143.15 \end{array}$	HC-TCDP(rod C ₃₀ F 52 29	$\frac{1}{122}N_{10}$ $\frac{1}{2.57}$ $\frac{1}{3.15}$
formur Fw T (K) λ (Å)	$\begin{array}{c c} \hline \textbf{HC-TCDP} \\ \hline \textbf{a} & C_{30}H_{22}N_{10} \\ \hline 522.57 \\ 143.15 \\ 0.71073 \\ \hline \end{array}$	HC-TCDP(rod C ₃₀ F 52 29 1.5	$\frac{1}{1} \frac{1}{1} \frac{1}$
formura Fw T (K) λ (Å) cryst sy	$\begin{array}{c c} \hline \textbf{HC-TCDP} \\ \hline \textbf{a} & C_{30}H_{22}N_{10} \\ 522.57 \\ 143.15 \\ 0.71073 \\ \text{st} & \text{Triclinic} \end{array}$	HC-TCDP(rod C ₃₀ F 52 29 1.5 Tric	$\frac{1}{1}$
formur Fw T(K) λ (Å) cryst sy space gro	$\begin{array}{c c} \hline HC\text{-TCDP} \\ \hline a & C_{30}H_{22}N_{10} \\ 522.57 \\ 143.15 \\ 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{pup} & P\text{-}1 \\ \end{array}$	HC-TCDP(roo C ₃₀ H 52: 29: 1.5: Tric <i>H</i>	$\frac{1}{1}$
formur Fw T(K) λ (Å) cryst sy space gro a (Å)	$\begin{array}{c c} \hline HC\text{-TCDP} \\ \hline \\ a & C_{30}H_{22}N_{10} \\ 522.57 \\ 143.15 \\ 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{pup} & P\text{-1} \\ 8.1539(6) \end{array}$	HC-TCDP(rod C ₃₀ F 52 299 1.5 Tric F 8.28	$\frac{1}{1}$
formur Fw T(K) λ (Å) cryst sy space gro a (Å) b (Å)	$\begin{array}{c c} \hline HC\text{-TCDP} \\ \hline \\ a & C_{30}H_{22}N_{10} \\ 522.57 \\ 143.15 \\ 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{pup} & P\text{-1} \\ 8.1539(6) \\ 8.5097(5) \end{array}$	HC-TCDP(roo C ₃₀ F 52 29 1.5 Tric F 8.28 8.70	$\frac{1}{122N_{10}}$ 2.57 3.15 4184 elinic 2-1 59(7) 94(9)
formur Fw T(K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å)	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	HC-TCDP(roo C ₃₀ F 52 29 1.5 Tric <i>F</i> 8.28 8.70 11.08	$\frac{1}{122}N_{10}$ 2.57 3.15 4184 clinic 2-1 59(7) 94(9) 860(9)
formura Fw T(K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg)	$\begin{array}{c c} \hline \textbf{HC-TCDP} \\ \hline \textbf{HC-TCDP} \\ \hline \textbf{a} & C_{30}H_{22}N_{10} \\ 522.57 \\ 143.15 \\ 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{oup} & P-1 \\ 8.1539(6) \\ 8.5097(5) \\ 10.9361(11) \\ 0 & 101.144(7) \end{array}$	HC-TCDP(roo C ₃₀ F 52: 299 1.5 Tric F 8.28 8.70 11.08 102.3	$\frac{1}{1}$
formur Fw T(K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg)	$\begin{array}{c c} \hline \textbf{HC-TCDP} \\ \hline \textbf{HC-TCDP} \\ \hline \textbf{a} & C_{30}H_{22}N_{10} \\ 522.57 \\ 143.15 \\ 0.71073 \\ \text{st} & \text{Triclinic} \\ \hline \textbf{pup} & P-1 \\ 8.1539(6) \\ 8.5097(5) \\ 10.9361(11) \\ 0 & 101.144(7) \\ 0 & 101.548(7) \\ \end{array}$	HC-TCDP(roo C ₃₀ H 52: 299 1.5 Tric <i>F</i> 8.28 8.70 11.08 102.2 100.0	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}$
formur Fw T (K) $\lambda (Å)$ cryst sy space gro a (Å) b (Å) c (Å) a (deg) $\beta (deg)$ $\gamma (deg)$	$\begin{array}{c c} & \textbf{HC-TCDP} \\ \hline \textbf{HC-TCDP} \\ \hline \textbf{a} & C_{30}H_{22}N_{10} \\ & 522.57 \\ & 143.15 \\ & 0.71073 \\ \text{st} & \text{Triclinic} \\ \hline \textbf{pup} & P-1 \\ & 8.1539(6) \\ & 8.5097(5) \\ & 10.9361(11) \\ \textbf{o} & 101.144(7) \\ \textbf{o} & 101.548(7) \\ & 0 & 102.714(6) \\ \end{array}$	HC-TCDP(rod C ₃₀ H 522 299 1.5 Tric <i>F</i> 8.28 8.70 11.08 102.3 100.0 105.7	$\frac{1}{1}$
formur Fw T (K) $\lambda (Å)$ cryst sy space gro a (Å) b (Å) c (Å) a (deg) $\beta (deg)$ $\gamma (deg)$ $V (Å^3)$	$\begin{array}{c c} \hline HC\text{-TCDP} \\ \hline HC\text{-TCDP} \\ \hline a & C_{30}H_{22}N_{10} \\ 522.57 \\ 143.15 \\ 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{pup} & P\text{-1} \\ 8.1539(6) \\ 8.5097(5) \\ 10.9361(11) \\ 101.144(7) \\ 0 & 101.548(7) \\ 0 & 102.714(6) \\ 702.52(10) \\ \end{array}$	HC-TCDP(rod C ₃₀ H 52 299 1.5- Tric F 8.28 8.70 11.00 100.0 105.7 728.0	$\frac{1}{1}$
