Electronic Supplementary Information

"Supramolecular assembly mediated by hydrogen bonds and weak noncovalent interactions in two eucalyptol derivatives with potential antineoplastic activity: Crystal structure, Hirshfeld surface analysis, DFT calculations and Molecular docking analysis."

Carolina E. Galvez^{1,3}, Oscar E. Piro², Gustavo A. Echeverría², Krishnan Vignesh⁴, Subbiah Thamotharan⁴, María del H. Loandos¹, Diego M. Gil^{1,3,*}

Figure S1. ¹H NMR (400 MHz, CDCl₃, 298 K) of compound 4.

Figure S2. ¹³C NMR (101 MHz, CDCl₃, 298 K) of compound 4.

Figure S3. ¹H NMR (400 MHz, CDCl₃, 298 K) of compound 6.

Figure S4. ¹³C NMR (101 MHz, CDCl₃, 298 K) of compound **6**.

Figure S5. Optimized molecular structure of conformers C_1 and C_2 for compounds 6 computed at B3LYP/6-311++G(d,p) level of theory.

Figure S6. Optimized molecular structures of 4 and 6 at B3LYP/6-311++G(d,p) approximation.

Figure S8. Hirshfeld surfaces of compound 6 mapped over shape index, highlighting the regions involved in intermolecular C-H $\cdots \pi$ (C=O) interactions.

Figure S10. Experimental (red line) and calculated (green line) IR spectra of compound 6.

ADMET analysis

A pharmacokinetic evaluation of the studied compounds was conducted as described in the experimental section. ADMET (absorption, distribution, metabolism, excretion and toxicity) parameters were calculated and compared to standard ranges. The colored zone in the radar plot represents the optimal physicochemical space for oral bioavailability. The radar plots and boiled-egg diagram suggest that both compounds exhibit favourable pharmacokinetic properties and druglikeness (**Figure S11**). The white region indicates the physicochemical space where molecules have the highest probability of being absorbed by the gastrointestinal tract, while the yellow region (yolk) represents the space where molecules are most likely to permeate the brain. The toxicity of compounds **4** and **6** is predicted to be class 5 (may be harmful if swallowed ($2000 < LD50 \le 5000$) and predicted LD50 values range from 2991-3130 mg/kg, with a prediction accuracy of 70.97%. The hepatotoxicity, immunotoxicity, and cytotoxicity are also found to be inactive for both compounds.

Figure S11. ADME properties for (a) compound **4** and (b) compound **6**. The left panel shows radar plot and right panel shows BOILED-egg plot. The red dot is for molecule predicted not to be effluated from the central nervous system (CNS) by P-glycoprotein.

Table S1. Calculated relative, free energies and dipole moments for the two stableconformers of compound 6.

Conformer	OCCO dihedral angle (°)	ΔE^{a} (kJ mol ⁻¹)	ΔG^{b} (kJ mol ⁻¹)	$\mu^{c}(D)$		
C ₁	-158.4	0.000	0.000	2.600		
C ₂	-84.44	0.813	0.236	3.772		
^a $\Delta E = E(C_2) \cdot E(C_1)$. ^b $\Delta G = G(C_2) \cdot G(C_1)$. ^c μ : Dipole moment.						

Table	S2.	Experimental	and	calculated	bond	lengths,	angles	and	dihedral	angles	for
compo	und	4.									

