Supporting Information

Lanthanide Metal-organic Frameworks as Multifunctional Sensors for Chemicals and Temperature

Yang Lin^a, Wenxi Zhang^a, Yanjie Lv^a, Yihe Zhao^a, Hongtao Cui^a, Jing Sun^{a,*}, Xiao Li^{a,*}, Dongling Zhou^{b,*}, and Zhongmin Su^{a,c}

^aSchool of Chemical and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, People's Republic of China.

^bDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China. ^cState Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.

Email address: Sj-cust@126.com; lix@cust.edu.cn; dlzhou@connect.hku.hk.

Experimental:

Materials and general method: PDAI is based on the literature resultant.^{S1} The solvents and other reagents used in this experiment were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. and were not further purified for use. Characterization of the stability of CUST-923 and CUST-924 probes using powder X-ray diffraction (PXRD) and proof of successful synthesis of CUST-923 and CUST-924; Measure the UV absorption spectrum at 200-800 nm using a UV vis spectrophotometer; Using a fluorescence spectrophotometer (Hitachi F7000, Japan) to test the fluorescence spectrum of MOFs during the detection process; Obtaining Fourier transform infrared spectra using an infrared spectrometer (BRUKER VERSEX 70, Germany).

Synthesis of CUST-923: Mix a mixture of $Tb(NO_3)_3 \cdot 6H_2O$ (0.0227 g, 0.05 mmol), PDAI (0.0246 g, 0.05 mmol), 4 mL DMF, and 2 mL H₂O for 5 minutes, add 8 drops of 3 mol/L HCl solution, then transfer to a stainless steel container lined with polytetrafluoroethylene and seal it. Heat it at 120 °C for 72 hours. Cool to room temperature to obtain colorless crystals of **CUST-923**, wash with DMF and distilled water, and dry in air. The molecular formula of **CUST-923** is $C_{23}H_{13}N_3O_{11}Tb$, and the calculated proportion of each element is C: 41.42%; H: 1.95%; N: 6.30%; O: 26.42%. Actual measured value: C: 42.01%; H: 1.71%; N: 6.78%; O: 26.03%.

Synthesis of CUST-924: Using a synthesis method similar to **CUST-923**, the difference is that $Eu(NO_3)_3 \cdot 6H_2O(0.0223 \text{ g}, 0.05 \text{ mmol})$ is used instead of $Tb(NO_3)_3 \cdot 6H_2O$. Obtain block shaped colorless crystals through filtration, wash with DMF and distilled water, and dry in air. The molecular formula of **CUST-924** is $C_{23}H_{11}EuN_3O_{11}$, and the calculated proportion of each element is C: 41.99%; H: 1.67%; N: 6.39%; O: 26.78%. Actual measurement value: C: 41.36%; H: 1.92%; N: 6.08%; O: 25.99%.

Synthesis of Eu_xTb_{1-x} -PDAI: The preparation process of Eu_xTb_{1-x} -PDAI is similar to CUST-923, using a mixture of Tb(NO₃)₃·6H₂O and Eu(NO₃)₃·6H₂O as metal salts, with a total fixed metal salt amount of 0.05 mmol. The ratio of Tb(NO₃)₃·6H₂O to Eu(NO₃)₃·6H₂O varies between 1:9 and 9:1 (Tables. S1).

Cyclic experiment: After the analysis of **CUST-923** and **CUST-924** were detected, **CUST-923** and **CUST-924** were filtered and recovered, washed repeatedly with water, and then dried. Then **CUST-923** and **CUST-924** were used again for analyte detection, and the experimental process was repeated 5 times.

