Supporting Information

Engineering visible-to-ultraviolet emission switching of

benzothiazole-based mechanoresponsive materials

Riku Yoshino,^a Kazuki Kobayashi,^b Peiyuan Yang,^c Hiroki Fukumoto,^a Motohiro Yasui,^b Shigeyuki Yamada,^b Tsutomu Konno^b and Masato Morita ^{*a}

a. Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan.
b. Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
c. Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

E-mail: masato.morita.sq16@vc.ibaraki.ac.jp

Contents

1. Experimental	S-1
2. Absorption, PL decay spectra of crystal and powder	S-3
3. X-ray single-crystal structures	S-5
4. Temperature variable Powder X-ray diffraction	S-6
5. Exposure of grinding-powder to solvent vapor	S-7
6. ¹ H-, ¹³ C-NMR, IR spectra and elemental analysis	S-8
7. Quantum chemical calculation	S-12
8. References	S-13

1. Experimental

Synthesis of 2-iodobenzothiazole

Scheme S1 Synthesis of 2-iodobenzothiazole.

A mixture of benzothiazole (1.35 g, 10 mmol), perfluorobutyl iodide (3.81 g, 11 mmol), sodium tert-butoxide (0.48 g, 5 mmol), and *N*,*N*-dimethylformamide (DMF, 50 mL) was stirred for 20 min under an argon atmosphere at room temperature. After 20 min, the reaction was quenched with aqueous sodium thiosulfate. The precipitate was separated by atmospheric filtration, and DMF was washed away with water. The corrected precipitate was dissolved in ethyl acetate (EtOAc) and dried over anhydrous Na₂SO₄. After the reaction mixture was concentrated in vacuo, it was purified by silica-gel column chromatography (eluent: hexane/EtOAc = 10/1) to obtain 2-iodobenzothiazole (2.13 g, 87%) as a white powder. ¹H-NMR (400 MHz, CDCl₃) d 8.03 (dm, *J* = 8.0 Hz, 1H), 7. 85 (dm, *J* = 8.4 Hz, 1H), 7.46-7.37 (m, 2H). The NMR chemical shifts are consistent with those previously reported.^[1]

Synthesis of 1-(1,1-dimethylethyl)-4-[2-(trimethylsilyl)ethynyl]benzene

Scheme S2 Synthesis of 1-(1,1-dimethylethyl)-4-[2-(trimethylsilyl)ethynyl]benzene.

A mixture of 1-bromo-4-*tert*-butylbenzene (3.20 g, 15 mmol), dichlorobis(triphenylphosphine)palladium(II) (0.53 g, 0.75 mmol), triphenylphosphine (0.20 g, 0.75 mmol), copper(I)iodide (0.29 g, 1.5 mmol), (trimethylsilyl)acetylene (1.77 g, 18 mmol), and Et₃N (75 mL) was stirred for 3 h under an argon atmosphere at 60 °C. After 3 h, the precipitate formed during the reaction was separated by atmospheric filtration, while the filtrate was poured into a saturated aqueous ammonium chloride solution. The crude product was extracted three times with EtOAc. The organic layer collected was dried over anhydrous Na₂SO₄, which was separated by filtration. The filtrate was evaporated in-vacuo and subjected

to silica-gel column chromatography (eluent: hexane) to obtain 1-(1,1-Dimethylethyl)-4-[2-(trimethylsilyl)ethynyl]benzene (1.79 g, 59%) as a colorless liquid. ¹H-NMR (400 MHz, CDCl₃) d 7.40 (dm, J = 8.7 Hz, 2H), 7.31 (dm, J = 8.6 Hz, 2H), 1.30 (s, 9H), 0.24 (s, 9H). The NMR chemical shifts are consistent with those previously reported.^[2]

Synthesis of 1-(1,1-dimethylethyl)-4-ethynylbenzene

Scheme S3 Synthesis of 1-(1,1-dimethylethyl)-4-ethynylbenzene.

A mixture of 1-(1,1-Dimethylethyl)-4-[2-(trimethylsilyl)ethynyl]benzene (1.74 g, 7.5 mmol), potassium carbonate (1.56 g, 11 mmol), and MeOH (40 mL) was stirred 3 h under an air atmosphere at room temperature. After 3 h, the precipitate formed during the reaction was separated by atmospheric filtration, while the filtrate was poured into water. The crude product was extracted three times with EtOAc. The organic layer collected was dried over anhydrous Na₂SO₄, which was separated by filtration. The product was then concentrated to obtain 1-(1,1-Dimethylethyl)-4-ethynylbenzene (0.99 g, 83%) as a colorless liquid. ¹H-NMR (400 MHz, CDCl₃) d 7.44 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 3.03 (s, 1H), 1.32 (s, 9H). The NMR chemical shifts are consistent with those previously reported.^[3]

2. Absorption, PL decay spectra of crystal and powder

Fig. S1 Absorption spectra of BPEB-B, BPEB-Bp, BPEB-N and BPEB-Np.

