Supporting Information for

Data-driven exploration of layered double hydroxide crystals exhibiting high fluoride ion adsorption properties and chemical stability

Fumitaka Hayashi, ** Ryuki Harada, ** Hiroaki Sugitani, ** Hiromasa Kaneko, ** Tien Quang Nguyen, ** Mongkol Tipplook, ** Michihisa Koyama, ** Tetsuya Yamada, ** Katsuya Teshima ***.c.*

^a Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

^b Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan

^c Institute for Aqua Regeneration, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan ^d Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

* Corresponding author, fhayash@shinshu-u.ac.jp; teshima@shinshu-u.ac.jp.

Explanatory variable	Terms
M ²⁺ metal speciation	$Mg^{2+}, Zn^{2+}, Ni^{2+}, Cu^{2+}, Co^{2+}, Mn^{2+}, Cr^{2+}$
M ³⁺ metal speciation	Al ³⁺ , Fe ³⁺ , Cr ³⁺ , Y ³⁺ , Ga ³⁺
Metal species in LDH	2 or 3 types
Heating temperature [°C]	60–120
Holding time [h]	12–22
$M_{I/II}^{3+}$ composition value*	0.20-0.33
F ⁻ concentration [mM]	1.0
M ²⁺ composition value*	0.67–0.80
Ionic radius <i>r</i> [Å]	0.50–0.90
Pauling electronegativity χ	1.30–1.95
Weighted <i>r</i> average (Å)	0.60-0.85
Weighted χ average	1.36–1.89

Table S1. Explanatory variables and condition ranges for LDH candidates.

*LDH ($[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}](A^{n-})_{x/n} \cdot mH_{2}O)$

Run	Metal speciation			Composition			Synthetic conditions				
	M ²⁺	$M_{I}{}^{3+}$	$M_{\mathrm{II}}{}^{3+}$	M ²⁺	$M{\rm I}^{3+}$	$M_{\mathrm{II}}{}^{3+}$	Temp. [°C]	Time [h]	F [−] adsorption [mg·g ^{−1}]	Removal degree [%]	M^{2+} elution [mg·L ⁻¹]
1	Mn	Cr	Y	0.67	0.10	0.23	60	22	5.76	30.2	2.53
2	Mn	Cr	-	0.67	-	0.33	60	12	0.01	0.0	7.48
3	Mg	Y	-	0.70	-	0.30	100	12	6.40	33.9	0.07
4	Mg	Fe	Y	0.80	0.10	0.10	60	12	4.09	21.5	0.00
5	Ni	Fe	Ga	0.67	0.23	0.10	120	15	18.57	97.7	8.41

Table S2. Experimental conditions for the first cycle proposed using one objective variable (F^- adsorption amount). Five samples with high probability of improvement (PI) values for the acquisition function (AF) are shown.

Table S3. Chemical composition of Ni-Fe-Ga LDH, as determined using ICP-OES and TG-DTA.

Run	Sample	Nominal composition			Experimental			H ₂ O		
		Ni	Fe	Ga	Ni	Fe	Ga	wt%	<i>m</i> in formula	
5	Ni-Fe-Ga-067 LDH	0.67	0.23	0.10	0.70	0.24	0.06	4.9	0.30	

Table S4. Experimental conditions for the second cycle proposed using one objective variable (F^- adsorption amount). Five samples with high PI values for the AF are shown.

	Metal speciation			Composition			Synthetic conditions				
Run	M ²⁺	$M{\rm I}^{3+}$	$M_{\rm II}{}^{3+}$	M ²⁺	$M{\rm I}^{3+}$	$M_{\rm II}{}^{3+}$	Temp. [°C]	Time [h]	F^- adsorption $[mg \cdot g^{-1}]$	Removal degree [%]	M^{2+} elution $[mg \cdot L^{-1}]$
6	Ni	Y	-	0.80	0.20	-	120	22		21.8	3.86
7	Ni	Fe	Cr	0.67	0.10	0.23	60	22		89.2	4.88
8	Mg	Al	Ga	0.67	0.10	0.23	120	22		91.7	7.91
9	Mn	Al	Fe	0.67	0.23	0.10	120	22		3.5	0.01
10	Ni	Al	Ga	0.67	0.10	0.23	120	22	18.42	96.9	2.53

