Supporting Information

Construction of Novel Mn-based Metal-Organic Frameworks for Regioselective Cross-Dehydrogenative Coupling of Coumarins and Dimethylanilines

Qing Sun,^a Chen Yang,^a Shaoyang Han,^a Xin Liu,^a Meichao Li^a and Zhenlu Shen*^{ab}

^a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.

^b State Key Laboratory of Advanced Separation Membrane Materials, Zhejiang University of Technology, Hangzhou 310014, China Email: zhenlushen@zjut.edu.cn

Contents

1. General information	S2
2. General procedure for the synthesis of 9 <i>H</i> -carbazole-2,7-dicarboxylic acid	S2
3. General procedure for the synthesis of Mn-CDC	S3
4. Characterization of Mn-CDC	S3
5. General procedure for the synthesis of Mn/Co-CDC	S5
6. Characterization of Mn/Co-CDC	S6
7. General procedure for the synthesis of coumarins 1b-1m	S7
8. General procedure for coupling reactions of coumarins with dimethylanilines	S7
9. Optimization of coupling reaction conditions of coumarin with dimethylaniline	S8
10. A comparison of the current methodology with the reported methods	S8
11. Recycle experiments results of Mn-CDC	S9
12. Characterization of the compounds involved in the synthesis of CDC	.S10
13. Characterization of coumarins 1b-1m	.S11
14. Characterization of coupling products 3	.S13
15. References	.S21
16. Spectra of compounds	.S22

1. General information

Unless specifically emphasized, all reagents were purchased from commercial sources and used without further purification. Various gases required for experiments were supplied by Hangzhou Jingong Special Gases. ¹H NMR spectra and ¹³C NMR spectra were recorded at 25 °C on Bruker AVANCE NEO (400 MHz) spectrometer and Bruker AVANCE NEO (100 MHz) spectrometer, respectively. The single-crystal Xray diffraction (SCXRD) data were collected using a Bruker D8 Venture single-crystal diffractometer, equipped with a Cu K α radiation source ($\lambda = 1.54178$ Å) at a temperature of 193 K. Power X-ray diffraction (PXRD) patterns were recorded with a PANalytical Empyrean powder diffractometer using Cu K α radiation (λ = 0.1541 nm). The working voltage was 40 kV and the working current was 40 mA. The patterns were collected with a 2θ range from 2° to 50° at a step of 0.026°. The BET surface area was determined with ASAP 2460 specific surface analyzer and a predetermined quantity of the sample was subjected to a degassing process at 120 °C for 6 h. The infrared spectra of the materials were recorded by Nexus 670 (Thermo Nicolet, USA) instrument at the range of 400-4000 cm⁻¹ using KBr pellet technique. The morphology and size of the asprepared Mn-CDC were characterized by Zeiss Sigma 300 VP scanning electron microscope (SEM). High resolution mass spectra (HRMS) were measured with an Agilent 6230 TOF instrument.

2. General procedure for the synthesis of 9H-carbazole-2,7-dicarboxylic acid

9*H*-carbazole-2,7-dicarboxylic acid (H_2CDC) was synthesized in our laboratory according to the literatures.^{1,2} Firstly, ethyl 4-iodo-3-nitrobenzoate (S-2) was synthesized form ethyl 4-iodobenzoate (S-1) through a typical nitration reaction. Secondly, S-2 reacted with (4-(ethoxycarbonyl)phenyl)boronic acid (S-3) via Suzuki-Miyaura cross coupling reaction to generate diethyl 2-nitro-[1,1'-biphenyl]-4,4'dicarboxylate (S-4). Then, the resulting S-4 and triphenylphosphine (PPh₃) were put in 1,2-dichlorobenzene (*o*-DCB) and was heated to reflux with vigorous stirring. Diethyl 9*H*-carbazole-2,7-dicarboxylate (S-5) was synthesized via Cadogan nitrene insertion. Finally, hydrolysis reaction of S-5 produced the corresponding target product H_2CDC . In the whole process, all the products were characterized by NMR.

3. General procedure for the synthesis of Mn-CDC

H₂CDC (25.5 mg, 0.10 mmol) and $MnCl_2 \cdot 4H_2O$ (19.8 mg, 0.10 mmol) were dissolved in DMF (2 mL). Subsequently, deionized water (80 µL) was added, followed by sonication for 5 min. The resulting mixture was sealed in a glass vial and placed in a preheated oven at 100 °C for 24 h. After completion of the reaction, the mixture was cooled to room temperature and light-yellow flaky crystals were collected. The synthesized crystals were washed three times with DMF and MeOH. Following this, they were immersed in MeOH, with the new MeOH solution being replaced every eight hours for a period of three days. Subsequently, the crystals were subjected to vacuum drying at 60 °C for a duration of 10-12 h.