Parameter	Compound 4			
	Exp. ^a	Calcd. ^b		
Bond lengths (Å)	•			
C1-O1	1.443(4)	1.437		
C1-C2	1.518(5)	1.543		
C1-C10	1.517(3)	1.524		
C1-C6	1.521(5)	1.543		
C2-C3	1.533(6)	1.545		
C3-O2	1.421(4)	1.426		
C3-C4	1.530(5)	1.553		
C4-C5	1.530(5)	1.548		
C4-C7	1.536(4)	1.558		
C5-O3	1.431(4)	1.417		
C5-C6	1.534(5)	1.554		
C7-O1	1.462(3)	1.456		
C7-C8	1.521(6)	1.537		
C7-C9	1.533(6)	1.538		
Bond angles (°)				
O1-C1-C10	106.5(2)	105.6		
01-C1-C2	107.6(3)	108.2		
O1-C1-C6	108.1(3)	108.2		
O1-C7-C8	106.6(3)	107.2		
O1-C7-C4	107.6(2)	108.0		
O1-C7-C9	106.7(3)	106.8		
C1-O1-C7	114.6(3)	115.1		
C1-C2-C3	110.2(3)	110.2		
C1-C6-C5	109.9(3)	109.7		
C2-C1-C6	110.6(2)	110.3		
O2-C3- C4	115.8(3)	115.9		
O2-C3- C2	109.3(3)	108.1		
C3-C4-C7	112.3(3)	111.8		
C4-C3-C2	108.0(2)	108.0		
C4-C5-C6	108.0(3)	107.6		
O3- C5- C4	111.3(3)	111.1		
O3-C5-C6	113.2(3)	114.1		
C5-C4-C3	103.5(2)	103.5		
C5-C4-C7	111.9(3)	111.8		
C8-C7-C9	107.8(3)	107.9		
C8-C7-C4	114.5(3)	113.3		
C9-C7-C4	113.2(3)	113.3		
C10-C1-C2	111.5(3)	112.0		

C10-C1-C6	112.3(3)	112.3
Dihedral angles (°)		
С4-С3-О2-Н2	-66(4)	-55.9
С4-С5-О3-Н3	-168(5)	-174.9
O1-C1-C2-C3	-62.8(4)	-62.1
C10-C1-C2-C3	-179.2(3)	-178.1
C6-C1-C2-C3	55.1(3)	56.1
C1-C2-C3-O2	133.3(3)	131.7
C1-C2-C3-C4	6.5(4)	5.5
O2-C3-C4-C5	168.9(3)	170.3
C2-C3-C4-C5	-68.1(3)	-68.1
O2-C3-C4-C7	-70.2(3)	-69.1
C2-C3-C4-C7	52.7(3)	52.5
C3-C4-C5-O3	-165.4(3)	-164.2
C7-C4-C5-O3	73.5(3)	75.3
C3-C4-C5-C6	69.7(3)	70.3
C7-C4-C5-C6	-51.4(4)	-50.2
01-C1-C6-C5	64.1(3)	64.5
C10-C1-C6-C5	-178.7(3)	-179.3
C2-C1-C6-C5	-53.5(3)	-53.6
O3-C5-C6-C1	-132.8(3)	-133.3
C4-C5-C6-C1	-9.1(4)	-9.5
C5-C4-C7-O1	59.4(4)	59.2
C3-C4-C7-O1	-56.5(4)	-56.3
C5-C4-C7-C8	-58.9(3)	-59.3
C3-C4-C7-C8	-174.8(3)	-174.9
С5-С4-С7-С9	177.0(3)	177.3
C3-C4-C7-C9	61.2(3)	61.7
C10-C1-O1-C7	-179.0(3)	-178.5
C2-C1-O1-C7	61.4(4)	61.3
C6-C1-O1-C7	-58.1(4)	-58.2
C8-C7-O1-C1	120.9(3)	120.1
C9-C7-O1-C1	-124.2(3)	-124.5
C4-C7-O1-C1	-2.4(4)	-2.3
a 01 1 1 0 TT	11.00 1	

^a Obtained from X-ray diffraction data reported in this work. ^b Calculated at B3LYP/6-311++G(d,p) level of theory.

Table S3. Experimental and calculated bond lengths, angles and dihedral angles for compound 6.

Parameter	Compound 6			
	Exp. ^a	Calcd. ^b		
Bond lengths (Å)				
C1-O1	1.440(3)	1.443		
C1-C2	1.519(4)	1.542		
C1-C10	1.510(4)	1.520		
C1-C6	1.530(4)	1.541		
C2-C3	1.523(4)	1.539		
C3-O2	1.454(3)	1.449		
C3-C4	1.533(3)	1.548		
C4-C5	1.505(4)	1.529		
C4-C7	1.545(3)	1.558		
C5-O4	1.209(3)	1.207		
C5-C6	1.497(4)	1.525		

