Electronic supplementary information for

Solvent selection as a major determinant of chiral resolution outcomes: The BINOL-DACH case study

Joséphine de Meester, Oleksii Shemchuk, Laurent Collard, Johan Wouters, Koen Robeyns, Tom Leyssens*

*Corresponding author: tom.leyssens@uclouvain.be

Table of Contents

Table of Contents	2
Interactions with solvents	3
Structural analysis	7
Thermogravimetric analysis	12
TGA	13
DSC	16
NMR	22
CHPLC	24

Interactions with solvents

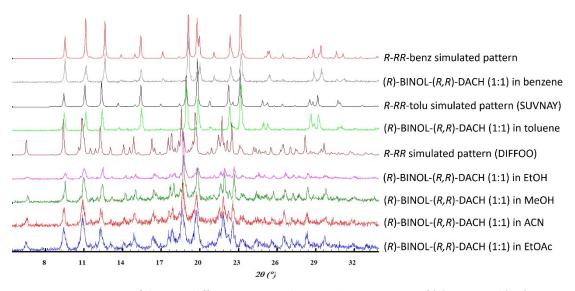


Figure SI-1. Comparison of the X-ray diffraction patterns between slurry outcomes of (R)-BINOL and (R,R)-DACH in different solvents.

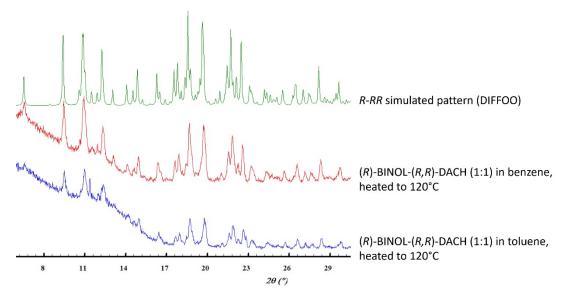


Figure SI-2. Comparison of the X-ray diffraction patterns of *R-RR*-tolu and *R-RR*-benz, each heated to 120°C, with the *R-RR* cocrystal.

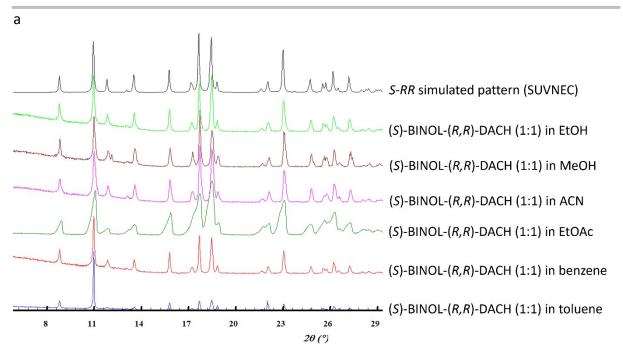


Figure SI-3. Comparison of the X-ray diffraction patterns between the slurry outcome of (S)-BINOL and (R,R)-DACH in different solvents.

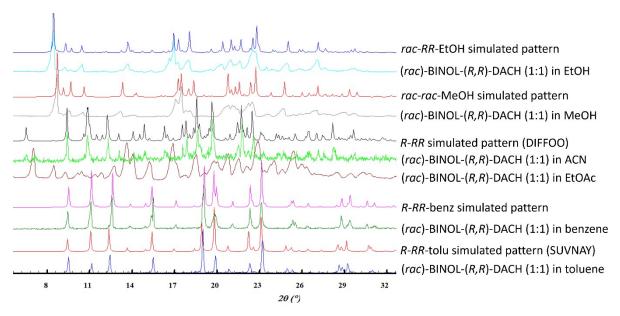


Figure SI-4. Comparison of the X-ray diffraction patterns between slurry outcomes of (*rac*)-BINOL and (*R,R*)-DACH in different solvents.



Figure SI-5. Comparison of the X-ray diffraction patterns of the powders recovered by slurrying (*rac*)-BINOL and (*R,R*)-DACH in EtOAc, MeOH and EtOH, heated to respectively 82°C, 70°C, and 70°C.

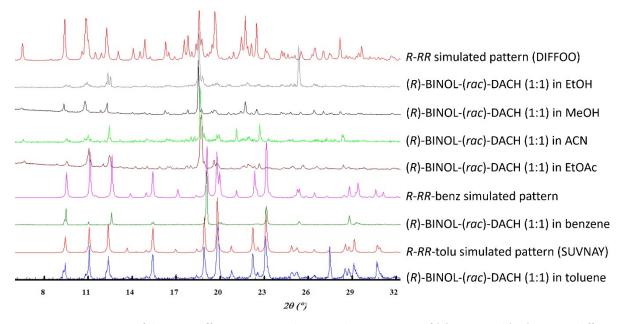


Figure SI-6. Comparison of the X-ray diffraction patterns between slurry outcomes of (*R*)-BINOL and (*rac*)-DACH in different solvents.