4. Characterization of Mn-CDC

Table S1. Crystallographic data and structure refinement parameters of Mn-CDC

Empirical formula	$C_{51}H_{44}Mn_3N_6O_{16}$	
Formula weight	1161.0955	
Temperature/K	193.00	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
a/Å	14.2545(7)	
b/Å	18.0400(8)	
c/Å	30.3498(14)	
α/°	91.749(3)	
β/°	96.795(3)	
$\gamma/^{\circ}$	100.827(3)	
Volume/ Å ³	7600.6(6)	
Z	2	
$\rho_{calc} g/cm^3$	1.111	
μ/mm^{-1}	4.497	
F(000)	2620.0	
Crystal size/mm ³	0.13 imes 0.12 imes 0.1	
Radiation	$CuK\alpha \ (\lambda = 1.54178)$	
2θ range for data collection/°	4.994 to 133.19	
Index ranges	$-16 \le h \le 16, -21 \le k \le 21, -36 \le l \le 34$	
Reflections collected	94533	
Independent reflections	26693 [$R_{int} = 0.0990, R_{sigma} = 0.0857$]	
Data/restraints/parameters	26693/28/1525	
Goodness-of-fit on F ²	1.081	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0986, wR_2 = 0.2722$	
Final R indexes [all data]	$R_1 = 0.1151, wR_2 = 0.2907$	
Largest diff. peak/hole / e Å ⁻³	0.98/-0.62	

Fig. S1. FT-IR spectra of Mn-CDC and H₂CDC.

The absorption peaks at 3346 and 3389 cm⁻¹, were attributed to N-H stretching vibration of H₂CDC and Mn-CDC respectively, indicating that carbazole skeleton remained intact following the MOF synthesis reaction. In the FTIR spectrum of H₂CDC, the strong absorption peak at 1671 cm⁻¹ was attributed to stretching vibration of the -COOH group, which significantly weakened in the FTIR spectrum of Mn-CDC due to the coordination of carboxylic group with Mn²⁺. In the FTIR spectrum of Mn-CDC, the peaks at 1541 and 1393 cm⁻¹ were assigned to vibrations of carboxylate.

Fig. S3. BET surface area measurement and pore size distribution pattern of Mn-CDC.

Fig S5. PXRD pattern of the residue obtained after the TGA test of Mn-CDC.

5. General procedure for the synthesis of Mn/Co-CDC

H₂CDC (25.5 mg, 0.10 mmol), MnCl₂·4H₂O (9.9 mg, 0.05 mmol) and CoCl₂·6H₂O (11.9 mg, 0.05 mmol) were dissolved in DMF (2 mL). Subsequently, deionized water (80 μ L) was added, followed by sonication for 5 min. The resulting mixture was sealed in a glass vial and placed in a preheated oven at 100 °C for 24 h. After completion of the reaction, the mixture was cooled to room temperature and purple flaky crystals were collected. The synthesized crystals were washed three times with DMF and MeOH. Following this, they were immersed in MeOH, with the new MeOH solution being replaced every eight hours for a period of three days. Subsequently, the crystals were subjected to vacuum drying at 60 °C for a duration of 10-12 h.

6. Characterization of Mn/Co-CDC

Fig. S8. (a) Mn 2p and (b) Co 2p XPS spectra of Mn/Co-CDC.

Fig. S9. (a) SEM images of Mn/Co-CDC; (b-f) EDX-mapping of C, N, O, Mn, and Co elements in Mn/Co-CDC.

7. General procedure for the synthesis of coumarins 1b-1m

Coumarins 1 were synthesized according to the literature procedure.³ Salicylaldehyde (S-6, 8.00 mmol), acetic anhydride (S-7, 8.00 mmol), anhydrous potassium carbonate (2.00 mmol) and tetrabutylammonium bromide (TBAB, 0.32 mmol) were added into a reaction bottle and then stirred at 140°C for 1 h. Subsequently, a portion of the acetic acid formed in reaction was evaporated, and another portion of S-7 (16.00 mmol) was added dropwise to the mixture, which continued to be stirred at 140 °C for 6 h. After completion of the reaction, the pH of reaction mixture was adjusted to 8 with a saturated Na₂CO₃ solution. The resulting mixture was extracted with ethyl acetate. The combined organic phase was dried with anhydrous Na₂SO₄, and evaporated under vacuum. The crude products were purified by silica column chromatography with petroleum ether/ethyl acetate as the eluent to afford coumarins **1b-1m**.

8. General procedure for coupling reactions of coumarins with dimethylanilines

Coumarins (1, 0.2 mmol), *N*,*N*-dimethylanilines (2, 5.0 equiv.), TBHP (4.0 equiv.), DABCO (1.5 equiv.), Mn-CDC (5.0 mg) and DMSO (0.5 mL) were added to

a reaction tube and the mixture was stirred at 120 °C for 1 h. After completion of the reaction, the mixture was concentrated in vacuo and the residue was purified by column chromatography using petroleum ether/ethyl acetate as the eluent to afford products **3**, which were characterized by NMR.

