Supporting Information(SI)

Constructing high-performance and insensitive energetic salts through increased hydrogen bonds

Luyao Chen, ^{a+} Wei Hu, ^{a+} Caijin Lei,^a Jie Tang,^a Chuan Xiao,^b Guangbin Cheng,^{a*} and Hongwei Yang^{a*}

^a School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology,

Xiaolingwei 200, Nanjing, Jiangsu, China.

^b China Northern Industries Group Co., Ltd (NORINCO GROUP), Beijing 100089, P. R. China.

* Corresponding authors. Email: gcheng@mail.njust.edu.cn (G. Cheng), hyang@mail.njust.edu.cn

(H. Yang).

Contents

1. Experiment data
2. Crystallographic data
3. Theoretical calculation
Heat of formation11
The electrostatic potential surface analysis (ESP) and non-covalent interactions
(NCI) analysis14
4. TGA-DSC curves
5. ¹ H and ¹³ C NMR spectra for all new compounds
6. IR Spectrum of the prepared compounds
7. References

1. Experiment data

General: The compounds in this work are energetic materials that could potentially explode under certain conditions (e.g., impact, friction, or electric discharge). Appropriate safety precautions, such as the use of shields in a fume hood and personal protection equipment (safety glasses, face shields, ear plugs, as well as gloves) should be taken at all times when handling these materials.

General methods

Reagents were purchased from Aldrich and Acros Organics and are used as received. ¹H and ¹³C NMR spectra are recorded on a 500 MHz (Bruker AVANCE 500) NMR spectrometer operating at 500 and 125 MHz, respectively. The decomposition points are obtained on a differential scanning calorimeter at a heating rate of 5 °C min⁻¹. IR spectra are recorded on a FT-IR spectrometer (Thermo Nicolet AVATAR 370) as thin films by using KBr plates. Densities are determined at 25 °C by employing a Micromeritics AccuPyc II 1340 gas pycnometer. Elemental analyses were carried out by using a Vario Micro cube Elementar Analyser. Impact and friction sensitivity measurements are made by using a standard BAM Fall hammer and a BAM friction tester. Detonation velocity and detonation pressure data are calculated by program package EXPLO5 (version 6.01).

3-amino-6-aminomethyl-1,2,4-triazin-5(4H)-one hydrochloride (1) was obtained according to the literature¹.

General procedure for the preparation of energetic salts 2-5

3-amino-6-aminomethyl-1,2,4-triazin-5(4H)-one hydrochloride (0.50 g, 2.82 mmol) was dissolved in a solution of water (15 mL) and followed by adding 1 equiv silver nitrate, silver perchlorate, silver nitro-formate or silver dinitramide. This suspension was stirred for 1 h and then filtered in the dark. The filtrate was concentrated to yield the product.

General procedure for the preparation of energetic salts 7-8

3-Amino-6-(aminomethyl)-1,2,4-triazin-5(4H)-one hydrochloride (0.50 g, 2.82 mmol) was dissolved in methanol (15 mL), followed by the addition of ammonium acetate (1.0 equiv.). The reaction mixture was heated to 90 °C and stirred for 1 h. After cooling to room temperature, the precipitate was removed by filtration. The filtrate was concentrated under reduced pressure to afford (3-amino-5-oxo-2,5-dihydro-1,2,4-triazin-6-yl)methanaminium acetate (6). Picric acid (PA) or 2,4,6-trinitrobenzene-1,3,5-triol (TNPG) was added to a solution of 6 (0.50 g, 2.49 mmol) in 15 mL of water. The mixtures were continuously stirred for 15 min at 50 °C. The salts 7 and 8 were precipitated from water after the solution was cooled to room temperature and obtained by filtration.

(3-amino-5-oxo-2,5- dihydro-1,2,4-triazin-6-yl)methanaminium perchlorate (2).

Yield: 0.55 g, 81%, Colorless solid. ¹H NMR (500 MHz, DMSO-*d*₆): δ = 12.53 (s, 1H), 8.08 (s, 2H), 7.04 (s, 2H), 3.87 (s, 2H) ppm; ¹³C NMR (125 MHz, DMSO-*d*₆): δ = 162.77, 157.00, 142.13, 38.61 ppm; IR (KBr): \tilde{v} = 3446, 3343, 3234, 1653, 1626, 1566, 1521, 1482, 1426, 1407, 1142, 1053, 890, 774, 618, 573 cm⁻¹; Elemental analysis for C₄H₈ClN₅O₅ (241.59): C 19.89, H 3.34, Cl 14.67, N 28.99 %; found: C 20.01, H 3.28, Cl 14.85, N 29.08 %.

(3-amino-5-oxo-2,5- dihydro-1,2,4-triazin-6-yl)methanaminium nitrate (3).

Yield: 0.48 g, 84%, Colorless solid. ¹H NMR (500 MHz, DMSO-d6): δ = 12.68 (s, 1H), 8.35 (s, 2H), 8.19 (s, 2H), 3.96 (s, 2H) ppm; ¹³C NMR (125 MHz, DMSO-d6): δ = 156.41, 153.43, 143.77, 37.89 ppm; IR (KBr): \tilde{v} = 2972, 1736, 1691, 1536, 1397, 1269, 1202, 1085, 1042, 1030, 882, 820, 779, 742 cm⁻¹; Elemental analysis for C₄H₈N₆O₄ (204.15): C 23.53, H 3.95, N 41.17 %; found: C 24.02, H 3.87, N 41.03 %.

(3-amino-5-oxo-2,5- dihydro-1,2,4-triazin-6-yl)methanaminium nitroformate (4).