formur Fw T(K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z	$\begin{array}{c c} \hline HC\text{-TCDP} \\ \hline HC\text{-TCDP} \\ \hline a & C_{30}H_{22}N_{10} \\ 522.57 \\ 143.15 \\ 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{pup} & P\text{-}1 \\ 8.1539(6) \\ 8.5097(5) \\ 10.9361(11) \\ 0 & 101.548(7) \\ 0 & 102.714(6) \\ 702.52(10) \\ 1 \\ \end{array}$	HC-TCDP(roo C ₃₀ F 52 299 1.5- Tric F 8.28 8.70 11.08 102.3 100.0 105.7 728.0	$\frac{1}{122N_{10}}$ 2.57 3.15 4184 elinic 2-1 59(7) 94(9) 860(9) 850(8) 096(7) 742(8) 57(12) 1
formur Fw T(K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cr	$\begin{array}{c c} \hline HC-TCDP\\ \hline HC-TCDP\\ \hline a & C_{30}H_{22}N_{10}\\ 522.57\\ 143.15\\ 0.71073\\ \text{st} & \text{Triclinic}\\ \text{oup} & P-1\\ & 8.1539(6)\\ & 8.5097(5)\\ 10.9361(11)\\ 0 & 101.144(7)\\ 0 & 101.548(7)\\ 0 & 102.714(6)\\ 702.52(10)\\ & 1\\ n^{-1}) & 1.235\\ \end{array}$	HC-TCDP(roo C ₃₀ F 52 29 1.5 Tric F 8.28 8.70 11.08 102.2 100.0 105.7 728.0	$\frac{1}{1}$
formura Fw T(K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{cale} (g·cr μ (mm ⁻)	$\begin{array}{c c} & \textbf{HC-TCDP} \\ \hline \textbf{HC-TCDP} \\ \hline \textbf{a} & C_{30}H_{22}N_{10} \\ & 522.57 \\ & 143.15 \\ & 0.71073 \\ \text{st} & \text{Triclinic} \\ \hline \textbf{pup} & P-1 \\ & 8.1539(6) \\ & 8.5097(5) \\ & 10.9361(11) \\ \textbf{o} & 101.144(7) \\ \textbf{o} & 101.548(7) \\ \textbf{o} & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 1 \\ \textbf{o} & 0.079 \\ \end{array}$	HC-TCDP(roo C ₃₀ F 52 29 1.5 Tric <i>F</i> 8.28 8.70 11.08 102.3 100.0 105.7 728.0	$\frac{1}{1}$
formura Fw T (K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{cale} (g·cr μ (mm ⁻ F(000)	$\begin{array}{c c} & \textbf{HC-TCDP} \\ \hline \textbf{HC-TCDP} \\ \hline \textbf{a} & C_{30}H_{22}N_{10} \\ & 522.57 \\ & 143.15 \\ & 0.71073 \\ \text{st} & \text{Triclinic} \\ \hline \textbf{pup} & P-1 \\ & 8.1539(6) \\ & 8.5097(5) \\ & 10.9361(11) \\ \textbf{o} & 101.144(7) \\ \textbf{o} & 101.548(7) \\ \textbf{o} & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & n^{-1}) & 1.235 \\ & 10.079 \\ & 272.0 \\ \end{array}$	HC-TCDP(rod C ₃₀ H 52: 299 1.5 Tric <i>F</i> 8.28 8.70 11.08 102.3 100.0 105.7 728.0	$\frac{1}{122N_{10}}$ $\frac{1}{122N_{10}}$ $\frac{1}{2.57}$ $\frac{1}{3.15}$ $\frac{1}{4184}$ $\frac{1}{59(7)}$ $\frac{94(9)}{360(9)}$ $\frac{360(9)}{350(8)}$ $\frac{350(8)}{996(7)}$ $\frac{1}{742(8)}$ $\frac{57(12)}{1}$ $\frac{1}{191}$ $\frac{1}{610}$ $\frac{1}{2.0}$
formura Fw T (K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cr μ (mm ⁻ F(000) cryst size ($\begin{array}{c c} & \textbf{HC-TCDP} \\ \hline \textbf{HC-TCDP} \\ \hline \textbf{a} & C_{30}H_{22}N_{10} \\ & 522.57 \\ & 143.15 \\ & 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{pup} & P-1 \\ & 8.1539(6) \\ & 8.5097(5) \\ & 10.9361(11) \\ 0 & 101.144(7) \\ 0 & 101.548(7) \\ 0 & 102.714(6) \\ & 702.52(10) \\ & 1 \\ 0 & 1 \\ 1.235 \\ 1 & 0.079 \\ 0 & 272.0 \\ \text{mm} & 0.04 \times 0.04 \times 0.0 \\ \end{array}$	HC-TCDP(rod C ₃₀ F 52 299 1.5- Tric F 8.28 8.70 11.00 102.1 100.0 105.7 728.0 1 1 0.08 × 0	$\frac{1}{422}N_{10}$ 2.57 3.15 4184 2linic 2-1 59(7) 94(9) 360(9) 350(8) 096(7) 742(8) 57(12) 1 191 610 2.0 02 × 0.02