9. Optimization of coupling reaction conditions of coumarin with dimethylaniline

Table S2. Optimization of the reaction conditions ^a

	1a 2a Mn-MOF (Cat.)	3aa
Entry	Variation from the standard conditions	Yield (%) ^b
1	none	73
2	MeCN instead of DMSO	48
3	1,4-Dioxane, THF, Acetone or MeOH instead of DMSO	trace
4	Mn-CDC (10 mg, about 0.043 mol%)	73
5	2a (4.0 equiv.) instead of 2a (5.0 equiv.)	48
6	2a (6.0 equiv.) instead of 2a (5.0 equiv.)	73
7	O ₂ , H ₂ O ₂ or DTBP instead of TBHP	trace
8	TEA instead of DABCO	trace
9	NaOAc instead of DABCO	44
10	K ₂ CO ₃ instead of DABCO	74
11	110 °C instead of 120 °C	57
12	130 °C instead of 120 °C	72
13	0.5 h instead of 1 h	65
14	1.5 h instead of 1 h	71
15	TBHP (3.0 equiv.) instead of TBHP (4.0 equiv.)	58
16	TBHP (5.0 equiv.) instead of TBHP (4.0 equiv.)	67
17	DABCO (1.0 equiv.) instead of DABCO (1.5 equiv.)	58
18	DABCO (2.0 equiv.) instead of DABCO (1.5 equiv.)	73
19	Without Mn-CDC	9

^a Standard conditions: **1a** (0.2 mmol), **2a** (5.0 equiv.), Mn-CDC (5 mg, about 0.022 mol%), TBHP (4.0 equiv.), DABCO (1.5 equiv.), DMSO, 120 °C, 1 h. The concentration of **1a** and **2a** in DMSO were 0.4 M and 2.0 M. ^b Isolated yield.

10. A comparison of the current methodology with the reported methods

Catalyst	Oxidant	Additive	Yield (%)	Reference
ⁿ Bu ₄ NI	TBHP	DBU	80	[7]
Ru(bpy) ₃ Cl ₂ ·6H ₂ O	O_2	DBU	82	[8]
Fe ₃ (BTC)(NDC) ₂ ·6.65H ₂ O	TBHP	DABCO	89	[20]
Mn ₆ (CDC) ₆ (DMF) ₆ (H ₂ O) ₂	TBHP	DABCO	73	This work

 Table S3. Coupling reactions of coumarin 1a with N,N-dimethylaniline 2a.

11. Recycle experiments results of Mn-CDC

Fig. S10. Recycle experiments results of Mn-CDC.

Fig. S11. XPS spectra of recovered Mn-CDC after cycles.

Fig. S12. (a) Comparison of PXRD patterns of Mn-CDC and recovered Mn-CDC. (b) Comparison of FT-IR spectra of Mn-CDC and recovered Mn-CDC.

12. Characterization of the compounds involved in the synthesis of CDC

Ethyl 4-iodo-3-nitrobenzoate (S-2): Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 8.44 (s, 1H), 8.14 (d, J = 8.2 Hz, 1H),7.88 (dd, J = 8.2, 2.0 Hz, 1H), 4.44-4.39 (m, 2H), 1.41 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 153.2, 142.3, 133.5, 132.0, 126.0, 92.0, 62.2, 14.3. NMR data is consistent with literature values.⁴

Diethyl 2-nitro-[1,1'-biphenyl]-4,4'-dicarboxylate (S-4): Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 8.54 (d, J = 1.7 Hz, 1H), 8.29 (dd, J = 8.0, 1.7 Hz, 1H), 8.12 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 4.48-4.37 (m, 4H), 1.45-1.39 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 164.2, 149.0, 141.0, 139.4, 133.1, 132.0, 131.4, 130.8, 130.0, 127.8, 125.4, 62.0, 61.2, 14.3 (d, J = 4.7 Hz). NMR data is consistent with literature values.¹

Diethyl 9*H***-carbazole-2,7-dicarboxylate (S-5):** White solid; ¹H NMR (400 MHz, DMSO- d_6): δ 8.29 (d, J = 8.2 Hz,2H), 8.16 (s, 2H), 7.80 (d, J = 8.2 Hz, 2H), 4.38-4.33 (m, 4H), 1.36 (t, J = 7.1 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6): δ 166.3, 140.4, 127.9, 125.2, 121.2, 119.7, 112.8, 60.3, 14.3. NMR data is consistent with literature values.¹