C7-O1	1.447(3)	1.457
C7-C8	1.522(4)	1.534
C7-C9	1.514(4)	1.532
C11-O3	1.194(3)	1.205
C11-O2	1.336(3)	1.358
C11-C12	1.492(4)	1.506
Bond angles (°)		
O1-C1-C10	105.3(2)	106.1
O1-C1-C2	108.1(2)	108.2
01-C1-C6	107.9(2)	107.9
01-C7-C8	107.2(2)	107.3
O1-C7-C4	108.7(19)	108.3
01-C7-C9	107.3(19)	107.4
C1-O1-C7	114.9(17)	115.5
C1-C2-C3	109.6(2)	109.3
C5-C6-C1	109.3(2)	108.9
C2-C1-C6	109.2(2)	109.5
O2-C3- C4	112.1 (19)	112.9
O2-C3- C2	108.7(2)	108.5
C3-C4-C7	113.4(2)	112.9
C2-C3-C4	109.1(19)	109.2
C6-C5-C4	111.5(2)	111.1
O3- C11- O2	123.3(2)	123.7
O3-C11-C12	125.3(3)	125.6
C5-C4-C3	103.5(2)	103.5
C5-C4-C7	106.8(2)	106.8
C9-C7-C8	109.4(2)	109.1
C8-C7-C4	110.3(2)	110.7
C9-C7-C4	112.8(2)	113.4
C10-C1-C2	112.9(2)	112.1
C10-C1-C6	113.1(2)	112.6
02-C11-C12	111.4(2)	110.6
C11-O2-C3	117.7(19)	117.8
04-C5-C6	124.4(2)	124.1
04-05-04	120.9(2)	120.7
Dinedral angles (°)	(5, 9(2))	(5.(
$C_{10} C_{1} C_{2} C_{3}$	-03.8(3)	-03.0
C10- $C1$ - $C2$ - $C3$	1/8.1(2)	1//./ 51.0
$C_1 C_2 C_3 O_2$	31.4(3) 125 0(2)	126.1
C1 C2 C3 C4	133.0(2) 12 6(3)	130.1
02 C3 C4 C5	12.0(3) 170 25(10)	12.7
$C_2 C_3 C_4 C_5$	1/0.23(19) 60 $4(3)$	69.5
02 C3 C4 C7	-09.4(3)	-09.3
$C_2 - C_3 - C_4 - C_7$	45.9(3)	-// 46.1
$C_{2}-C_{3}-C_{4}-C_{5}-O_{4}$	-118.6(3)	-118.6
C7-C4-C5-O4	1215(3)	121.5
$C_{3}-C_{4}-C_{5}-C_{6}$	614(3)	61.6
C7-C4-C5-C6	-58 5(3)	-58 7
04-C5-C6-C1	-178.7(3)	-178 9
C10-C1-C6-C5	173.4(2)	173.7
C2-C1-C6-C5	-60.1(3)	-60.7
01-C1-C6-C5	57.3(3)	56.9
C4-C5-C6-C1	1.3(3)	2.0
C5-C4-C7-O1	58.8(2)	57.8
		• • • •

C3-C4-C7-O1	-54.5(3)	-55.8
C5-C4-C7-C8	-58.5(3)	-59.7
C3-C4-C7-C8	-171.7(2)	-173.3
C3-C4-C7-C9	65.7(3)	63.5
C5-C4-C7-C9	178.9(2)	177.3
C10-C1-O1-C7	-179.9(2)	178.6
C2-C1-O1-C7	59.2(3)	58.2
C6-C1-O1-C7	-58.8(3)	-60.3
C8-C7-O1-C1	119.2(2)	121.3
C9-C7-O1-C1	-122.9(2)	-121.4
C4-C7-O1-C1	0.0(3)	1.6
O3-C11-O2-C3	1.7(4)	0.9
C12-C11-O2-C3	-176.6(2)	-178.8
C2-C3-O2-C11	151.8(2)	150.8
C4-C3-O2-C11	-87.6(3)	-88.1

^a Obtained from X-ray diffraction data reported in this work. ^b Calculated at B3LYP/6-311++G(d,p) level of theory.