formur Fw T (K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cr μ (mm ⁻ F(000) cryst size (2θ range ($\begin{array}{c c} & \textbf{HC-TCDP} \\ \hline \textbf{HC-TCDP} \\ \hline \textbf{a} & C_{30}H_{22}N_{10} \\ & 522.57 \\ & 143.15 \\ & 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{pup} & P-1 \\ & 8.1539(6) \\ & 8.5097(5) \\ & 10.9361(11) \\ \textbf{o} & 101.144(7) \\ \textbf{o} & 101.548(7) \\ \textbf{o} & 102.714(6) \\ & 702.52(10) \\ & 1 \\ \text{m}^{-1}) & 1.235 \\ & 1.235 \\ \textbf{o} & 0.079 \\ \textbf{o} & 272.0 \\ \text{mm} & 0.04 \times 0.04 \times 0.0 \\ \text{deg}) & 5.066 \text{ to } 52.744 \\ \end{array}$	$\begin{array}{c} \textbf{HC-TCDP}(rod \\ C_{30}H \\ 522 \\ 299 \\ 1.5 \\ Tric \\ F \\ 8.28 \\ 8.70 \\ 11.08 \\ 102.3 \\ 100.0 \\ 105.7 \\ 728.0 \\ 1. \\ 0.4 \\ 27 \\ 1 \\ 0.08 \times 0 \\ 10.980 \\ t \end{array}$	$\begin{array}{c} \hline \\ \hline $
formur Fw T (K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cr μ (mm ⁻ F(000) cryst size (2θ range (reflns colle	$\begin{array}{c c} & \mathbf{HC}\text{-}\mathbf{TCDP}\\ \hline \mathbf{HC}\text{-}\mathbf{TCDP}\\ \hline \mathbf{a} & C_{30}H_{22}N_{10}\\ & 522.57\\ & 143.15\\ & 0.71073\\ \text{st} & \text{Triclinic}\\ \text{oup} & P-1\\ & 8.1539(6)\\ & 8.5097(5)\\ & 10.9361(11)\\) & 101.144(7)\\) & 101.548(7)\\) & 102.714(6)\\ & 702.52(10)\\ & 1\\ 0 & 102.714(6)\\ & 702.52(10)\\ & 1\\ 0 & 0.079\\ & 272.0\\ \text{mm}) & 0.04 \times 0.04 \times 0.0\\ \text{deg}) & 5.066 \text{ to } 52.744\\ \text{scted} & 6796\\ \end{array}$	$\begin{array}{c} \textbf{HC-TCDP}(rooC_{30}\textbf{HC}\\ & \textbf{C}_{30}\textbf{H}\\ & 522\\ & 292\\ 1.5\\ & \text{Tric}\\ & F\\ & 8.28\\ & 8.70\\ & 11.08\\ & 102.2\\ 100.0\\ & 105.7\\ & 728.0\\ & 1.\\ & 0.08 \times 0\\ & 10.980 \text{ t}\\ & 49\end{array}$	$\begin{array}{c} \hline \\ \hline $
formura Fw T (K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cr μ (mm ⁻ F(000) cryst size (2θ range (α reflns colle indep refln	$\begin{array}{c c} & \mathbf{HC}\text{-}\mathbf{TCDP}\\ \hline \mathbf{HC}\text{-}\mathbf{TCDP}\\ \hline \mathbf{a} & C_{30}H_{22}N_{10}\\ & 522.57\\ & 143.15\\ & 0.71073\\ \text{st} & \text{Triclinic}\\ \text{oup} & P-1\\ & 8.1539(6)\\ & 8.5097(5)\\ & 10.9361(11)\\) & 101.144(7)\\) & 101.548(7)\\) & 102.714(6)\\ & 702.52(10)\\ & 1\\ & 102.714(6)\\ & 702.52(10)\\ & 1\\ & 102.714(6)\\ & 702.52(10)\\ & 1\\ & 0.079\\ & 272.0\\ & \text{mm}\\ \end{pmatrix} & 0.04 \times 0.04 \times 0.0\\ \text{deg}) & 5.066 \text{ to } 52.744\\ \text{scted} & 6796\\ \text{s/R_{int}} & 2863/0.0437\\ \end{array}$	$\begin{array}{c} \textbf{HC-TCDP}(rooC_{30}\textbf{HC})\\ & C_{30}\textbf{HC}\\ & 522\\ & 292\\ 1.5\\ & Tric\\ & F\\ & 8.28\\ & 8.70\\ 11.08\\ 102.2\\ 100.0\\ 105.7\\ 728.0\\ & 1.\\ & 0.0\\ 10.980 \text{ tr}\\ & 49\\ 2756/ \end{array}$	$\begin{array}{c} \hline \\ \hline $
formura Fw T (K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z D_{calc} (g·cr μ (mm ⁻ F(000) cryst size (2θ range (α reflns colle indep refln params	$\begin{array}{c c} & \mathbf{HC}\text{-}\mathbf{TCDP}\\ \hline \mathbf{HC}\text{-}\mathbf{TCDP}\\ \hline \mathbf{a} & C_{30}H_{22}N_{10}\\ & 522.57\\ & 143.15\\ & 0.71073\\ \text{st} & \text{Triclinic}\\ \text{oup} & P-1\\ & 8.1539(6)\\ & 8.5097(5)\\ & 10.9361(11)\\) & 101.144(7)\\) & 101.548(7)\\ & 102.714(6)\\ & 702.52(10)\\ & 1\\ & 102.714(6)\\ & 702.52(10)\\ & 1\\ & 1.235\\ & 1\\) & 0.079\\ & 272.0\\ \text{mm}) & 0.04 \times 0.04 \times 0.0\\ \text{deg}) & 5.066 \text{ to } 52.744\\ \text{scted} & 6796\\ & s/R_{int} & 2863/0.0437\\ \text{s} & 184\\ \end{array}$	$\begin{array}{c} \textbf{HC-TCDP}(rootC_{30}\textbf{F})\\ \hline \textbf{C}_{30}\textbf{F}\\ 522\\ 299\\ 1.5\\ \hline \textbf{Trice}\\ F\\ 8.28\\ 8.70\\ 11.08\\ 102.2\\ 100.0\\ 105.7\\ 728.0\\ 1\\ 0.08\\ 10.980\ t\\ 49\\ 2756\\ 1\end{array}$	$\begin{array}{c} \hline \\ \hline $