	The percentage of Eu:Tb in MOFs	The moles analyzed by ICP	
Eu _{0.1} Tb _{0.9} -PDAI	10% : 90%	0.00532:0.0452	
Eu _{0.2} Tb _{0.8} -PDAI	20% : 80%	0.0121:0.0441	
Eu _{0.3} Tb _{0.7} -PDAI	30% : 70%	0.0153:0.0354	
Eu _{0.4} Tb _{0.6} -PDAI	40% : 60%	0.0234:0.0352	
Eu _{0.5} Tb _{0.5} -PDAI	50% : 50%	0.0253:0.0256	
Eu _{0.6} Tb _{0.4} -PDAI	60% : 40%	0.0314:0.023	
Eu _{0.7} Tb _{0.3} -PDAI	70% : 30%	0.0353:0.0153	
Eu _{0.8} Tb _{0.2} -PDAI	80% : 20%	0.0433:0.0121	
Eu _{0.9} Tb _{0.1} -PDAI	90% : 10%	0.0454:0.00511	
Table S2 Crystal Data and Structure Refinements for CUST-923 and CUST-924.			
	CUST-923	CUST-924	

Table S1 The moles ratio of Eu/Tb in compounds produced by ICP.

Empirical formula	$C_{23}H_{13}N_3O_{11}Tb$	C ₂₃ H ₁₁ EuN ₃ O ₁₁
Formula weight	666.28	657.31
Temperature/K	298.04	293(2)
Crystal system	monoclinic	monoclinic
Space group	C2/c	C2/c
a/Å	28.4888(14)	28.4963(16)
b/Å	10.0261(4)	10.0575(5)
c/Å	27.1521(13)	27.113(2)
$\alpha/^{\circ}$	90	90
β/°	118.885(2)	118.632(2)
$\gamma/^{\circ}$	90	90
Volume/Å ³	6790.6(6)	6820.3(8)
Z	8	8
$\rho_{calc}g/cm^3$	1.303	1.282
μ/mm^{-1}	2.131	1.887
F(000)	2600.0	2568.0
Reflections collected	43793	24599
Independent reflections	6027	5798
Data/restraints/parameters	6027/6/345	5798/12/353
Goodness-of-fit on F ²	1.076	1.086
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0390, wR_2 = 0.0942$	$R_1 = 0.0375, wR_2 = 0.0947$
Final R indexes [all data]	$R_1 = 0.0536, wR_2 = 0.0996$	$R_1 = 0.0454, wR_2 = 0.0975$

 $R_{1}^{a} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, wR_{2}^{b} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]]^{1/2}$

Table S3 Selected bond lengths (Å) for CUST-923 and CUST-924.

Bond	Length/Å	Bond	Length/Å	
Tb1-O1	2.266(4)	Tb1-O5	2.336(6)	
Tb1-O2 ¹	2.389(4)	Tb1-O7 ¹	2.515(4)	
Tb1-O3 ²	2.423(4)	Tb1-O8 ³	2.415(4)	
Tb1-O4 ²	2.401(4)	Tb1-O10 ³	2.412(5)	
¹ +X,-Y,-1/2+Z; ² +X,1-Y	,-1/2+Z; ³ 1-X,-Y,1-Z; ⁴ +	-X,-Y,1/2+Z; ⁵ +X,1-Y,1	1/2+Z	
Bond	Length/Å	Bond	Length/Å	
Eu1-O1 ¹	2.371(3)	Eu1-O3	2.419(4)	
Eu1-O10 ²	2.369 (4)	Eu1-O9 ²	2.539(4)	
Eu1-O7 ³	2.393(3)	Eu1-O4	2.37(3)	
Eu1-O8 ³	2.437(4)	Eu1-O11	2.439(6)	
Eu1-O4A	2.332(11)			
¹ +X,-Y,-1/2+Z; ² +X,1-Y,-1/2+Z; ³ 1-X,-Y,1-Z; ⁴ +X,-Y,1/2+Z; ⁵ +X,1-Y,1/2+Z				

Table S4 Selected angles (°) for CUST-923 and CUST-924.