9H-Carbazole-2,7-dicarboxylic acid (CDC): Yellow solid; ¹H NMR (400 MHz, DMSO-d₆): δ 8.28 (d, J = 8.2 Hz, 2H), 8.16 (s, 2H), 7.81(d, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d₆): δ 167.9, 140.4, 128.8, 125.1, 120.9, 120.0, 112.9. NMR data is consistent with literature values.¹

13. Characterization of coumarins 1b-1m

6-Methyl-2*H***-chromen-2-one (1b):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 9.6 Hz, 1H), 7.33 (dd, J = 8.5, 2.1 Hz, 1H), 7.27 (d, J = 2.1 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 6.40 (d, J = 9.5 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 152.1, 143.4, 134.1, 132.8, 127.7, 118.5, 116.5 (d, J = 2.1 Hz), 20.7. NMR data is consistent with literature values.⁵

6-Fluoro-2*H***-chromen-2-one (1c):** White solid; ¹H NMR (400 MHz, CDCl₃): 7.69 (d, J = 9.6 Hz, 1H), 7.34-7.30 (m, 1H), 7.28-7.26 (m, 1H),7.20 (dd, J = 7.9, 2.9 Hz, 1H), 6.49 (d, J = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.3, 158.7 (d, J = 244.3 Hz), 150.2 (d, J = 2.1 Hz), 142.5 (d, J = 2.8 Hz), 119.5 (d, J = 9.0 Hz), 119.2 (d, J = 24.5 Hz), 118.4 (d, J = 8.4 Hz), 117.9, 113.2 (d, J = 23.8 Hz). NMR data is consistent with literature values.⁵

6-Chloro-2*H***-chromen-2-one (1d):** White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 9.6 Hz, 1H), 7.50-7.47 (m, 2H), 7.30-7.26 (m, 1H), 6.48 (d, J = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 152.4, 142.2, 131.8, 129.7, 127.1, 119.18, 118.3, 117.8. NMR data is consistent with literature values.⁵

6-Bromo-2*H***-chromen-2-one (1e):** White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.64-7.59 (m, 3H), 7.21 (d, *J* = 8.5 Hz, 1H), 6.45 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 152.9, 142.2, 134.6, 130.2, 120.3, 118.7, 117.9, 117.0. NMR data is consistent with literature values.⁵

8-Methyl-2*H***-chromen-2-one (1f):** White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 9.5 Hz, 1H), 7.37 (d, J = 7.4 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 6.39 (d, J = 9.5 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.0, 152.4, 143.8, 133.2, 126.3, 125.6, 124.0, 118.5, 116.3, 15.4. NMR data is consistent with literature values.⁵

8-Chloro-2*H***-chromen-2-one (1g):** White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 9.6 Hz, 1H), 7.59-7.56 (m, 1H), 7.41-7.39 (m, 1H), 7.21 (t, *J* = 7.9 Hz, 1H), 6.45 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 149.7, 143.1, 132.2, 126.4, 124.7, 121.7, 120.1, 117.3. NMR data is consistent with literature values.⁵

8-Bromo-2*H***-chromen-2-one (1h):** White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 9.6 Hz, 1H), 7.44 (dd, J = 7.8, 1.5 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 6.45 (dd, J = 9.5, 1.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.7, 150.8, 143.2, 135.4, 127.2, 125.2, 120.1, 117.3, 110.4. NMR data is consistent with literature values.⁵

7-Methyl-2*H***-chromen-2-one (1i):** White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 9.5 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.11 (s, 1H), 7.13-7.04 (m, 2H), 6.33 (d, J = 9.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.1, 154.2, 143.4, 143.1, 127.5, 125.6, 117.0, 116.5, 115.4, 21.7. NMR data is consistent with literature values.⁵

7-Bromo-2*H***-chromen-2-one (1j):** White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, *J* = 9.6 Hz, 1H), 7.49 (d, *J* = 1.9 Hz, 1H), 7.42-7.39 (m, 1H), 7.34 (d, *J* = 8.3 Hz, 1H), 6.42 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 154.3, 142.8, 128.8, 127.9, 125.8, 120.2, 117.8, 116.9. NMR data is consistent with literature values.⁵

5-Bromo-2*H***-chromen-2-one (1k):** White solid; ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 9.8 Hz, 1H), 7.52-7.50 (m, 1H), 7.38 (t, *J* = 8.1 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 6.50 (d, *J* = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 159.9, 154.8, 142.2, 132.2, 128.5, 122.4, 118.8, 117.8, 116.5. NMR data is consistent with literature values.⁶

6,8-Dichloro-2*H***-chromen-2-one (11):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 9.6 Hz, 1H), 7.57 (d, J = 2.3 Hz, 1H), 7.39 (d, J = 2.3 Hz, 1H), 6.51 (d, J = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 158.8, 148.4, 142.0, 131.8, 129.6, 125.8, 122.7, 120.6, 118.5. NMR data is consistent with literature values.⁵