formura Fw T (K) λ (Å) cryst sy space grow a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z D_{calc} (g·cr μ (mm ⁻ F(000) cryst size (2θ range (reflns colled indep refln params GOF on	$\begin{array}{c c} & \mathbf{HC}\text{-TCDP} \\ \hline \mathbf{HC}\text{-TCDP} \\ \hline \mathbf{a} & C_{30}\text{H}_{22}\text{N}_{10} \\ & 522.57 \\ & 143.15 \\ & 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{pup} & P-1 \\ & 8.1539(6) \\ & 8.5097(5) \\ & 10.9361(11) \\ & 101.144(7) \\ & 101.548(7) \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 10.079 \\ & 272.0 \\ & \text{mm} \\ & 0.04 \times 0.04 \times 0.0 \\ & 40.04 \times 0.04 \times 0.0 \\ & 6796 \\ & 8/R_{int} & 2863/0.0437 \\ & 8 \\ & 184 \\ F^2 & 1.019 \\ \end{array}$	$\begin{array}{c} \textbf{HC-TCDP}(root \\ C_{30}H \\ 522 \\ 299 \\ 1.52 \\ 1.54$	$\begin{array}{c} \hline \\ \hline $
formura Fw T (K) λ (Å) cryst sy space gro a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z D_{calc} (g·cr μ (mm ⁻ F(000) cryst size (2θ range (θ reflns colled indep refln params GOF on R_1, wR_2 [E	$\begin{array}{c c} & \mathbf{HC}\text{-TCDP} \\ \hline \mathbf{HC}\text{-TCDP} \\ \hline \mathbf{a} & C_{30}\text{H}_{22}\text{N}_{10} \\ & 522.57 \\ & 143.15 \\ & 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{oup} & P-1 \\ & 8.1539(6) \\ & 8.5097(5) \\ & 10.9361(11) \\ & 101.144(7) \\ & 101.548(7) \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 102.714(6) \\ & 702.52(10) \\ & 1 \\ & 1.235 \\ & 102.714(6) \\ & 702.52(10) \\ & 102.714(6) \\ & 102$	$\begin{array}{c} \textbf{HC-TCDP}(root \\ C_{30}\textbf{H} \\ 522 \\ 299 \\ 1.5 \\ 728 \\ 8.70 \\ 11.00 \\ 102.1 \\ 100.0 \\ 105.7 \\ 728.0 \\ 1. \\ 0.08 \times 0. \\ 10.980 \\ 49 \\ 2756 \\ 1 \\ 1. \\ 0.0619 \\ \end{array}$	$\begin{array}{c} \hline \\ \hline $
formura Fw T (K) λ (Å) cryst sy space grown a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z D_{cale} (g·cr μ (mm ⁻ F(000) cryst size (2θ range (α reflns colled indep refln parames GOF on R_1, wR_2 [PZ R_1, wR_2 (all	$\begin{array}{c c} & \mathbf{HC}\text{-TCDP} \\ \hline \mathbf{HC}\text{-TCDP} \\ \hline \mathbf{a} & C_{30}\text{H}_{22}\text{N}_{10} \\ & 522.57 \\ & 143.15 \\ & 0.71073 \\ \text{st} & \text{Triclinic} \\ \text{pup} & P-1 \\ & 8.1539(6) \\ & 8.5097(5) \\ & 10.9361(11) \\ \text{o} & 101.548(7) \\ \text{o} & 102.714(6) \\ & 702.52(10) \\ & 1 \\ \text{o} & 102.714(6) \\ & 702.52(10) \\ & 1 \\ \text{m}^{-1}) & 1.235 \\ \text{o} & 1235 \\ \text{o} & 184 \\ F^2 & 1.019 \\ 2\sigma(I)] & 0.0475, 0.1097 \\ \text{data}) & 0.0954, 0.1275 \\ \end{array}$	$\begin{array}{c} \textbf{HC-TCDP}(rod \\ C_{30}\textbf{H} \\ 522 \\ 299 \\ 1.5 \\ 728 \\ 8.70 \\ 11.08 \\ 8.28 \\ 8.70 \\ 11.08 \\ 102.3 \\ 100.0 \\ 105.7 \\ 728.0 \\ 1. \\ 0.08 \times 0 \\ 10.980 \\ 1. \\ 0.08 \times 0 \\ 10.980 \\ 1. \\ 0.0619 \\ 0.0992 \\ \end{array}$	$\begin{array}{c} \hline \text{pm temperature}) \\ \hline \hline H_{22}N_{10} \\ 2.57 \\ 3.15 \\ 4184 \\ \hline \\ \text{elinic} \\ 2-1 \\ 59(7) \\ 94(9) \\ 360(9) \\ 350(8) \\ 096(7) \\ 742(8) \\ 57(12) \\ 1 \\ 191 \\ 510 \\ (2.0) \\ 002 \times 0.02 \\ 0.143.054 \\ 0.02 \\ 0.0231 \\ 84 \\ 0.50 \\ 0.1548 \\ 0.1805 \end{array}$