Bond	Angle(°)	Bond	Angle(°)		
O1-Tb1-O2 ¹	89.01(15)	O4 ² -Tb1-O7 ¹	166.46(17)		
O1-Tb1-O3 ²	83.92(14)	O4 ² -Tb1-O8 ³	81.20(17)		
O1-Tb1-O4 ²	83.37(15)	O4 ² -Tb1-O10 ³	111.1(2)		
O1-Tb1-O7 ¹	83.09(15)	O8 ³ -Tb1-O3 ²	133.61(15)		
O1-Tb1-O8 ³	79.88(16)	O8 ³ -Tb1-O7 ¹	96.33(17)		
O1-Tb1-O10 ³	124.50(16)	O10 ³ -Tb1-O3 ²	148.5(2)		
O1-Tb1-O5	161.66(18)	O10 ³ -Tb1-O7 ¹	76.9(2)		
O2 ¹ -Tb1-O3 ²	73.94(13)	O10 ³ -Tb1-O8 ³	52.34(15)		
O2 ¹ -Tb1-O4 ²	127.65(14)	O5-Tb1-O2 ¹	84.8(2)		
O21-Tb1-O71	52.15(13)	O5-Tb1-O3 ²	77.79(18)		
O2 ¹ -Tb1-O8 ³	147.86(18)	O5-Tb1-O4 ²	86.83(19)		
O21-Tb1-O103	115.60(18)	O5-Tb1-O7 ¹	106.22(19)		
O3 ² -Tb1-O7 ¹	124.51(13)	O5-Tb1-O8 ³	113.9(2)		
O4 ² -Tb1-O3 ²	53.79(13)	O5-Tb1-O10 ³	73.6(2)		
¹ +X,-Y,-1/2+Z; ² +X,1-Y	,-1/2+Z; ³ 1-X,-Y,1-Z	; ⁴ +X,-Y,1/2+Z; ⁵ +X,1-Y,1	/2+Z		
Bond	Angle(°)	Bond	Angle(°)		
O1 ¹ -Eu1-O7 ²	87.48(13)	O7 ² -Eu1-O11	75.38(18)		
O1 ¹ -Eu1-O8 ²	82.47(14)	O8 ² -Eu1-O9 ³	164.92(16)		
O1 ¹ -Eu1-O3	75.47(15)	O8 ² -Eu1-O11	88.4(2)		
O1 ¹ -Eu1-O9 ³	82.51(14)	O3-Eu1-O8 ²	80.22(15)		
O1 ¹ -Eu1-O11	162.76(17)	O3-Eu1-O9 ³	97.28(16)		
O10 ³ -Eu1-O1 ¹	91.67(14)	O3-Eu1-O11	117.4(2)		
O10 ³ -Eu1-O7 ²	75.25(12)	O4-Eu1-O1 ¹	114.0(14)		
O10 ³ -Eu1-O8 ²	127.40(11)	O11-Eu1-O9 ³	105.8(2)		
O10 ³ -Eu1-O3	148.32(18)	O4-Eu1-O7 ²	157.2(14)		
O10 ³ -Eu1-O9 ³	51.81(11)	O4-Eu1-O8 ²	120.0(7)		
O10 ³ -Eu1-O11	82.3(2)	O4-Eu1-O3	53.3(10)		
O10 ³ -Eu1-O4	110.1(6)	O4-Eu1-O9 ³	68.0(9)		
O7 ² -Eu1-O8 ²	52.38(11)	O4-Eu1-O11	83.2(14)		
O7 ² -Eu1-O3	131.52(14)	O4A-Eu1-O3	55.9(3)		
O7 ² -Eu1-O9 ³	125.47(11)	O4A-Eu1-O11	72.0(7)		
¹ 1/2-X,3/2-Y,1-Z; ² 1-X,1+Y,3/2-Z; ³ 1-X,+Y,3/2-Z; ⁴ 1-X,-1+Y,3/2-Z					

Table S5 MOFs-based fluorescence sensors are used for comparison of the detection of Fe^{3+} .