6,8-Dibromo-2*H***-chromen-2-one (1m):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 2.2 Hz, 1H), 7.62-7.57 (m, 2H), 6.49 (d, J = 9.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 158.9, 150.0, 141.9, 137.4, 129.5, 121.1, 118.5, 117.0, 111.5. NMR data is consistent with literature values.⁷

14. Characterization of coupling products 3

3-((Methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3aa):** Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.45 (m, 2H), 7.39-7.33 (m, 2H), 7.25-7.22 (m, 3H), 6.77-6.70 (m, 3H), 4.43 (d, *J* = 1.8 Hz, 2H), 3.11 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 153.1, 148.9, 137.7, 131.0, 129.4, 127.7, 125.4, 124.4, 119.2, 117.0, 116.5, 112.0, 52.7, 38.9. NMR data is consistent with literature values.⁸

6-Methyl-3-((methyl(phenyl)amino)methyl)-2H-chromen-2-one (3ba): Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, J = 2.0 Hz, 1H), 7.26-7.19 (m, 4H), 7.12 (s, 1H), 6.73-6.67 (m, 3H), 4.39 (d, J = 2.1 Hz, 2H), 3.08 (d, J = 1.7 Hz, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.4, 151.1, 148.8, 137.7, 134.0, 132.0, 129.3, 127.5, 125.0, 118.9, 116.9, 116.1, 111.9, 52.6, 38.9, 20.7. NMR data is consistent with literature values.⁸

6-Fluoro-3-((methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3ca): Yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta 7.40 (s, 1H), 7.33-7.30 (m, 1H), 7.26-7.16 (m, 3H), 7.07 (dd, J = 8.0, 3.0 Hz, 1H), 6.76 (t, J = 7.3 Hz, 1H), 6.69 (d, J = 8.2 Hz, 2H), 4.43 (s, 2H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 160.8, 158.7 (d, J = 244.1 Hz), 149.2 (d, J = 2.1 Hz), 148.8, 136.7 (d, J = 2.9 Hz), 129.4, 126.8, 120.0 (d, J = 9.1 Hz), 118.4 (d, J = 24.4 Hz), 118.0 (d, J = 8.5 Hz), 117.2, 113.0 (d, J = 23.8 Hz), 112.0, 52.8, 39.0. NMR data is consistent with literature values.⁹**

6-Chloro-3-((methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3da):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.42 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.37 (t, *J* = 1.9 Hz,

2H), 7.30-7.22 (m, 3H), 6.76 (t, J = 7.3 Hz, 1H), 6.71-6.68 (m, 2H), 4.43 (d, J = 1.8 Hz, 2H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.6, 151.4, 148.7, 136.5, 130.9, 129.7, 129.5, 127.0, 126.8, 120.3, 117.9, 117.3, 112.0, 52.7, 39.0. NMR data is consistent with literature values.⁸

6-Bromo-3-((methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3ea): Yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta 7.57 (dd, J = 8.8, 2.1 Hz, 1H), 7.53 (d, J = 2.5 Hz, 1H), 7.39 (s, 1H), 7.28-7.23 (m, 3H), 6.78 (t, J = 7.3 Hz, 1H), 6.71 (d, J = 8.1 Hz, 2H), 4.45 (s, 2H), 3.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 160.5, 151.9, 148.7, 136.4, 133.7, 130.0, 129.4, 126.7, 120.8, 118.2, 117.2, 117.0, 112.0, 52.7, 39.0. NMR data is consistent with literature values.⁸**

8-Methyl-3-((methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3fa**): Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.44 (s, 1H), 7.33 (d, *J* = 7.3 Hz, 1H), 7.26-7.21 (m, 3H), 7.13 (t, *J* = 7.5 Hz, 1H), 6.77-6.70 (m, 3H), 4.44 (d, *J* = 1.8 Hz, 2H), 3.11 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.4, 151.4, 148.9, 138.1, 132.3, 129.4, 125.9, 125.4, 124.9, 124.0, 118.9, 116.9, 111.9, 52.6, 38.9, 15.5; HRMS (ESI): m/z calcd for C₁₈H₁₇NO₂ [M+H]⁺ 280.1332 Found 280.1336.