(CCDC = Cambridge crystallographic data centre, Fw = formula weight, cryst syst = crystal system, reflus = reflections, indep = independent, GOF = good of fit)

Solvent	Host network frameworks	Host network	host/guest	Space group
EtOAc	π - π host networks	1D	1/2	$Pna2_1$
PhCl	π - π host networks	1D	1/1	<i>P</i> -1
PhI	π - π host networks	1D	1/1	<i>P</i> -1
acetone	π - π host networks	2D	1/2	$P2_{1}/n$
DMF	π - π host networks	2D	1/2	$P2_{1}/n$
THF	π - π host networks	2D	1/2	$P2_{1}/n$
Ph ₂ O	π - π host networks	2D	1/2	<i>P</i> -1
benzene	π - π host networks	2D	1/4	<i>P</i> -1
thiophene	π - π host networks	2D	1/4	<i>P</i> -1
pyridine	π - π host networks	3D	1/2	<i>P</i> -1
DCM	π - π host networks	3D	1/1	C2/c
DCE	$CN-\pi$ host networks	2D	1/2	$P2_{1}/c$
MeCN	CN- π host networks	2D	1/2	$P2_{1}/c$
PhMe	CN- π host networks	3D	1/1	$P2_{1}/c$
ODCB	$CN-\pi$ host networks	3D	1/1	$P2_{1}/c$