Yield: 0.60 g, 73%, yellowish solid. ¹H NMR (500 MHz, D₂O): δ = 7.96 (s, 2H), 6.77 (s, 2H), 4.05 (s, 1H), 4.01 (s, 2H) ppm; ¹³C NMR (125 MHz, D₂O-d6): δ = 164.27, 156.58, 141.03, 139.12, 38.06, 37.39 ppm; IR (KBr): \tilde{v} = 3359, 3314, 3181, 2845, 2630, 2115, 1651, 1537, 1435, 1379, 1357, 1293, 1230, 1136, 1032, 977, 797, 757, 682, 599 cm⁻¹; Elemental analysis for C₅H₈N₈O₇ (292.17): C 20.55, H 2.76, N 38.35 %; found: C 20.22, H 2.84, N 38.10 %.

(3-amino-5-oxo-2,5- dihydro-1,2,4-triazin-6-yl)methanaminium dinitramide (5).

Yield: 0.53 g, 76%, yellowish solid. ¹H NMR (500 MHz, DMSO-d6): $\delta = 8.11$ (s, 2H), 7.07 (s, 2H), 3.89 (s, 2H) ppm; ¹³C NMR (125 MHz, DMSO-d6): $\delta = 155.43$, 153.73, 144.00, 37.57 ppm; IR (KBr): $\tilde{v} = 3359$, 3314, 3182, 2846, 2631, 1650, 1568, 1537, 1474, 1444, 1379, 1294, 1230, 1136, 1033, 978, 824, 798, 758 cm⁻¹; Elemental analysis for C₄H₈N₈O₅ (248.16): C 19.36, H 3.25, N 45.15 %; found: C 19.52, H 3.17, N 45.27 %.

(3-amino-5-oxo-2,5- dihydro-1,2,4-triazin-6-yl)methanaminium picrate (7).

Yield: 0.75 g, 82%, yellowish solid. ¹H NMR (500 MHz, DMSO-d6): $\delta = 8.60$ (s, 1H), 8.10 (s, 2H), 7.07 (s, 2H), 3.88 (s, 2H) ppm; ¹³C NMR (125 MHz, DMSO-d6): $\delta = 162.49$, 161.31, 156.94, 142.25, 142.16, 125.73, 124.80, 38.64 ppm; IR (KBr): $\tilde{v} = 3100$, 2879, 1708, 1684, 1568, 1525, 1488, 1445, 1320, 1251, 1202, 1160, 1102, 1019, 992, 898, 789, 771 cm⁻¹; Elemental analysis for C₁₀H₁₀N₈O₈ (370.24): C 32.44, H 2.72, N 30.27 %; found: C 32.17, H 2.84, N 30.89 %.

(3-amino-5-oxo-2,5-dihydro-1,2,4-triazin-6-yl)methanaminium trinitrophloroglucinate (8).

Yield: 0.74 g, 74%, yellowish solid. ¹H NMR (500 MHz, DMSO-d6): $\delta = 8.09$ (s, 2H), 7.06 (s, 2H), 3.87 (s, 2H) ppm; ¹³C NMR (125 MHz, DMSO-d6): $\delta = 162.58$, 156.98, 154.76, 142.15, 38.64 ppm; IR (KBr): $\tilde{v} = 3302$, 3080, 1677, 1645, 1574, 1553, 1442, 1427, 1362, 1330, 1245, 1154, 1114, 1064, 1018, 981, 940, 868, 789, 778, 745 cm⁻¹; Elemental analysis for C₁₀H₁₀N₈O₁₀ (402.24): C 29.86, H 2.51, N 27.86 %; found: C 30.08, H 2.48, N 27.43 %.

2. Crystallographic data

The data for 2, and 6 were collected with a Bruker D8 VENTURE CCD diffractometer with graphite-monochromated Mo-Ka radiation (λ =0.71073 nm) at 223K or 193 K. The data for 3, and 4 was collected with a Bruker D8 VENTURE CCD diffractometer with graphite-monochromated Cu-Ka radiation (λ =1.54178 nm)

at 223 K or 213K. The data collection and the initial unit cell refinement are performed by using APEX2 (v2010.3-0). Data Reduction is performed by using SAINT (v7.68A) and XPREP (v2008/2). Empirical absorption corrections are applied by using the SADABS (v2008/1) program. The structures are solved by direct methods and refined by the full matrix least-squares based on F2 using SHELXTL--2014/7 (Sheldrick, 2014) programme package. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms attached to ligands are included using a riding model. The crystallographic data and CCDC numbers for these compounds are summarized in Table S1.

Compound	2	3	4	6
CCDC No.	2444771	2444776	2444777	2444772
Empirical Formula	C4H8ClN5O5	$C_4H_8N_6O_4$	$C_5H_8N_8O_7$	$C_{6}H_{11}N_{5}O_{3}$
Formula weight	241.60	204.16	292.19	201.20
Temperature (K)	223.0	223.0	213.0	193.0
Crystal system	monoclinic	orthorhombic	monoclinic	monoclinic
Space group	$P2_{1}/n$	Pbca	$P2_1/n$	$P2_{1}/n$
a/Å	7.8315(3)	9.9288(4)	7.3547(2)	11.5773(8)
<i>b</i> /Å	8.8391(3)	6.5054(3)	17.5020(4)	6.4537(5)
c/Å	12.7423(5)	24.7500(10)	8.7636(2)	12.6350(9)
a/ °	90	90	90	90
β/ °	92.950(2)	90	109.7340(10)	117.101(2)
γ/ °	90	90	90	90
Volume (Å ³)	880.90(6)	1598.62(12)	1061.82(5)	840.39(11)
Z	4	8	4	4
Density (g cm ⁻³)	1.822	1.697	1.828	1.590
μ (mm ⁻¹)	0.449	1.311	1.494	0.129
F (000)	496.0	848.0	600.0	424
Crystal Size (mm ³)	0.11 × 0.11	0.13 imes 0.12 imes	0.15 imes 0.12 imes	0.11 imes 0.12 imes
	× 0.14	0.11	0.11	0.13
Wavelength (Å)	0.71073	1.54178	1.54178	0.71073
2θ range for data	5.208 to	7.144 to	10.108 to	3.962 to
collection (°)	54.958	136.924	136.438	55.016

 Table S1. Crystallographic data for 2, 3, 4 and 6.