Run	Metal speciation			Composition			Synthetic conditions					
	M ²⁺	$M\mathrm{I}^{3+}$	$M{\scriptstyle II}{}^{3+}$	M ²⁺	$M\mathrm{I}^{3+}$	$M{\scriptstyle II}{}^{3+}$,	Temp. [°C]	Time [h]	F [−] adsorptio [mg·g ⁻¹]	Removal degree [%]	M^{2+} elution $[mg \cdot L^{-1}]$
11	Zn	Al	Ga	0.80	0.10	0.10		120	22	3.58	18.8	4.51
12	Zn	Al	Y	0.80	0.10	0.10		120	22	7.01	36.8	0.28
13	Zn	Al	Fe	0.80	0.10	0.10		120	22	0.57	2.9	2.16
14	Zn	Al	Cr	0.80	0.10	0.10		120	22	11.57	60.7	7.23
15	Zn	Al	Ga	0.67	0.23	0.10		60	22	18.52	97.2	5.87

Table S5. Experimental conditions for the first cycle proposed using two objective variables (F^- adsorption and M^{2+} leaching amounts). Five samples with high PI values for the AF are shown.

Table S6. Experimental conditions for the second cycle proposed using two objective variables (F^- adsorption and M^{2+} leaching amounts). Two samples with high PI values for the AF are shown.

	Metal speciation			Composition			Synthetic conditions				
Run	M ²⁺	$M_{\rm I}{}^{3+}$	$M_{\mathrm{II}}{}^{3+}$	M ²⁺	$M_{\rm I}{}^{3+}$	$M_{II}{}^{3+}$	Temp. [°C]	Time [h]	F^- adsorption $[mg \cdot g^{-1}]$	Removal degree [%]	M^{2+} elution [mg·L ⁻¹]
16	Ni	Fe	Y	0.67	0.23	0.10	60	22	15.78	82.4	3.40
17	Ni	Cr	Y	0.67	0.23	0.10	60	21	17.09	89.2	1.48

Table S7. Competitive fluoride ion adsorption test results for Ni-Al-Ga-067, Ni-Cr-Y-067, and Mg-Al-033LDH samples.

Sample	F^- adsorption $[mg \cdot g^{-1}]$	Removal degree [%]	$K_{\rm d} [{ m ml} { m g}^{-1}]$
Ni-Al-Ga-067 LDH	3.12	82.0	4564
Ni-Cr-Y-067 LDH	3.16	83.2	4951
Mg-Al-033 LDH	2.70	71.0	2448

Figure S1. FE-SEM image of Ni-Fe-Ga-067 LDH.

Figure S2. TG-DTA profile of Ni-Fe-Ga-067 LDH.

Figure S3. Comparison of F^- adsorption amounts for the LDHs prepared in this work and previously reported adsorbents.^{S1–S10}

Figure S4. Projected density of states of (a) Ni-Al-Ga-, (b) Ni-Cr-Y, and (c) Mg-Al-LDHs.

Figure S5. Histogram of weighted-average ionic radius values of metal cations for the formation of LDH structures.

Figure S6. Effect of M³⁺ ionic radius in Mg- and Ni-based LDHs on the formation of LDHs and unit cell volume of Mg- and Ni-based LDHs.

References

- S1 F. Ke, G. Luo, P. Chen, J. Jiang, Q. Yuan, H. Cai, C. Peng and X. Wan, *J. Porous Mater.*, 2016, 23, 1065–1073.
- S2 A. Jeyaseelan and N. Viswanathan, *ACS EST Water*, 2022, **2**, 52–62.
- S3 L. H. Velazquez-Jimenez, R. H. Hurt, J. Matos and J. R. Rangel-Mendez, *Environ. Sci. Technol.* 2014, 48, 1166–1174.
- S4 K. Pandi and N. Viswanathan, *Carbohydr. Polym.*, 2015, **134**, 732–739.
- S5 S. Dey, S. Goswami and U. C. Ghosh, *Water, Air, Soil Pollut.*, 2004, **158**, 311–323.
- S6 K. Biswas, K. Gupta and U. C. Ghosh, *Chem. Eng. J.*, 2009, **149**, 196–206.
- S7 E. Kumar, A. Bhatnagar, M. Ji, W. Jung, S.-H. Lee, S.-J. Kim, G. Lee, H. Song, J.-Y. Choi,
 J.-S. Yang and B.-H. Jeon, *Water Res.*, 2009, 43, 490–498.
- S8 G. Alagumuthu and M. Rajan, *Chem. Eng. J.*, 2010, **158**, 451–457.
- S9 S. M. Prabhu and S. Meenakshi, *Carbohydr. Polym.*, 2015, **120**, 60–68.
- S10 Q. Chang, L. Zhu, Z. Luo, M. Lei, S. Zhang and H. Tang, Ultrason. Sonochem., 2011, 18, 553–561.