MOFs	Operation mode	Ksv	LOD (µM)	Ref.
Eu ³⁺ /Hoc@UIO-66	Turn-off	1.22×10 ³	18.0	S2
NIIC-1-Tb	Turn-off	3.83×10 ⁵	0.00862	S3
Eu-MOF	Turn-off	8.37×10^{3}	4.32	S4
ZSTU-1	Turn-off	2.69×10^{6}	0.0638	S5
Eu-MOF	Turn-off	2.10×10^{4}	0.027	S6
$[Cd(L)(oba)] \cdot 0.5DMF_n$	Turn-off	4.98×10 ³	110	S 7

CUST-923	Turn-off	1.35×10^{4}	3.17	This work
CUST-924	Turn-off	7.55×10^{3}	6.48	This work

MOFs	Operation mode	Ksv	LOD (µM)	Ref.
{[Cd(L)-(BPDC)]·	Turn off	6.40×10^{3}	27.6	C Q
$2H_2O_n$	1 um-011	0.40~10*	57.0	50
{[Cd(L)(SDBA)	Turn off	1 97×103	18.6	58
$(H_2O)] \cdot 0.5H_2O\}_n$	1 um-011	4.97~10	48.0	50
NU-100	Turn-off	1.34×10^{4}	1.80	S9
$\{[Zn(L)-(dcdps)]\}_n$	Turn-off	4.46×10^{4}	10.3	S10
${Zn(L)(bdc)}_n$	Turn-off	7.72×10^{4}	5.55	S10
USTS-7	Turn-off	1.31×10^{4}	2.20	S11
JLNU-10-Eu	Turn-off	4.85×10 ³	2.29	S12
CUST-923	Turn-off	8.62×10^{3}	4.92	This work
CUST-924	Turn-off	5.50×10 ³	5.70	This work

Table S6 MOFs-based fluorescence sensors are used for comparison of the detection of $Cr_2O_7^{2-}$.

Table S7 MOFs-based fluorescence sensors are used for comparison of the detection of CrO_4^{2-} .

MOFs	Operation mode	Ksv	LOD (µM)	Ref.
[Zn(ttz)H ₂ O] _n	Turn-off	2.35×10 ³	20	S13
$[Cd(2,5-bipi)(5-hip)]_n$	Turn-off	7.13×10^{3}	1.68	S14
NH ₄ [Eu(sal) ₄ (phen) ₂]	Turn-off	3.60×10^{4}	0.27	S15
$[Zn(IPA)(3-PN)]_n$	Turn-off	1.00×10^{3}	18.3	S16
CUST-923	Turn-off	7.39×10 ³	5.70	This work
CUST-924	Turn-off	4.67×10 ³	10.4	This work

Table S8 MOFs-based fluorescence sensors are used for comparison of the detection of TCH.

MOFs	Operation mode	Ksv	LOD (µM)	Ref.
{[Eu(TATB)(H ₂ O)]}	Turn-off	9.06×10 ³	4.66	S17
Ag-dcp	Turn-off	3.52×10^{4}	0.14	S18
CUST-923	Turn-off	1.99×10^{4}	2.15	This work
CUST-924	Turn-off	1.35×10^{4}	3.96	This work

Table S9 Reported comparison of MOF thermometer detection performance.

MOFs	Range (K)	Sr (% K ⁻¹)	Ref.

$Eu_{0.2}Tb_{0.8}L$	40-300	0.15	S19
Tb _{0.9} Eu _{0.1} -L	303-423	1.75	S20
Eu _{0.0143} Tb _{0.9857} -BDC	298-473	0.28	S21
TbTPTC	313-473	1.05	S22
NIIC-1-Eu	7-200	17	S23
Eu _{0.1} Tb _{0.9} -PDAI	303-413	2.3	This work

Fig. S1 Powder X-ray diffraction patterns of CUST-923 and CUST-924.