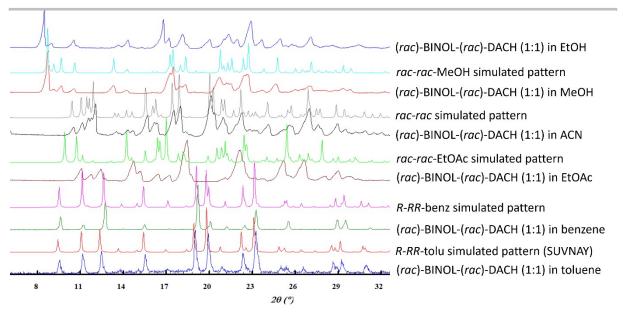


Figure SI-7. Comparison of the X-ray diffraction patterns between slurry outcomes of (*rac*)-BINOL and (*rac*)-DACH in different solvents.

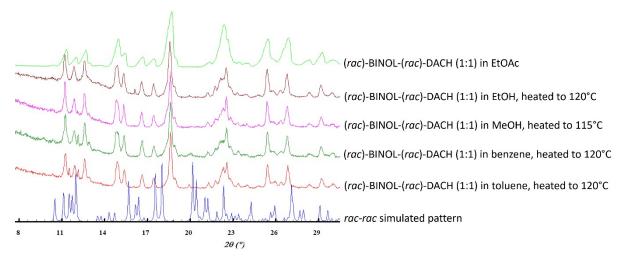


Figure SI-8. Comparison of the X-ray diffraction patterns of the powders recovered by slurrying (*rac*)-BINOL and (*rac*)-DACH in toluene, benzene, MeOH and EtOH, heated to respectively 120°C, 120°C, 115°C, and 120°C, with the outcome of the slurry (*rac*)-BINOL and (*rac*)-DACH in EtOAc and the *rac-rac* simulated pattern, obtained in ACN.

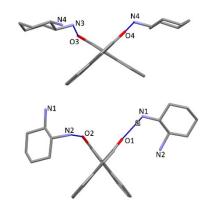

Structural analysis

Table SI-1. Crystallographic data and structure refinement details for R-RR, R-RR-benz, 4rac-4RR-3EtOH- H_2O , rac-rac-EtOAc, rac-rac and rac-rac-MeOH phases.

Identification code	(R)-BINOL-(R,R)DACH R-RR	(<i>R</i>)-BINOL-(<i>R,R</i>)-DACH-benzene <i>R-RR</i> -benz	4(rac)-BINOL-4(R,R)-DACH- 3EtOH-H₂O 4rac-4RR-3EtOH-H₂O
Empirical formula	$C_{26}H_{28}N_2O_2$	$C_{32}H_{34}N_2O_2$	$C_{110}H_{132}N_8O_{12}$
Formula weight [g/mol]	400.50	478.61	1758.23
Temperature [K]	150(2)	297(2)	297(2)
Crystal system	orthorhombic	orthorhombic	triclinic
Space group	$P2_{1}2_{1}2_{1}$	C222 ₁	<i>P</i> 1
a [Å]	9.85511(18)	12.3993(15)	10.3936(12)
b [Å]	15.3092(3)	14.0194(10)	11.2508(9)
c [Å]	28.2920(6)	15.3719(12)	20.951(2)
α [°]	90	90	87.176(7)
β [°]	90	90	89.274(8)
γ [°]	90	90	76.533(8)
Volume [Å ³]	4268.53(15)	2672.1(4)	2379.6(4)
z	8	4	1
ρ _{calc} [g/cm ³]	1.246	1.190	1.227
μ [mm ⁻¹]	0.079	0.074	0.080
F(000)	1712.0	1024.0	944.0
Crystal size [mm³]	$0.4 \times 0.27 \times 0.04$	$0.2 \times 0.02 \times 0.01$	$0.12\times0.1\times0.1$
Radiation	MoKα ($\lambda = 0.71073$)	MoKα ($\lambda = 0.71073$)	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection [°]	5.98 to 52.304	6.388 to 46.452	5.122 to 50.504
Index ranges	$-12 \le h \le 12, -18 \le k \le 18, -34 \le 1 \le 35$	$-13 \le h \le 13, -15 \le k \le 15, -16 \le 1 \le 16$	$-12 \le h \le 12, -13 \le k \le 13, -25 \le 1 \le 25$
Reflections collected	37239	7721	41911
Independent reflections	8486 [R _{int} = 0.0484, R _{sigma} = 0.0338]	1896 [R _{int} = 0.1124, R _{sigma} = 0.0764]	17196 [R _{int} = 0.0535, R _{sigma} = 0.0625]
Data/restraints/parameters	8486/20/565	1896/29/172	17196/1172/1227
Goodness-of-fit on F ²	1.059	1.061	1.024
Final R indexes [I>=2σ (I)]	$R_1 = 0.0363, wR_2 = 0.0787$	$R_1 = 0.0612, wR_2 = 0.1342$	$R_1 = 0.0680, wR_2 = 0.1648$
Final R indexes [all data]	$R_1 = 0.0459$, $wR_2 = 0.0823$	$R_1 = 0.1060, wR_2 = 0.1544$	$R_1 = 0.1197, wR_2 = 0.1907$
Largest diff. peak/hole [e.Å-3]	0.19/-0.19	0.14/-0.16	0.47/-0.21
Flack parameter	0.3(4)	-0.8(10)	0.2(7)