$-10 \le h \le 10$,	$-11 \le h \le 9$,	$-8 \le h \le 8,$	-15≤ h≤ 15,
$-9 \le k \le 11$,	$-7 \le k \le 6,$	$-21 \le k \le 21$,	$-8 \le k \le 8,$
$-16 \le l \le 16$	$-28 \le l \le 29$	$-10 \le l \le 10$	$-14 \le l \le 16$
12120	9854	12759	9437
$2016 [R_{int} =$	$1444 [R_{int} =$	$1925 [R_{int} =$	$1944 [R_{int} =$
0.0526,	0.0535,	$0.0299, R_{sigma} =$	0.0781, R _{sigma}
R _{sigma} =	$R_{sigma} =$	0.0199	= 0.0549]
0.0328]	0.0360]		
2016/0/141	1444/0/128	1925/1/183	1944/0/129
1.071 1.087		1.076	1.039
$R_1 = 0.0372, R_1 = 0.0444,$		$R_1 = 0.0311,$	$R_1 = 0.0565,$
wR_2	$wR_2 = 0.1202$	$wR_2 = 0.0833$	$wR_2 = 0.1345$
=0.0927			
$R_1 = 0.0446,$	$R_1 = 0.0506,$	$R_1 = 0.0327,$	$R_1 = 0.0821,$
$R_1 = 0.0446,$ w $R_2 =$	$R_1 = 0.0506,$ $wR_2 = 0.1246$	$R_1 = 0.0327,$ $wR_2 = 0.0840$	$R_1 = 0.0821,$ w $R_2 =$
$R_1 = 0.0446,$ $wR_2 = 0.1005$	$R_1 = 0.0506,$ $wR_2 = 0.1246$	$R_1 = 0.0327,$ $wR_2 = 0.0840$	$R_1 = 0.0821,$ $wR_2 =$ 0.1657
$R_1 = 0.0446,$ wR_2 = 0.1005 0.34/-0.45	$R_1 = 0.0506,$ $wR_2 = 0.1246$ 0.21/-0.20	$R_1 = 0.0327,$ $wR_2 = 0.0840$ 0.48/-0.44	$R_1 = 0.0821,$ wR_2 = 0.1657 0.41/-0.33
	$\begin{array}{l} -10 \leq h \leq 10, \\ -9 \leq k \leq 11, \\ -16 \leq l \leq 16 \\ 12120 \\ \\ 2016 \ [R_{int} = \\ 0.0526, \\ R_{sigma} = \\ 0.0328] \\ 2016/0/141 \\ 1.071 \\ R_1 = 0.0372, \\ wR_2 \\ = 0.0927 \end{array}$	$\begin{array}{lll} -10 \leq h \leq 10, & -11 \leq h \leq 9, \\ -9 \leq k \leq 11, & -7 \leq k \leq 6, \\ -16 \leq 1 \leq 16 & -28 \leq 1 \leq 29 \\ 12120 & 9854 \\ \end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Table S2. Bond lengths [Å] and angles [°] for 2.

Parameter	Bond lengths [Å]	Parameter	Bond lengths [Å]
Cl1-O2	1.4296(19)	N5-C4	1.333(3)
Cl1-O3	1.4420(17)	N1-H1D	0.9000
C1104	1.407(2)	N1-H1C	0.9000
Cl1-O5	1.4309(17)	N1-H1E	0.9000
O1-C3	1.247(2)	N3-H3	0.80(3)
N1-C1	1.480(2)	N5-H5A	0.8700
N2-N3	1.354(2)	N5-H5B	0.8700
N2-C2	1.286(2)	C1-C2	1.496(2)
N3-C4	1.347(3)	C2-C3	1.476(2)
N4-C4	1.328(2)	C1-H1A	0.9800
N4-C3	1.353(2)	C1-H1B	0.9800

Parameter	Bond angles [°]	Parameter	Bond angles [°]
O2-C11-O5	108.99(11)	C4-N5-H5B	120.00
O3-C11-O4	110.50(12)	H5A-N5-H5B	120.00
O3-C11-O5	107.88(10)	N1-C1-C2	111.10(14)
O4-C11-O5	110.72(12)	N2-C2-C3	122.33(15)
O2-C11-O3	109.50(11)	C1-C2-C3	120.01(15)

O2-C11-O4	109.22(12)	N2-C2-C1	117.65(15)
N3-N2-C2	116.26(15)	N4-C3-C2	118.21(15)
N2-N3-C4	123.34(16)	O1-C3-N4	121.68(16)
C3-N4-C4	117.34(16)	O1-C3-C2	120.11(15)
H1D-N1-H1E	109.00	N3-C4-N5	117.27(16)
C1-N1-H1C	109.00	N4-C4-N5	120.21(17)
H1C-N1-H1E	109.00	N3-C4-N4	122.52(17)
C1-N1-H1D	109.00	H1A-C1-H1B	108.00
C1-N1-H1E	109.00	N1-C1-H1A	109.00
H1C-N1-H1D	109.00	N1-C1-H1B	109.00
C4-N3-H3	119.9(19)	C2-C1-H1A	109.00
N2-N3-H3	116.4(19)	C2-C1-H1B	109.00
C4-N5H5A	120.00		

 Table S3. Hydrogen bonds present in 2.