Fig. S2 Powder X-ray diffraction patterns of Eu_xTb_{1-x}-PDAI.

Fig. S3 The IR spectra of CUST-923 and CUST-924.

Fig. S4 The PXRD patterns of CUST-923 and CUST-924 soaked into aqueous solutions with different pH values.

Fig. S5 (a) TGA curves of CUST-923 and (b) CUST-924.

Fig. S6 Solid-state excitation of PDAI (a), CUST-923 (c) and CUST-924 (e) and solid-state emission spectra of PDAI (b), CUST-923 (d) and CUST-924 (f).

Fig. S7 CIE coordinates for the response of PDAI.

Fig. S8 Emission spectra of CUST-923 immersed in different solutions: (a) different solvents; (b) Aqueous solution of metal ions; (c) Anions; (d) Antibiotics 、

Fig. S9 Emission spectra of CUST-924 immersed in different solutions: (a) different solvents; (b) Aqueous solution of metal ions; (c) Anions; (d) Antibiotic.

Fig. S10 (a) Concentration-dependent luminescence spectra of CUST-924 toward Fe³⁺ in aqueous solution. (b) Stern-Volmer plot of CUST-924 for Fe³⁺. (c) Anti-interference study of CUST-924 in water against Fe³⁺ in the presence of different cations. (d) The recyclability test of CUST-924 after sensing Fe³⁺.

Fig. S11 Fluorescence spectra of CUST-924 in $Cr_2O_7^{2-}$ (a) and CrO_4^{2-} (b) aqueous solutions from 0 to 1000 μ M. Stern-Volmer plots of CUST-924 in aqueous solutions of $Cr_2O_7^{2-}$ (c) and CrO_4^{2-} (d) Study on the anti-interference effect of CUST-924 on $Cr_2O_7^{2-}$ (e) and CrO_4^{2-} (f) in water in the presence of different anions.

Fig. S12 The recyclability test of CUST-923 after detecting $Cr_2O_7^{2-}$ (a) and CrO_4^{2-} (b) The recyclability test of CUST-924 after detecting $Cr_2O_7^{2-}$ (c) and CrO_4^{2-} (d).

Fig. S13 (a) Concentration-dependent luminescence spectra of CUST-924 toward TCH in aqueous solution. (b) Stern-Volmer plot of CUST-924 for TCH. (c) Anti-interference study of CUST-924 in water against TCH in the presence of different cations. (d) The recyclability test of CUST-924 after sensing TCH.

Fig. S14 PXRD patterns of **CUST-923** (a) and **CUST-924** (b) After storage Fe³⁺, Cr₂O₇²⁻, CrO₄²⁻, TCH. IR spectra of **CUST-923** (c) and **CUST-924** (d) in different solutions.

Fig. S15 The excitation spectra of CUST-923 (a) and CUST-924 (b) overlap with the absorption spectra of different solutions.

Figure S16 (a) The excitation spectra of CUST-923 overlap with the UV absorption spectra of different antibiotic solutions. (b) Fluorescence intensity of CUST-923 at different pH.

Fig. S17 Solid state fluorescence emission spectra of Eu_xTb_{1-x}-PDAI with different doping ratios.

Fig. S18 PXRD patterns of $Eu_{0.1}Tb_{0.9}$ -PDAI after activation at 303 K - 413 K.

Fig. S19 (a) Fitted curves of the integrated intensity ratio for Eu_{0.1}Tb_{0.9}-PDAI. (b) Relative sensitivity of Eu_{0.1}Tb_{0.9}-PDAI.

Fig. S20 Cyclic temperature measurement experiments of $Eu_{0.1}Tb_{0.9}$ -PDAI.

