SUPPORTING INFORMATION

Polynuclear Tantalum(V) Coordination Complexes. From dinuclear $\{Ta_2O\}$ to octanuclear $\{Ta_8O_{12}\}$ oxo species connected through anyl monotopic carboxylate linkers

Alejandro Vieyra Huerta,^a Mahmud Beji Ahmed,^b Nadine Essayem,^b Laurent Djakovitch,^b Adel Mesbah,^b Thierry Loiseau^a and Sylvain Duval^{a,*}

Contribution from ^aUnité de Catalyse et Chimie du Solide (UCCS) – UMR CNRS 8181, Université de Lille, Centrale Lille, Université d'Artois, F-59000 Lille, France.

* To whom correspondence should be addressed. E-mail: sylvain.duval@univ-lille.fr, Phone: (33) 3 20 43 40 13, Fax: (33) 3 20 43 48 95.

Figure S1. Optical microscope and SEM photographs of crystals of complexes 1(a), 2(b), 3(c), 4(d) and 5(e)

(a)

Powder XRD patterns

Figure S2a. Comparison of the experimental powder XRD pattern (red line) of complex 1 with the calculated one (black line). X-ray source; Copper $K\alpha$ radiation.

Figure S2b. Comparison of the experimental powder XRD pattern (red line) of complex 2 with the calculated one (black line). X-ray source; Copper $K\alpha$ radiation. The (*) represent unidentified crystalline impurities within the sample.

Figure S2c. Comparison of the experimental powder XRD pattern (red line) of complex **3** with the calculated one (black line). X-ray source; Copper $K\alpha$ radiation.

Figure S2d. Comparison of the experimental powder XRD pattern (red line) of complex 4 with the calculated one (black line). X-ray source; Copper $K\alpha$ radiation.

Figure S2e. Comparison of the experimental powder XRD pattern (red line) of complex 5 with the calculated one (black line). X-ray source; Copper $K\alpha$ radiation.

Figure S3a. Infrared spectroscopy analysis in the $4000 - 400 \text{ cm}^{-1}$ range for the tantalum complexes 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) (blue lines). The free ligands anthracene-9-carboxylic acid (a), 4'-methylbiphenyl-4-carboxylic acid (b), benzoic acid (c), 1-naphtoic acid (d) and 2-naphtoic acid (e) (red lines) and the tantalum precursor Ta(OEt)₅ (black lines).

Figure S3b. Infrared spectroscopy analysis in the $2000 - 400 \text{ cm}^{-1}$ range for the tantalum complexes 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) (blue lines). The free ligands anthracene-9-carboxylic acid (a), 4'-methylbiphenyl-4-carboxylic acid (b), benzoic acid (c), 1-naphtoic acid (d) and 2-naphtoic acid (e) (red lines) and the tantalum precursor Ta(OEt)₅ (black lines).

Figure S4. TGA of the tantalum complexes 1 (a), 2 (b), 3 (c), 4 (d), 5 (e).

Figure S5. Catalytic reaction scheme of the conversion of dihydroxyacetone (DHA) into lactic acid (LA), pyruvaldehyde (PA) and sugars (C₆, such as glucose or fructose).