8-Chloro-3-((methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3ga): Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (dd,** *J* **= 7.9, 1.5 Hz, 1H), 7.44 (t,** *J* **= 1.8 Hz, 1H), 7.29 (dd,** *J* **= 7.8, 1.5 Hz, 1H), 7.26-7.22 (m, 2H), 7.17 (t,** *J* **= 7.8 Hz, 1H), 6.77-6.74**

(m, 1H), 6.70 (d, J = 7.7 Hz, 1H), 4.44 (d, J = 1.9 Hz, 2H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.0, 148.8, 137.3, 131.4, 129.4, 126.4, 126.2, 124.6, 121.4, 120.5, 117.2, 112.0, 52.7, 39.0. NMR data is consistent with literature values.⁹

8-Bromo-3-((methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3ha): Yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta 7.70 (dd,** *J* **= 7.9, 1.4 Hz, 1H), 7.42 (d,** *J* **= 1.8 Hz, 1H), 7.33 (dd,** *J* **= 7.8, 1.4 Hz, 1H), 7.26-7.22 (m, 2H), 7.11 (t,** *J* **= 7.8 Hz, 1H), 6.76 (t,** *J* **= 7.3 Hz, 1H), 6.70 (d,** *J* **= 8.1 Hz, 2H), 4.44 (d,** *J* **= 1.8 Hz, 2H), 3.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 160.1, 149.8, 148.8, 137.3, 134.5, 129.4, 127.0, 126.3, 125.1, 120.5, 117.2, 112.0, 110.0, 52.6, 39.0; HRMS (ESI): m/z calcd for C₁₇H₁₄BrNO₂ [M+H]⁺ 344.0281 Found 344.0278.**

7-Methyl-3-((methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3ia): Yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta 7.42 (s, 1H), 7.26-7.22 (m, 3H), 7.15 (s, 1H), 7.04 (dd,** *J* **= 7.9, 1.6 Hz, 1H), 6.76-6.70 (m, 3H), 4.41 (d,** *J* **= 1.8 Hz, 2H), 3.10 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 161.4, 153.1, 148.9 142.2, 137.7, 129.3, 127.4, 125.6, 124.0, 116.9, 116.8, 116.6, 111.9, 52.6, 38.9, 21.7; HRMS (ESI): m/z calcd for C₁₈H₁₇NO₂ [M+H]⁺ 280.1332 Found 280.1342.**

7-Bromo-3-((methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3ja): Yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta 7.51 (d,** *J* **= 1.8 Hz, 1H), 7.41 (d,** *J* **= 1.9 Hz, 1H), 7.36 (dd,** *J* **= 8.3, 1.9 Hz, 1H), 7.26-7.22 (m, 3H), 6.78-6.74 (m, 1H), 6.71-6.69 (m, 2H), 4.40 (d,** *J* **= 1.8 Hz, 2H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 160.4, 153.3, 148.8, 137.0, 129.4, 128.7, 127.9, 125.8, 124.8, 119.8, 118.2, 117.2, 112.0, 52.8, 39.0; HRMS (ESI): m/z calcd for C₁₇H₁₄BrNO₂ [M+H]⁺ 344.0281 Found 344.0278.**

5-Bromo-3-((methyl(phenyl)amino)methyl)-*2H***-chromen-2-one (3ka):** White solid; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (s, 1H), 7.45 (dd, *J* = 7.0, 2.1 Hz, 1H), 7.33-7.28 (m, 2H), 7.23 (d, *J* = 7.3 Hz, 2H), 6.77-6.73 (m, 3H), 4.44 (d, *J* = 1.9 Hz, 2H), 311 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 153.6, 149.0, 136.8, 131.4, 129.4, 128.5, 126.9, 122.1, 119.3, 117.4, 116.1, 112.4, 52.9, 39.0; HRMS (ESI): m/z calcd for C₁₇H₁₄BrNO₂ [M+H]⁺ 344.0281 Found 344.0277.

6,8-Dichloro-3-((methyl(phenyl)amino)methyl)-2*H***-chromen-2-one (3la): Yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta 7.52 (d,** *J* **= 2.3 Hz, 1H), 7.36 (d,** *J* **= 1.8 Hz, 1H), 7.29 (d,** *J* **= 2.4 Hz, 1H), 7.26-7.22 (m, 2H), 6.76 (t,** *J* **= 7.3 Hz, 1H), 6.68 (d,** *J* **= 8.7 Hz, 2H), 4.44 (d,** *J* **= 1.8 Hz, 2H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 159.5, 148.6, 147.4, 136.2, 131.0, 129.5 (d,** *J* **= 4.6 Hz), 127.8, 125.6, 122.4, 121.1, 117.4, 112.0, 52.7, 39.1; HRMS (ESI): m/z calcd for C₁₇H₁₃Cl₂NO₂ [M+H]⁺ 334.0396 Found 334.0392.**

6,8-Dibromo-3-((methyl(phenyl)amino)methyl)-*2H***-chromen-2-one (3ma):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 2.2 Hz, 1H), 7.48 (d, *J* = 2.2 Hz, 1H), 7.33 (s, 1H), 7.26-7.22 (m, 2H), 6.76 (t, *J* = 7.3 Hz, 1H), 6.68 (d, *J* = 8.2 Hz, 2H), 4.44 (d, *J* = 1.8 Hz, 2H), 3.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 149.0, 148.6, 136.5, 136.2, 129.5, 129.3, 127.7, 121.6, 117.4, 116.9, 112.0, 111.0, 52.7, 39.1; HRMS (ESI): m/z calcd for C₁₇H₁₃Br₂NO₂ [M+H]⁺ 421.9386 Found 421.9382.