 Table S5 Summary of the obtained clathrate crystals.

4. Exposure experiments

Fig. S1 Results of the solvent vapor exposure experiment.

Fig. S2 Desorption behavior of TCDP·benzene. The 2θ scans were performed with a step size of 0.01° and a speed of 1° min⁻¹.

5. Desorption tracking by TG-DTA

Fig. S3 TG-DTA curves of corresponding clathrate crystals.

Table S6 Summary o	f TG-DTA analysi	S.
--------------------	------------------	----

solvent	host/guest	formula	desorption	decrease	decrease	error (%)
	ratio	weight	temp. (°C)	(calcd., %)	(obs., %)	
PhCl	1/1	635.14	87.2	-17.72	-16.93	0.79
PhI	1/1	726.59	98.6	-28.08	-27.42	0.66
EtOAc	1/2	698.80	65.0	-25.22	-24.09	1.13
acetone	1/2	638.74	92.4	-18.19	-17.44	0.75
DMF	1/2	668.78	129.3	-21.86	-21.23	0.63
THF	1/2	666.80	92.1	-21.63	-20.83	0.80
pyridine	1/2	680.78	96.8	-23.24	-22.05	1.19
MeCN	1/2	604.68	78.5	-13.58	-12.59	0.99
PhMe	1/1	614.72	101.4	-14.99	-14.67	0.32
ODCB	1/1	669.58	123.3	-21.95	-21.84	0.11

Fig. S4 PXRD pattern before and after TG-DTA measurement.

6. Desorption tracking by PXRD

Fig. S5 (a) Time-dependent PXRD analysis of intact (top-left) and crushed (top-right) **TCDP**·acetone, and evolution of peak intensity at 8.4° and 9.0° (bottom). Measurements were performed every 8 minutes, at room temperature and under atmospheric conditions.

7. References

- [S1] G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3-8.
- [S2] G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3–8.
- [S3] O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
- [S4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Revision C.02, Gaussian, Inc., Wallingford CT, 2016.
- [S5] A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- [S6] C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785–789.
- [S7] E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W. Yang, J. Am. Chem. Soc., 2010, 132, 6498–6506.
- [S8] J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, J. Chem. Theory Comput., 2011, 7, 625–632.
- [S9] P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka and M. A. Spackman, J. Appl. Crystallogr., 2021, 54, 1006–1011.