Identification code	(rac)-BINOL-(rac)-DACH-EtOAc rac-rac-EtOAc	(rac)-Binol-(rac)-DACH rac-rac	(rac)-BINOL-(rac)-DACH-MeOH rac-rac-MeOH	
Empirical formula	$C_{28}H_{32}N_2O_3$	$C_{26}H_{28}N_2O_2$	$C_{27}H_{32}N_2O_3$	
Formula weight [g/mol]	444.55	400.50	432.54	
Temperature [K]	297(2)	297(2)	297(2)	
Crystal system	triclinic	monoclinic	triclinic	
Space group	P-1	$P2_1/c$	rac-rac rac-rac rac-rac-MeOH $C_{27}H_{32}N_2O_3$ $A_{400.50}$ $A_{432.54}$ $A_{297(2)}$ A_{2	
a [Å]	8.1693(10)	8.1707(5)	10.2697(12)	
b [Å]	9.2052(9)	29.731(2)	11.140(2)	
c [Å]	16.684(2)	9.0449(6)	$\begin{array}{c} \textit{rac-rac-MeOH} \\ & C_{27}H_{32}N_2O_3 \\ & 432.54 \\ & 297(2) \\ & \text{triclinic} \\ & \textit{P-1} \\ & 10.2697(12) \\ & 11.140(2) \\ & 11.3987(17) \\ & 108.518(16) \\ & 101.580(12) \\ & 101.228(14) \\ & 1163.6(3) \\ & 2 \\ & 1.235 \\ & 0.080 \\ & 464.0 \\ & 0.3 \times 0.23 \times 0.03 \\ & \text{MoK}\alpha \left(\lambda = 0.71073\right) \\ & 6.502 \text{ to } 52.598 \\ \leq 10 & -12 \leq h \leq 12, -13 \leq k \leq 13, -14 \leq 1 \leq 1 \\ \end{array}$	
α [°]	96.026(9)	90	108.518(16)	
β [°]	95.209(10)	101.667(6)	11.3987(17) 108.518(16) 101.580(12) 101.228(14)	
γ [°]	102.224(9)	90	11.3987(17) 108.518(16) 101.580(12) 101.228(14) 1163.6(3) 2 1.235 0.080 464.0	
Volume [Å ³]	1211.1(2)	2151.8(3)	1163.6(3)	
Z	2	4 2		
ρ_{calc} [g/cm ³]	1.219	1.236	1.235	
μ [mm ⁻¹]	0.079	0.078	0.080	
F(000)	476.0	856.0	464.0	
Crystal size [mm³]	$0.5 \times 0.2 \times 0.1$	$0.15\times0.1\times0.05$	$0.3\times0.23\times0.03$	
Radiation	MoKα ($\lambda = 0.71073$)	MoKα ($\lambda = 0.71073$)	MoKα ($\lambda = 0.71073$)	
2Θ range for data collection [°]	5.954 to 53.13	5.354 to 50.51	6.502 to 52.598	
Index ranges	$-9 \le h \le 10, -11 \le k \le 11, -20 \le l \le 20$	$-9 \le h \le 9$, $-35 \le k \le 35$, $-10 \le l \le 10$	$-12 \le h \le 12, -13 \le k \le 13, -14 \le 1 \le 14$	
Reflections collected	18971	18727	16245	
Independent reflections	4925 [$R_{int} = 0.0258$, $R_{sigma} = 0.0188$]	3860 [$R_{int} = 0.0691$, $R_{sigma} = 0.0551$]	4618 [$R_{int} = 0.0364$, $R_{sigma} = 0.0293$]	
Data/restraints/parameters	4925/46/343	3860/0/287	4618/224/381	
Goodness-of-fit on F ²	1.055	1.124	1.059	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0454, wR_2 = 0.1183$	$R_1 = 0.0831$, $wR_2 = 0.1398$	$R_1 = 0.0612, wR_2 = 0.1531$	
Final R indexes [all data]	$R_1 = 0.0544, wR_2 = 0.1239$	$R_1 = 0.1398$, $wR_2 = 0.1616$	$R_1 = 0.0793$, $wR_2 = 0.1624$	
Largest diff. peak/hole [e.Å-3]	0.19/-0.15	0.17/-0.21	0.22/-0.17	