Fig. S2 PL decay profiles monitored at emission maxima of (a) BPEB-B, (b) BPEB-Bp, (c) BPEB-N, (d) BPEB-Np excited at 365 nm (BPEB-B),340 nm (BPEB-Bp, BPEB-N, BPEB-Np).

	$\lambda_{ m abs}$ [nm]	τ ₁ [ns]	τ ₂ [ns]
BPEB-B	352, 396	<1.0	2.2
BPEB-Bp	344	<1.0	-
BPEB-N	347, 397	<1.0	-
BPEB-Np	344	<1.0	-

Table S1 Absorption maxima (λ_{abs}) and Fluorescence lifetime (τ) of **BPEB**.

3. X-ray single-crystal structures

crystals	BPEB-B	BPEB-N
formula	C ₁₉ H ₁₇ NS	C ₁₉ H ₁₇ NS
fw [g·mol⁻¹]	291.41	291.41
crystal color	colorless	colorless
crystal system	triclinic	monoclinic
space group	PĪ	<i>P</i> 1 2 ₁ /c 1
a [Å]	9.0381(3)	17.7329(7)
b [Å]	9.7302(2)	18.9012(4)
c [Å]	10.261(4)	37.568(14)
a [°]	101.159(2)	90.00
β [°]	110.509(3)	119.525(5)
γ [°]	108.369(3)	90.00
V [Å ³]	753.79(5)	10955(8)
Z	2	28
$ ho_{ m calcd}[m g/cm^3]$	1.284	1.237
µ [mm⁻¹]	0.207	0.200
<i>T</i> [K]	173	173
$ heta_{min}$ - $ heta_{max}$ [°]	0.998-27.48	0.999-27.48
$R/wR [I > 2\sigma_{(1)}]$	0.0347/0.0962	0.0697/0.2249

 Table S2 Crystallographic data of BPEB-B and BPEB-N.

4. Temperature variable powder X-ray diffraction

Fig. S3 Temperature variable PXRD of (a) BPEB-Bp (b) BPEB-Np.

5. Exposure of grinding-powder to solvent vapor

Fig. S5 UV irradiation (365 nm) of BPEB-Bp exposed to the vapor of (a) hexane (b) methanol (c) CH_2Cl_2 (d) $CHCl_3$.

6. ¹H-, ¹³C-NMR, IR spectra and Elemental analysis data

Fig. S6 ¹H-NMR spectrum of 2-iodobenzothiazole.

Fig. S7 ¹H-NMR spectrum of 1-(1,1-dimethylethyl)-4-[2-(trimethylsilyl)ethynyl]benzene.

Fig. S9 ¹H NMR spectrum of BPEB.

Fig. S10 ¹³C NMR spectrum of BPEB.

Fig. S11 IR spectrum of BPEB (after synthesis).

Fig. S12 IR spectra of BPEB-Bp and BPEB-Np.

BPEB-Bp

IR: *v* 2956, 2859, 2210, 1507, 1474, 1431, 1358, 1312, 1261, 1193, 1113, 1092, 1056, 1014, 937 cm⁻¹.

BPEB-Np

IR: *v* 2956, 2860, 2211, 1507, 1476, 1431, 1363, 1314, 1261, 1193, 1115, 1090, 1056, 1013, 937 cm⁻¹.

Table S3 Elementa	l analysis data	for BPEB-B a	and BPEB-N
-------------------	-----------------	--------------	------------

	H%	C%	N%
BPEB-B	5.96	78.20	4.75
BPEB-N	5.97	78.33	4.75
Calc.	5.88	78.31	4.81

7. Quantum chemical calculation

Excited State 77 -> 78	1:	Singlet-A 0.68201	4.1531 eV	298.54 nm	f=1.2797
Excited State 75 -> 82 76 -> 78 76 -> 83 77 -> 79 77 -> 82	2:	Singlet-A -0.10016 0.61573 -0.18490 -0.11647 -0.15380	4.6755 eV	265.18 nm	f=0.1014
Excited State 74 -> 78 74 -> 79 74 -> 83 75 -> 78 75 -> 79 75 -> 82 75 -> 83 77 -> 79 77 -> 82 77 -> 83	3:	Singlet-A 0.44620 -0.12599 0.19503 -0.10014 -0.14945 0.13516 -0.11185 0.30838 -0.24358 0.12379	5.0553 eV	245.26 nm	f=0.0006

Fig. S13 Frontier orbitals of BPEB.

8. References

- [1] X. Liu, X. Zhao, F. Liang and B. Ren, *Org. Biomol. Chem.*, 2018, **16**, 886–890.
- [2] S. Zhang, J. F. Wunsch, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2024, 63, e202406856.
- [3] A. Grünwald, F.W. Heinemann and D. Munz, *Angew. Chem. Int. Ed.*, 2020, **59**, 21088–21095.