D-H ····A	d(D-H)/Å	d(H···A)/Å	d(D⋯A)/Å	<(DHA)/°
N1-H1C…O1	0.9000	1.9700	2.855(2)	169.00
N1-H1D…O1	0.9000	2.1000	2.951(2)	157.00
N1-H1E…O3	0.9000	2.3000	3.106(2)	149.00
N1-H1E…O5	0.9000	2.5800	2.875(2)	100.00
N3-H3…O3	0.80(3)	2.17(3)	2.968(2)	176(2)
N3-H3…O5	0.80(3)	2.57(3)	3.069(2)	122(3)
N5-H5A…O2	0.8700	2.0300	2.897(2)	175.00
N5-H5B…O4	0.8700	2.1400	2.938(3)	152.00
C1-H1B…O2	0.9800	2.4000	3.298(3)	152.00

Table S4. Torsion angles of compound 2.

parameter	Å	parameter	Å
C2-N2-N3-C4	0.4(3)	C4-N4-C3-C2	-0.6(2)
N3-N2-C2-C3	-0.8(2)	C4-N4-C3-O1	178.74(16)
N3-N2-C2-C1	177.58(14)	N1-C1-C2-C3	177.85(14)
N2-N3-C4-N5	-179.41(16)	N1-C1-C2-N2	-0.6(2)
N2-N3-C4-N4	-0.1(3)	C1-C2-C3-N4	-177.41(15)
C3-N4-C4-N5	179.51(16)	N2-C2-C3-O1	-178.38(16)
C3-N4-C4-N3	0.2(2)	N2-C2-C3-N4	1.0(2)
C1-C2-C3-O1	3.2(2)		

Parameter	Bond lengths [Å]	Parameter	Bond lengths [Å]
O1-C2	1.248(2)	N1-H1B	0.8700
O2-N6	1.252(2)	N1-H1A	0.8700
O3-N6	1.258(2)	N3-H3	0.8700
O4-N6	1.236(2)	N5-H5C	0.9000
N1-C1	1.315(3)	N5-H5B	0.9000
N2-C1	1.339(2)	N5-H5A	0.9000
N2-C2	1.347(2)	C2-C3	1.474(3)
N3-C1	1.357(2)	C3-C4	1.500(3)
N3 -N4	1.354(2)	C4-H4A	0.9800
N4-C3	1.286(2)	C4-H4B	0.9800
N5-C4	1.469(3)		
Parameter	Bond angles [°]	Parameter	Bond angles [°]
C1-N2-C2	118.08(16)	O2-N6-O3	119.61(17)
N4-N3-C1	123.74(16)	N1-C1-N3	117.75(17)
N3-N4-C3	116.48(16)	N1-C1-N2	121.10(17)
C1-N1-H1A	120.00	N2-C1-N3	121.15(17)
C1-N1-H1B	120.00	O1-C2-N2	121.68(18)
H1A-N1 -H1B	120.00	N2-C2-C3	118.43(17)
C1-N3 -H3	118.00	O1-C2-C3	119.90(18)
N4-N3-H3	118.00	C2-C3-C4	118.50(17)
C4-N5-H5B	109.00	N4-C3-C4	119.38(17)
C4-N5-H5C	109.00	N4-C3-C2	122.13(18)
C4-N5-H5A	109.00	N5-C4-C3	112.32(17)
H5A-N5-H5C	109.00	N5-C4-H4B	109.00
H5B-N5-H5C	109.00	H4A-C4-H4B	108.00
H5A-N5-H5B	109.00	С3-С4 -Н4А	109.00
O3-N6-O4	120.08(16)	C3-C4 -H4B	109.00

 Table S5. Bond lengths [Å] and angles [°] for 3.

Table S6. Hydrogen bonds present in 3

02-N6-O4

D-Н…А	d(D-H)/Å	d(H···A)/Å	d(D⋯A)/Å	<(DHA)/°
N1-H1A…O2	0.8700	2.1700	2.882(2)	139.00
N1-H1B…O1	0.8700	2.0000	2.871(2)	174.00
N3-H3…N2	0.8700	2.0100	2.867(2)	169.00
N5-H5A… O1	0.9000	2.2800	3.046(2)	143.00

N5-C4-H4A

109.00

120.29(18)

N5-H5A…O3 0.9000 2.3800	2.979(3) 124.00
N5-H5B…O3 0.9000 2.0600	0 2.927(2) 162.00
N5-H5B····O4 0.9000 2.5200	3.028(2) 116.00
N5-H5C…O2 0.9000 1.9200	0 2.807(2) 168.00
N5-H5C…O4 0.9000 2.5900	3.060(2) 114.00
C4-H4A···· O3 0.9800 2.4100	3.296(3) 150.00
C4-H4B…O1 0.9800 2.4200	0 2.822(2) 104.00
C4-H4B···O4 0.9800 2.4600	3.083(3) 121.00

Table S7. Torsion angles of compound **3**.

parameter	Å	parameter	Å
C2-N2-C1-N1	179.76(19)	N3-N4-C3-C2	0.0(3)
C2-N2-C1-N3	-0.8(3)	N3-N4-C3-C4	179.70(19)
C1-N2-C2-O1	-179.5(2)	O1-C2-C3-N4	179.9(2)
C1-N2-C2-C3	0.3(3)	01-C2-C3-C4	0.2(3)
C1-N3-N4-C3	-0.4(3)	N2-C2-C3-N4	0.1(3)
N4-N3-C1-N1	-179.7(2)	N2-C2-C3-C4	-179.66(19)
N4-N3-C1-N2	0.9(3)	N4-C3-C4-N5	-37.7(3)
C2-C3-C4-N5	142.03(18)		

Table S8. Bond lengths [Å] and angles [°] for 4.

