Supporting information

A simple Low Temperature Synthesis of Fluorescence Boron Quantum Dots for versatile Applications

Shutao Li^{*a*}, Pengyi Ma^{*a*}, Jinping Song^{*b*,*}, Xiaoting Guo^{*a*}, Jianhua Xue^{*a*}, Qi Ma^{*b*,*}

^a College of Chemistry and Chemical Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong, Shanxi, 037009, China.

^b Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, China.

*Corresponding author:

E-mail: songjphx@163.com (J-P. Song); maqihx@163.com (Q. Ma)

Content

Fig S1 Fluorescence spectra of synthetic products in the presence of N-Acetyl-L-Cysteine, L-Alanine, Mercaptosuccinic acid, Cysteine hydrochloride, L-Cysteine.

Fig. S2 XPS total spectrum of BQDs.

Fig. S3 Tauc plot of BQDs.

Fig S4 Effect of pH (a), ionic strength (b), UV irradiation time (c), storage time (d) on the fluorescence of BQDs.

Fig. S5 (a) Effect of pH on the fluorescence intensity ratio (F_0/F) of BQDs in the presence of SSZ, (b) The relationship of fluorescence intensity with time before and after adding SSZ.

Fig S6 Fluorescence spectra of BQDs, BQDs+Pb²⁺, BQDs+SSZ and BQDs+SSZ+Pb²⁺ system.

Fig S7 Effect of the SSZ concentration (a), pH (b) and the reaction time (c) on fluorescence recovery of BQDs-SSZ system.

Fig. S8 Fluorescence yield data of PVA film and solid powder.

Table S1 Optimization process and quantum yields of BQDs ($\lambda ex = 370 \text{ nm}$)

Table S2 Ksv, Kq, K_A and binding site of BQDs-SSZ system

Table S3 Thermodynamic parameters of BQDs-SSZ system

Table S4 Detection of SSZ in actual samples (n = 5)

Table S5 Detection of Pb^{2+} in actual samples (n = 5)

Fig. S1 Fluorescence spectra of synthetic products in the presence of N-Acetyl-L-Cysteine, L-alanine, mercaptosuccinic acid, cysteine hydrochloride, L-Cysteine.

Fig. S2 XPS total spectrum of BQDs.

Fig. S3 Tauc plot of BQDs.

Fig. S4 Effect of pH (a), ionic strength (b), UV irradiation time (c), Storage time (d) on the fluorescence of BQDs.

Fig. S5 (a) Effect of pH on the fluorescence intensity ratio (F_0/F) of BQDs in the presence of SSZ, (b) The relationship of fluorescence intensity with time before and after adding SSZ.

Fig. S6 Fluorescence spectra of BQDs, BQDs+Pb²⁺, BQDs+SSZ and BQDs+SSZ+Pb²⁺ system.

Fig. S7 Effect of the SSZ concentration (a), pH (b) and the reaction time (c) on fluorescence recovery of BQDs-SSZ system.

Fig. S8 Fluorescence quantum yield data of PVA film and solid powder.

Ammonium pentaborate (g)	Boric acid (g)	L-Cys (g)	Time (h)	QY (%) in water
0.3	0.1	0.1	24	0.62
0.3	0.15	0.1	24	0.64
0.3	0.3	0.1	24	0.89
0.3	0.45	0.1	24	0.73
0.3	0.3	0	24	_
0.3	0.3	0.075	24	0.67
0.3	0.3	0.1	24	0.89
0.3	0.3	0.15	24	0.69
0.3	0.3	0.3	24	0.57
0.3	0.3	0.1	24	0.89
0.3	0.3	0.1	48	0.94
0.3	0.3	0.1	72	1.14
0.3	0.3	0.1	96	1.04

Table S1 Optimization process and quantum yields of BQDs ($\lambda_{ex} = 370$ nm)

Table S2 $K_{SV^{\infty}} \,\, K_q^{\, \nu} \,\, K_A$ and binding site of BQDs-SSZ system

T/K	K _{SV} /(L/mol)	$K_q/[L/(mol \cdot s)$	R ²	K _A /(L/mol)	n
]			
283	4.36×10^{4}	7.61×10^{12}	0.998	3.87 × 10 ⁵	1.2104
293	3.66×10^{4}	6.39×10^{12}	0.996	7.48×10^{4}	1.0732
303	3.35×10^{4}	5.84×10^{12}	0.995	3.67×10^{4}	1.0136

$T/V \qquad AII/(1-I/m-1) \qquad AC/(1-I/m-1) \qquad AC/(I//m-1) \qquad AC/(I/m-1) $	
$\frac{1/K}{\Delta H/(KJ/MOI)} = \frac{\Delta G/(KJ/MOI)}{\Delta S/[J/(f)]}$	nol•K)]
283 -30.25	
293 -85.2 -27.84 -194	1.24
303 -26.47	

Table S3 Thermodynamic parameters of BQDs-SSZ system

Table S4 Detection of SSZ in actual samples (n = 5)

Spiked (µmol/L)	Found (µmol/L)	Recovery (%)	RSD (%)	
0	5.47	—	0.47	
5	10.29	96.40	0.37	
25	32.19	106.88	1.91	
50	56.66	102.38	0.53	
				-

Table S5 Detection of Pb^{2+} in actual samples (n = 5)

Spiked (µmol/L)	Found (µmol/L)	Recovery (%)	RSD (%)
0	0	—	—
100	108.15	108.15	0.91
80	84.92	106.16	5.04
55	58.31	106.01	4.84