References

- S1 S. Srivastava, V. Kumar, R. Gupta, Cryst Growth Des, 2016, 16, 2874-2886.
- S2 X. Wen, C. Xin, W. Zhang, C. Ding, Z. Li, *J Lumin*, 2023, 263, 120092.
- S3 X. Yu, A. A. Ryadun, D. I. Pavlov, T. Y. Guselnikova, A. S. Potapov, V. P. Fedin, *Angew Chem Int Edit*, 2023, **62**, e202306680.
- S4 X. Yu, A. A. Ryadun, K. A. Kovalenko, T. Y. Guselnikova, V. G. Ponomareva, A. S. Potapov, V. P. Fedin, *Dalton T*, 2023, 52, 8695-8703.
- S5 F. Zhong, C. Li, Y. Xie, H. Xu, J. Gao, J Solid State Chem, 2019, 278, 120892.
- S6 N. Wu, H. Guo, X. Wang, L. Sun, T. Zhang, L. Peng, W. Yang, *Colloid Surface A*, 2021, 616, 126093.
- S7 F. Y. Ge, G. H. Sun, L. Meng, S. S. Ren, H. G. Zheng, Cryst Growth Des, 2019, 20, 1898-1904.
- S8 S. Chen, Z. Shi, L. Qin, H. Jia, H. Zheng, Cryst Growth Des, 2017, 17, 67-72.
- S9 Z. J. Lin, H. Q. Zheng, H. Y. Zheng, L. P. Lin, Q. Xin, R. Cao, *Inorg Chem*, 2017, 56, 14178-14188.
- S10 F. Y. Ge, G. H. Sun, L. Meng, S. S. Ren, H. G. Zheng, Cryst Growth Des, 2019, 20, 1898-1904.
- S11 J. Liu, S. Liu, J. Ma, Y. Diao, M. Li, J. He, Q. Zhang, Inorg Chem, 2020, 59, 17884-17888.
- S12 S. R. Zhang, W. T. Zhang, X. Li, G. J. Xu, W. Xie, Y. H. Xu, Z. M. Su, *Inorg Chem*, 2025, 64, 2990-2999.
- S13 C. S. Cao, H. C. Hu, H. Xu, W. Z. Qiao, B. Zhao, Cryst Growth Des, 2016, 18, 4445-4451.
- S14 W. H. Yao, X. G. Mu, C. Y. He, Y. H. Zhang, J Mol Struct, 2023, 1289, 135886.
- S15 J. Luo, Y. Lin, J. Yang, C. Xu, Phys Scripta, 2024, 99, 065566.
- S16 B. Parmar, Y. Rachuri, K. K. Bisht, R. Laiya, E. Suresh, Inorg Chem, 2017, 56, 2627-2638.
- S17 Y. Fu, R. Zhang, P. Lv, F. Chen, W. Xu, J Solid State Chem, 2022, 306, 122724.
- S18 Y. Yin, J. Zhang, C. Ji, Z. Zhao, X. Wang, P. Wang, Y. Yang, *Talanta*, 2025, 294, 128200.
- S19 H. Wang, J. Xu, D. S. Zhang, Q. Chen, R. M. Wen, Z. Chang, X. H. Bu, Angew. Chem. Int. Ed., 2015, 54, 5966-5970.
- S20 Y. Yang, Y. Wang, Y. Feng, X. Song, C. Cao, G. Zhang, W. Liu, Talanta, 2020, 208, 120354.
- S21 W. N. Miao, B. Liu, H. Li, S. J. Zheng, H. Jiao, L. Xu, Inorg Chem, 2022, 61, 14322-14332.
- S22 S. Wang, J. Jiang, Y. Lu, J. Liu, X. Han, D. Zhao, C. Li, J. Lumin, 2020, 226, 117418.
- S23 P. V. Alekseevskiy, X. Yu, A. S. Efimova, N. A. Zhestkij, Y. A. Mezenov, Y. A. Kenzhebayeva, V. A. Milichko, *Laser & Photonics Reviews*, 2025, 2401912.