Parameter	Parameter Bond lengths [Å]		Bond lengths [Å]
O1-C3	1.2393(18)	N1-H1C	0.9000
O2-N6	1.2489(17)	N1-H1D	0.9000
O3-N6	1.2333(16)	N1-H1E	0.9000
O4-N7	1.2305(17)	N3-H3	0.8700
O5-N7	1.2553(18)	N5-H5A	0.8700
O6-N8	1.2134(14)	N5-H5B	0.8700
O7-N8	1.2184(16)	N6-C5	1.377(2)
N1-C1	1.4795(19)	N7-C5	1.386(2)
N2-N3	1.3543(17)	N8-C5	1.4435(18)
N2-C2	1.2845(18)	C1-C2	1.498(2)
N3-C4	1.3440(17)	C2-C3	1.4667(19)
N4-C3	1.3557(19)	C1-H1B	0.9800
N4-C4	1.3339(18)	C1-H1A	0.9800
N5-C4	1.3314(19)		
Parameter	Bond angles [°]	Parameter	Bond angles [°]

N3-N2-C2	116.33(11)	O7-N8-C5	119.34(12)
N2-N3-C4	123.25(12)	O6-N8-O7	123.59(12)
C3-N4-C4	117.86(11)	N1-C1-C2	110.91(12)
H1D-N1-H1E	109.00	C1-C2-C3	118.42(12)
C1-N1-H1D	109.00	N2-C2-C1	118.68(12)
C1-N1-H1E	109.00	N2-C2-C3	122.89(12)
C1-N1-H1C	109.00	N4-C3-C2	117.53(12)
H1C-N1-H1E	109.00	O1-C3-N4	121.63(13)
H1C-N1-H1D	109.00	O1-C3-C2	120.83(13)
C4-N3-H3	118.00	N4-C4-N5	119.91(12)
N2-N3-H3	118.00	N3-C4-N5	118.06(13)
C4-N5-H5B	120.00	N3-C4-N4	122.03(13)
H5A-N5-H5B	120.00	N1-C1-H1B	109.00
C4-N5-H5A	120.00	N1-C1-H1A	109.00
O3-N6-C5	120.98(13)	H1AC1-H1B	108.00
O2-N6-C5	117.42(12)	C2-C1-H1A	109.00
O2-N6-O3	121.59(13)	C2-C1-H1B	109.00
O4-N7-C5	120.41(13)	N6-C5-N7	125.16(13)
O5-N7-C5	116.90(12)	N6-C5-N8	117.76(12)
O4-N7-O5	122.65(13)	N7-C5-N8	117.07(13)
O6-N8-C5	117.08(11)		

 Table S9. Hydrogen bonds present in 4.

D-H ····A	d(D-H)/Å	d(H⋯A)/Å	d(D⋯A)/Å	<(DHA)/°
N1-H1C····O5	0.9000	2.1900	3.0109(17)	151.00
N1-H1C…O6	0.9000	2.3800	3.0728(15)	134.00
N1-H1D…O2	0.9000	2.2000	2.9397(17)	140.00
N1-H1D…O7	0.9000	2.2900	3.0487(17)	142.00
N1-H1E…N4	0.9000	1.9700	2.8531(16)	165.00
N3-H3…O7	0.8700	2.5400	2.9717(15)	111.00
N3- H3…O1	0.8700	1.9500	2.7914(17)	164.00
N5- H5A…O6	0.8700	2.3900	3.2545(16)	177.00
N5-H5A…O2	0.8700	2.5800	3.0051(18)	111.00
N5-H5B…O1	0.8700	2.4600	3.1747(17)	140.00
N5-H5B…O3	0.8700	2.4700	3.2117(19)	144.00

 Table S10. Torsion angles of compound 4.

	-	1		
parameter		Å	parameter	Å

C2-N2-N3-C4	0.91(19)	O7-N8-C5-N6	-55.82(18)
N3-N2-C2-C3	0.03(19)	O6-N8-C5-N6	123.89(14)
N3-N2-C2-C1	179.10(11)	O6-N8-C5-N7	-57.68(17)
N2-N3-C4-N5	-179.60(12)	O7-N8-C5-N7	122.62(15)
N2-N3-C4-N4	0.6(2)	N1-C1-C2-C3	-174.10(12)
C3-N4-C4-N5	177.15(12)	N1-C1-C2-N2	6.78(18)
C3-N4-C4-N3	-3.09(19)	N2-C2-C3O1	177.20(13)
C4-N4-C3-C2	3.81(18)	N2-C2-C3-N4	-2.4(2)
C4-N4-C3-O1	-175.81(13)	C1-C2-C3-O1	-1.9(2)
O2-N6-C5-N8	6.92(19)	C1-C2-C3-N4	178.50(12)
O3-N6-C5-N7	9.9(2)	O5-N7-C5-N8	-12.04(19)
O2-N6-C5-N7	-171.38(13)	O5-N7-C5-N6	166.26(13)
O3-N6-C5-N8	-171.84(12)	O4-N7-C5-N6	-11.6(2)
O4-N7-C5-N8	170.15(13)		

Table S11. Bond lengths [Å] and angles [°] for 6.

Parameter	Bond lengths [Å]	Parameter	Bond lengths [Å]
O1-C3	1.242(3)	N1-H1C	0.9100
O2-C5	1.269(3)	N3-H3	0.8800
O3-C5	1.252(3)	N5-H5B	0.8800
N1-C1	1.486(3)	N5-H5A	0.8800
N2-N3	1.355(3)	C1-C2	1.501(3)
N2-C2	1.291(4)	C2-C3	1.480(3)
N3-C4	1.344(3)	C1-H1E	0.9900
N4-C4	1.339(3)	C1-H1D	0.9900
N4-C3	1.351(3)	C5-C6	1.507(4)
N5-C4	1.325(3)	C6-H6A	0.9800
N1-H1A	0.9100	C6-H6B	0.9800
N1-H1B	0.9100	С6-Н6С	0.9800

Parameter	Bond angles [°]	Parameter	Bond angles [°]
N3-N2-C2	116.7(2)	O1-C3-N4	122.4(2)
N2-N3-C4	122.9(2)	O1-C3-C2	119.8(2)
C3-N4-C4	117.6(2)	N3-C4-N5	118.4(2)
H1B-N1-H1C	109.00	N4-C4-N5	118.9(2)
C1-N1-H1B	109.00	N3-C4-N4	122.7(2)
C1-N1-H1C	110.00	N1-C1-H1D	109.00
C1-N1-H1A	109.00	N1-C1-H1E	109.00
H1A-N1-H1C	109.00	C2-C1-H1D	109.00
H1A-N1-H1B	109.00	C2-C1-H1E	109.00

