Enhancing Photoelectrochemical Performance by Effectively Managing the Density of Oxygen Vacancies in CuO/BiVO₄ Composites

Yuan-Chang Liang * and Jin-Rong Chen Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, 20224, Taiwan

Table S1. Lattice parameters of various BiVO₄ samples before and after hydrogenation.

Sample	a (nm)	b (nm)	c (nm)
BV	0.50	0.50	1.14
BV300	0.50	0.50	1.15
BV350	0.52	0.51	1.16
BV400	0.52	0.52	1.18

Table S2. Correlation between the oxygen vacancy concentration, quantified as the (oxygen vacancy)/(lattice oxygen) ratio from XPS O 1s spectra, and the charge carrier density (Nd) derived from Mott-Schottky analysis.

sample	oxygen vacancy region lattice oxygen region %	N _D (cm ⁻³) Charge carrier density
BV	0.41	3.48×10 ¹⁹
BV300	0.52	9.62×10 ¹⁹
BV350	0.76	1.43×10^{20}
BV400	1.27	1.68×10^{20}

Figure S1. Long-term stability test of the photocurrent density for the BV400C photoanode under 10 hours of continuous illumination at 0.5 V vs. Ag/AgCl in 0.5 M Na_2SO_4 electrolyte.