3-((Methyl(o-tolyl)amino)methyl)-2*H***-chromen-2-one (3ab):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, *J* = 2.0 Hz, 2H), 7.41-7.35 (m, 2H), 7.26-7.22 (m, 1H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.65 (d, *J* = 8.5 Hz, 2H), 4.41 (s, 2H), 3.09 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 153.1, 146.9, 137.8, 131.0, 130.0, 127.7, 126.3, 125.6, 124.4, 119.3, 116.5, 112.2, 52.9, 39.1, 20.2. NMR data is consistent with literature values.⁸

3-(((2-Bromophenyl)(methyl)amino)methyl)-*2H***-chromen-2-one (3ac):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 8.04 (s, 1H), 7.59 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.53-7.47 (m, 2H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.30-7.26 (m, 2H), 7.21 (dd, *J* = 8.0, 1.7 Hz, 1H), 6.96-6.92 (m, 1H), 4.15 (d, *J* = 1.7 Hz, 2H), 2.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.4, 153.0, 150.7, 139.6, 133.9, 131.0, 128.4, 127.8, 125.7, 124.8, 124.4, 122.1, 120.1, 119.5, 116.5, 54.7, 41.5. NMR data is consistent with literature values.⁹

3-((Methyl(m-tolyl)amino)methyl)-2*H***-chromen-2-one (3ad):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.47 (m, 2H), 7.41-7.34 (m, 2H), 7.26-7.22 (m, 1H), 7.14 (dd, *J* = 9.0, 7.4 Hz, 1H), 6.59 (d, *J* = 7.4 Hz, 1H), 6.54-6.53 (m, 2H), 4.42 (d, *J* = 1.8 Hz, 2H), 3.10 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 153.1, 149.0, 139.2, 137.6, 131.0, 129.3, 127.7, 125.5, 124.4, 119.3, 118.0, 116.5, 112.6, 109.2, 52.7, 38.9, 21.9. NMR data is consistent with literature values.⁹

3-(((3-Bromophenyl)(methyl)amino)methyl)-2*H***-chromen-2-one (3ae): Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.48 (m, 1H), 7.42-7.34 (m, 3H), 7.25 (t,** *J*

= 7.4 Hz, 1H), 7.07 (t, J = 8.1 Hz, 1H), 6.85 (d, J = 8.6 Hz, 2H), 6.60 (dd, J = 7.5, 2.2 Hz, 1H), 4.42 (s, 2H), 3.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.0, 153.1, 150.0, 137.7, 131.2, 130.6, 127.8, 124.6, 124.5, 123.6, 119.8, 119.0, 116.5, 114.6, 110.5, 52.5, 38.9. NMR data is consistent with literature values.⁹

3-((Methyl(p-tolyl)amino)methyl)-2*H***-chromen-2-one (3af):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.51-7.47 (m, 2H), 7.37 (dd, *J* = 15.2, 8.0 Hz, 2H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.65 (d, *J* = 8.2 Hz, 2H), 4.41 (s, 2H), 3.09 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.2, 153.0, 146.8, 137.7, 131.0, 129.9, 127.7, 126.2, 125.6, 124.4, 119.3, 116.5, 112.1, 52.9, 39.1, 20.2. NMR data is consistent with literature values.⁸

3-(((4-Bromophenyl)(methyl)amino)methyl)-2*H***-chromen-2-one (3ag): Yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta 7.51-7.47 (m, 1H), 7.40-7.37 (m, 2H), 7.34 (d,** *J* **= 8.3 Hz, 1H), 7.30-7.28 (m, 2H), 7.25-7.22 (m, 1H), 6.57 (d,** *J* **= 8.9 Hz, 2H), 4.40 (d,** *J* **= 1.7 Hz, 2H), 3.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 161.1, 153.1, 147.8, 137.8, 132.0, 131.2, 127.8, 124.8, 124.5, 119.1, 116.5, 113.6, 109.1, 52.7, 39.1. NMR data is consistent with literature values.⁸**

3-(((4-Methoxyphenyl)(methyl)amino)methyl)-2*H***-chromen-2-one (3ah): Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.46 (m, 2H), 7.40 (dd,** *J* **= 7.8, 1.6 Hz, 1H), 7.35 (d,** *J* **= 8.3 Hz, 1H), 7.24 (dd,** *J* **= 7.5, 6.3 Hz, 1H), 6.85-6.83 (m, 2H), 6.71-6.68 (m, 2H), 4.36 (d,** *J* **= 1.8 Hz, 2H), 3.75 (s, 3H), 3.05 (s, 3H); ¹³C NMR (100 MHz,**