C4-N3-H3	119.00	H1D-C1-H1E	108.00
N2-N3-H3	119.00	O2-C5-O3	124.6(2)
C4-N5-H5B	120.00	O2-C5-C6	117.0(2)
H5A-N5-H5B	120.00	O3-C5-C6	118.4(2)
C4-N5-H5A	120.00	С5-С6-Н6А	109.00
N1-C1-C2	111.7(2)	С5-С6-Н6В	109.00
N2-C2-C1	118.4(2)	С5-С6-Н6С	109.00
N2-C2-C3	122.3(2)	H6A-C6-H6B	109.00
C1-C2-C3	119.3(2)	H6A-C6-H6C	109.00
N4-C3-C2	117.8(2)	H6B-C6-H6C	109.00

Table S12. Hydrogen bonds present in 6.

D-Н…А	d(D-H)/Å	d(H···A)/Å	d(D····A)/Å	<(DHA)/°
N1-H1A…N4	0.9100	2.0900	2.946(3)	156.00
N1-H1B…01	0.9100	1.9400	2.818(3)	162.00
N1-H1C…O3	0.9100	1.9800	2.861(3)	163.00
N3-H3…O2	0.8800	1.7800	2.658(3)	172.00
N5-H5A…O2	0.8800	2.0200	2.865(3)	159.00
N5-H5B…O3	0.8800	2.0200	2.901(3)	175.00
C1-H1D…O1	0.9900	2.3900	2.841(3)	107.00
C6-H6A…N5	0.9800	2.5900	3.564(4)	171.00
С6-Н6В…О1	0.9800	2.5100	3.228(4)	130.00

 Table S13. Torsion angles of compound 6.

parameter	Å	parameter	Å	
C2-N2-N3-C4	-0.3(3)	C1-C2-C3-N4	-178.8(2)	
N3-N2-C2-C1	179.6(2)	C3-N4-C4-N5	-178.7(2)	
N3-N2-C2-C3	1.2(3)	N1-C1-C2-N2	53.4(3)	
N2-N3-C4-N4	-1.4(4)	N1-C1-C2-C3	-128.2(2)	
N2-N3-C4-N5	179.4(2)	N2-C2-C3-O1	179.1(2)	
C4-N4-C3-O1	179.3(2)	N2-C2-C3-N4	-0.5(4)	
C4-N4-C3-C2	-1.1(3)	C1-C2-C3-O1	0.8(4)	
C3-N4-C4-N3	2.1(4)			

3. Theoretical calculation

Heat of formation

Theoretical calculations were performed by using the Gaussian 09 (Revision D.01) suite of

programs². The elementary geometric optimization and the frequency analysis were performed at the level of the Becke three parameter, Lee-Yan-Parr (B3LYP)³ functional with the 6-311+G** basis set⁴. All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies. Atomization energies were calculated by the CBS-4M⁵. All the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies⁶.

The predictions of heat of formation (HOF) adopt the hybrid DFT-B3LYP methods with 6-311+G** basis set via designed isodesmic reactions. The isodesmic reaction processes, i.e., the number of each kind of formal bond is conserved, are used with application of the bond separation reaction (BSR) rules. The molecule is broken down into a set of two heavy-atom molecules containing the same component bonds. The isodesmic reactions used to derive the $\Delta H_{\rm f}$ of the title compounds are in Fig. S1. In addition, the detailed information (such as *ZPE*, *E*₀ and $\Delta H_{\rm T}$) of the related small molecules is provided in Table S14.

Fig. S1. Isodesmic reactions for compounds 1⁺.

%chk=1 %nproc=10 %mem=1GB #B3LYP/6-311+G** freq								
1								
11								
C O	0.161467	-0.510097	-0.842900					
N 0	1.437367	0.140304	-1.184300					
C O	1.813566	1.032304	-0.339600					
N 0	1.166166	1.417904	0.799700					
N 0	-0.012834	0.898104	1.224800					
C 0	-0.485334	-0.020797	0.435800					
C 0	-1.785447	-0.651738	0.826476					
N 0	-2.169719	-1.680551	-0.195228					
N 0	2.906514	1.619538	-0.591348					
00	-0.332849	-1.370442	-1.531900					
H 0	1.610824	2.166968	1.385944					
H 0	-1.676370	-1.139797	1.820795					
H 0	-2.575621	0.130217	0.880697					
H 0	-3.077280	-2.120988	0.077489					
H 0	-2.272132	-1.222311	-1.128797					
H 0	-1.427822	-2.414732	-0.246136					
H 0	3.267828	2.358613	0.061124					
H 0	3.451674	1.367505	-1.452615					

Fig. S2. Calculation code for enthalpy of formation of compound 1⁺.

	(
Compound	E ₀ ª (kJ/mol)	ZPE ^b (kJ/mol)	H _T ^c (kJ/mol)	ΔH_{f^d} (kJ/mol)
1+	-506.09	377.62	29.87	740.79
CH4	-40.53	112.26	10.04	-74.60
CH ₃ NH ₂	-95.89	160.78	11.64	-22.50
CH ₃ CH ₂ N ⁺ H ₃	-135.58	268.77	12.61	564.56
	-355.66	171.54	15.82	110.19

Table S14. Calculated zero-point energy (*ZPE*), thermal correction to enthalpy ($\Delta H\tau$), total energy(E_0) and heats of formation (ΔH_f) for related small molecules

^{*a*} Total energy calculated by B3LYP/6-311+G** method (a.u). ^{*b*} zero-point correction (kJ mol⁻¹). ^{*c*} thermal correction to enthalpy (kJ mol⁻¹). ^{*d*} heat of formation (kJ mol⁻¹, gas).

The change of enthalpy for the reactions at 298 K can be expressed as Equation 1

$$\Delta H_{298} = \sum \Delta_{\rm f} H_{\rm P} - \sum \Delta_{\rm f} H_{\rm R} \tag{Equation 1}$$

Where $\sum \Delta_f H_P$ and $\sum \Delta_f H_R$ are the HOF of reactants and products at 298 K, respectively, and ΔH_{298} can be calculated using the following expression:

 $\Delta H_{298} = \Delta E_{298} + \Delta (PV) = \Delta E_0 + \Delta ZPE + \Delta H_{\rm T} + \Delta nRT \qquad (Equation 2)$

Where ΔE_0 is the change in total energy between the products and the reactants at 0 K; ΔZPE is the difference between the zero-point energies (*ZPE*) of the products and the reactants at 0 K; ΔH_T is thermal correction from 0 to 298 K. The $\Delta(PV)$ value in Equation 2 is the PV work term. It equals $\Delta(nRT)$ for the reactions of ideal gas. For the isodesmic reaction, $\Delta n = 0$, so $\Delta(PV) = 0$. On the left side of Equation 1, apart from target compound, all the others are called reference compounds. The HOF of reference compounds is available either from the experiments or from the high-level computing such as CBS-4M⁵.

For energetic salts (2 - 8), the solid-phase enthalpy of formation is obtained using a Born–Haber energy cycle⁶⁻¹⁰.

the solid-phase heat of formation is calculated by the following equation:

 $\Delta H_{f, salt} = \Delta H_{f, cation} + \Delta H_{f, anion} - \Delta H_{L}$ (Equation 5)

Where Δ HL is the lattice energy of the salts, which could be obtained with the following formula proposed by Jenkins et al⁹.

 $\Delta H_{L} = U_{POT} + [p(n_{M}/2-2) + q(n_{X}/2-2)]RT$ (Equation 4)

Where nM and nX depend on the nature of the ions, Mp+ and Xq- , and are equal to three for

monatomic ions, five for linear polyatomic ions, and six for nonlinear polyatomic ions. The following is the equation for lattice potential energy U_{POT} :

 $U_{POT} = \gamma (\rho_m / M_m)^{1/3} + \delta$ (Equation 5)

Where ρ_m is the density of the salt, M_m is the chemical formula mass of the ionic material. The value of coefficient γ and δ are acquired from relevant literature.

Table S15. Calculated heat of formation of cation ($\Delta H_{f,cation}$), heat of formation of anion ($\Delta H_{f,anion}$), lattice energy (ΔH_L) and solid phase heats of formation ($\Delta H_{f,salt}$).

Compound	$\Delta H_{f,cation}/kJ{\cdot}mol^{-1}$	$\Delta H_{f,anion}/kJ{\cdot}mol^{\text{-}1}$	$\Delta H_L/kJ \cdot mol^{-1}$	$\Delta H_{f,salt} / kJ \cdot mol^{-1}$
2	740.79	-277.80	496.424	-33.44
3	740.79	-307.90	508.82	-75.94
4	740.79	540.56	484.75	796.60
5	740.79	-182.74	472.29	85.76
7	740.79	-783.02	438.14	-480.37
8	740.79	-843.57	432.76	-535.54

The electrostatic potential surface analysis (ESP) and non-covalent interactions (NCI)

analysis

Theoretical calculations were performed by using the Gaussian 09 (Revision D.01) suite of programs². The elementary geometric optimization and the frequency analysis were performed at the level of the Becke three parameter, Lee-Yan-Parr (B3LYP)³ functional with the 6-311+G** basis set⁴. All of the optimized structures were characterized to be local energy minima on the potential surface without any imaginary frequencies. All the optimized structures were characterized to be true local energy minima on the potential-energy surface without imaginary frequencies⁶.

The electrostatic potential surface analysis (ESP) is a 3D surface representation constructed by calculating the critical points (maxima and minima) of positive and negative charge distributions on a molecular surface. This calculation was performed using Gaussian 09 software with specific input parameters, as exemplified by the computational code for Compound **2** shown in Fig. S3.

%chk=2e %nproc= %mem= #B3LYP/6	esp.chk 10 IGB 5-311+G** freq		
2esp.chk			
0 1			
0	0.01270000	1.06160000	2.38710000
C	1.22790000	1.11990000	2.63890000
N	2.16900000	1.10920000	1.67010000
C	1.68440000	1.19470000	4.04470000
C	3.45070000	1.19110000	2.05030000
N	2.93520000	1.24040000	4.36240000
C	0.66780000	1.18170000	5.14920000
N	3.82340000	1.24110000	3.34080000
N	4.39430000	1.20880000	1.12060000
N	0.86570000	2.31370000	6.09230000
Н	-0.24050000	1.23680000	4.75910000
Н	0.73440000	0.32770000	5.64610000
Н	4.68240000	1.27500000	3.52940000
Н	4.17440000	1.16660000	0.26920000
н	5.24100000	1.26200000	1.35390000
н	0.92780000	3.09120000	5.62330000
H	1.63190000	2.18370000	6.56580000
H	0.15920000	2.35980000	6.66400000
0	6.36110000	1.48050000	4.09310000
C	7.30500000	1.33270000	3.25810000
0	7.15220000	1.25860000	2.01750000
C	8.70060000	1.22830000	3.81610000
Н	9.09140000	2.12400000	3.88940000
Н	9.25060000	0.68000000	3.21800000
H	8.66740000	0.81230000	4.70290000

Fig. S3. Calculation code for ESP of compound 2.

The non-covalent interactions (NCI) arise from weak intermolecular forces (e.g., van der Waals, hydrogen bonding), calculated using Gaussian 09 software with specific input parameters, as exemplified by the computational code for Compound **2** shown in Fig. S4.