CDCl₃): δ 161.2, 153.1, 151.9, 143.8, 138.0, 131.0, 127.7, 125.8, 124.4, 119.3, 116.5, 114.9, 113.7, 55.8, 53.5, 39.5. NMR data is consistent with literature values.⁸

3-(((4-Chlorophenyl)(methyl)amino)methyl)-2*H***-chromen-2-one (3ai): Yellow solid; ¹H NMR (400 MHz, CDCl₃): \delta 7.52-7.48 (m, 1H), 7.41-7.39 (m, 2H), 7.35 (d,** *J* **= 8.3 Hz, 1H), 7.27-7.23 (m, 1H), 7.18-7.16 (m, 2H), 6.62 (d,** *J* **= 9.0 Hz, 2H), 4.41 (d,** *J* **= 1.7 Hz, 2H), 3.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 161.1, 153.1, 147.4, 137.8, 131,2, 129.2, 127.8, 124.9, 124.5, 122.0, 119.1, 116.5, 113.1, 52.7, 39.1. NMR data is consistent with literature values.⁸**

3-((Diphenylamino)methyl)-2*H***-chromen-2-one (3aj):** Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (s, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.28 (t, *J* = 7.7 Hz, 4H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 8.0 Hz, 4H), 6.98 (t, *J* = 7.3 Hz, 2H), 4.90 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 161.0, 153.0, 147.3, 138.2, 131.1, 129.5, 127.8, 125.5, 124.4, 122.0, 120.5, 119.2, 116.5, 52.1. NMR data is consistent with literature values.⁸

3-((Methyl(naphthalen-1-yl)amino)methyl)-2*H***-chromen-2-one (3ak): Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 8.24-8,21 (m, 1H), 7.93 (d,** *J* **= 1.7 Hz, 1H), 7.85-7.83 (m, 1H), 7.56 (d,** *J* **= 8.2, 1H), 7.51-7.44 (m, 4H), 7.39 (t,** *J* **= 7.8 Hz, 1H), 7.34 (d,** *J* **= 8.3 Hz, 1H), 7.27-7.23 (m, 1H), 7.20 (d,** *J* **= 7.4 Hz, 1H), 4.26 (d,** *J* **= 1.7 Hz, 2H), 2.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.4, 153.1, 149.2, 139.0, 134.9, 131.0, 129.1, 128.6, 127.8, 126.2, 125.9, 125.8, 125.6, 124.4, 123.8, 123.2, 119.4, 116.5, 115.6, 55.5, 42.6. NMR data is consistent with literature values.⁸**

15. References

1. D. Curiel, G. Sánchez, M. Más-Montoya, A. Tárraga and P. Molina, *Analyst*, 2012, **137**, 5499-5501.

2. K. T. Hylland, S. Oien-Odegaard and M. Tilset, *Eur. J. Org. Chem.*, 2020, 2020, 4208-4226.

3. Y. Wei, W. Peng, D. Wang, S. H. Hao, W. W. Li and F. Ding, *J. Pestic. Sci.*, 2018, **43**, 88-95.

4. A. Desaintjean, F. Danton, P. Knochel. Synthesis, 2021, 53, 4461-4476.

5. Z. Y. Wang, T. Yang, K. K. Wang, D. F. Liu, X. J. Ma, N. Wang, H. Liu, A. L. Sun

and H. X. Liu. Green Chem., 2023, 25, 3040-3045.

6. V. Hassan and V. Sevil, Heter. Commun., 2010, 16, 113-120.

7. J. J. Meng, Q. Jiang, X. Y. Li, W. Li, Z. Fang and K. Gou, Asian J. Org. Chem.,

2017, 6, 1724-1727.

8. D. Longyang, Z. N. Daisy and Y. F. Du. Adv. Synth. Catal. 2017, 359, 3090-3094.

T. Singh, G. C. Upreti, S. Arora, H. Chauhana and A. Singh. Org. Bio. Chem., 2023,
 21, 6671-6674.

16. Spectra of compounds

190 180 140 130 100 90 f1 (ppm) _

8.5419 8.5377 8.5377 8.2999 8.2996 8.2799 8.2756 8.1050 7.5196 7.5196 7.5196 7.5196 7.5318	4.4750 4.4572 4.4572 4.4395 4.4215 4.4215 4.3730 4.3730	1.4499 1.4320 1.4213 1.4142 1.4142 1.4034

3ac

~ 55.7870 ~ 53.5202

100 90 f1 (ppm) 00 190 180 170 160 150

- 52.0625

100 90 f1 (ppm)