%chk=2	nci.chk		
%nproc:	=10		
%mem=	1GB		
#B3LYP/	/6-311+G** fr	eq	
2nci.chk			
0 1			
0	2.89800000	4.28850000	3.23680000
C	1.68270000	4.34660000	2.98510000
N	0.74150000	4.33620000	3.95360000
С	1.22600000	4.42140000	1.57920000
С	-0.54010000	4.41820000	3.57340000
N	-0.02440000	4.46730000	1.26130000
C	2.24270000	4.40850000	0.47470000
N	-0.91290000	4.46790000	2.28360000
N	-1.48320000	4.43560000	4.50350000
N	2.04520000	5.54050000	-0.46810000
н	3.15150000	4.46360000	0.86480000
н	2.17630000	3.55460000	-0.02220000
н	-1.77180000	4.50180000	2.09490000
н	-1.26310000	4.39350000	5.35450000
н	-2.33010000	4.48900000	4.27020000
н	1.98320000	6.31820000	0.00080000
н	1.27920000	5.41050000	-0.94180000
н	2.75140000	5.58680000	-1.04000000
0	5.80860000	5.39210000	8.86060000
C	4.59340000	5.33400000	8.60900000
N	3.65220000	5.34430000	9.57740000
C	4.13660000	5.25910000	7.20310000
C	2.37050000	5.26230000	9.19730000
N	2.88630000	5.21330000	6.88520000
C	5.15340000	5.27200000	6.09850000
N	1.99770000	5.21270000	7.90750000
N	1.42740000	5.24490000	10.12740000
N	4.95580000	4.14000000	5.15570000
н	6.06220000	5.21700000	6.48870000
н	5.08690000	6.12600000	5.60170000
н	1.13890000	5.17870000	7.71870000
н	1.64750000	5.28710000	10.97840000
н	0.58060000	5.19160000	9.89410000
н	4.89390000	3.36230000	5.62460000
н	4.18980000	4.27010000	4.68200000
н	5.66210000	4.09370000	4.58390000
0	8.12680000	4.70730000	1.53080000
C C	7.18310000	4.55950000	2.36540000
0	7.33570000	4.48530000	3.60630000
C	5.78750000	4.45500000	1.80750000
H	5.396/0000	5.35060000	1./3420000
н	5.23720000	3.90660000	2.40530000
н	5.82030000	4.03900000	0.92090000
0	-0.53980000	4.9/320000	7.15470000
0	-1.48360000	5.12100000	7.98930000
0	-1.33100000	5.19520000	9.23010000
5	-2.8/910000	5.22560000	7.43140000
H	-3.26990000	4.32990000	7.35800000
	-3.42950000	5.//390000	8.02920000
н	-2.84630000	5.64150000	0.54480000

Fig. S4. Calculation code for NCI of compound 2.

4. TGA-DSC curves

Fig. S6. TGA-DSC of investigated compounds 3.

Fig. S7. TGA-DSC of investigated compounds 4.

Fig. S8.TGA-DSC of investigated compounds 5.

Fig. S9.TGA-DSC of investigated compounds 7.

 $Fig. \ S10. {\rm TGA-DSC} \ of investigated \ compounds \ 8.$

Fig. S11. ¹H NMR spectrum of 2 in DMSO- d_6 .

Fig. S13. ¹H NMR spectrum of 3 in DMSO- d_6 .

Fig. S15. ¹H NMR spectrum of 4 in D_2O .

Fig. S17. ¹H NMR spectrum of 5 in DMSO-*d*₆.

Fig. S19. ¹H NMR spectrum of 6 in D_2O .

Fig. S21. ¹H NMR spectrum of 7 in DMSO-*d*₆.

Fig. S23. ¹H NMR spectrum of 8 in DMSO- d_6 .

Fig. S24. ¹³C NMR spectrum of 8 in DMSO- d_6 .

6. IR Spectrum of the prepared compounds

Fig. S25. IR Spectrum of 2.

Fig. S27. IR Spectrum of 5.

Fig. S28. IR Spectrum of 6.

Fig. S29. IR Spectrum of 7.

Fig. S30. IR Spectrum of 8.

7. References

- [1] L. Chen; W. Hu; C. Lei; T. Zhu; C. Li; J. Tang; G. Cheng; C. Xiao;
 H. Yang, Dalton Trans. 2024, 53 (30), 12641-12648.
- [2] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.

Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Laham, C.Y. Peng, A.Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 09, revision A. 01; Gaussian, Inc.: Wallingford, CT, 2009.

- [3] (a) A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652. (b) P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623–11627.
- [4] P.C. Hariharan, J.A. Pople, Theor. Chim. Acta. 28 (1973) 213–222.
- [5] J.W. Ochterski, G.A. Petersson, J.A. Montgomery, J. Chem. Phys. 104 (1996) 2598–2619.
- [6] H.D.B. Jenkins, D. Tudeal, L. Glasser, Inorg. Chem. 41 (2002) 2364–2367.
- [7] Edward FC. Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations. J. Phys. Chem. A. 2006, 110 (3), 1005-1013.
- [8] C. Ansbert, A. Pogrebnoi, T. Pogrebnaya, High energy density materials based on fluorinated bridged trinitromethyl azo triazole derivatives: a quantum chemical study of thermodynamic and energetic properties, SN Applied Sciences 2020, 2, 1843.
- [9] Jenkins, H. D. B.; Tudela, D.; Glasser, L. Lattice Potential Energy Estimation for Complex Ionic Salts from Density Measurements. Inorg. Chem. 2002, 41 (9), 2364-2367.
- [10]Gao, H.; Ye, C.; Piekarski, C. M.; Shreeve, J. M. Computational Characterization of Energetic Salts. J. Phys. Chem. C 2007, 111 (28), 10718-10731.