Table SI-2. Hydrogen bonds of the $\it R-RR$ cocrystal (DIFFOO¹) and labelling of the atoms of interest.

				Inte	Angle (°)		
Type	Donor	Н	Acceptor	D-H	HA	DA	D-HA
	01	H1	N1	0.82	1.90	2.691(4)	161
	02	H8	N2	0.82	2.09	2.796(5)	144

	N2	H27	01	1.04(5)	2.24(5)	3.245(5)	163(4)
Intra	N2	H27	N1	1.04(5)	2.56(5)	2.966(6)	103(3)'
	03	H29	N3	0.82	2.00	2.742(4)	151
	04	H36	N4	0.82	2.08	2.808(4)	148

Table SI-3. Hydrogen bonds of the *R-RR*-toluene cocrystal-solvate (SUVNAY¹).

				Interatomic distances (Å)			
Type	Donor	Н	Acceptor	D-H	HA	DA	D-HA
	01	H1	N1	0.96	2.02	2.7458(4)	131

Table SI-4. CH- π stacking in the *R-RR*-toluene cocrystal-solvate (SUVNAY¹).

		Distance (Å)	Angle (°)	Interatomic distances (Å)
С-Н	Ring	HRing	C-HRing	CRingH
C7-H7	Benzene	2.95	175	3.9070(6)
C7-H7	Benzene	2.76	155	3.6519(6)

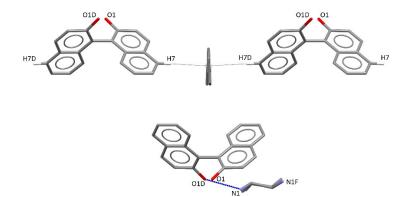


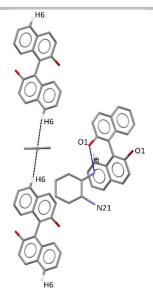
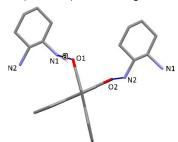
Figure SI-9. CH- π interaction of the *R-RR*-tolu cocrystal-solvate, view along *b*-axis.

Table SI-5. Hydrogen bonds of the $\it R\text{-}\it RR\text{-}\it benzene$ cocrystal-solvate.

				Interatomic distances (Å) An			
Туре	Donor	Н	Acceptor	D-H	НА	DA	D-HA
	01	H1	N21	0.84(7)	2.00(8)	2.768(7)	151(6)

Table SI-6. CH- π stacking in the $\mbox{\it R-RR}\mbox{-} benzene$ cocrystal-solvate, obtained in benzene.

		Distance (Å)	Angle (°)	Interatomic distances (Å)
С-Н	Ring	HRing	C-HRing	CRingH
C6-H6	Benzene	2.88	169	3.796(8)
C6-H6	Benzene	2.88	169	3.796(8)

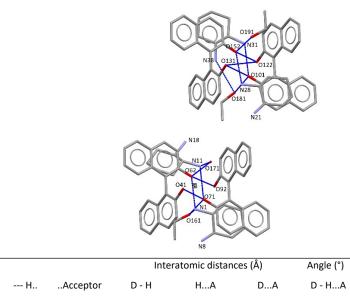

Figure SI-10. CH- π interaction of the *R-RR*-benz cocrystal-solvate, view along α -axis.

Table SI-7. Hydrogen bonds of the S-RR cocrystal (SUVNEC¹) and labelling of the atoms of interest.

				Interatomic distances (Å)			Angle (°)
Туре	Donor	Н	Acceptor	D-H	НА	DA	D-HA
	01	H1	N1	0.96	1.85	2.737(4)	153
	02	H2	N2	0.96	1.88	2.813(5)	164

Table SI-8. Hydrogen bonds of the 4rac-4RR-3EtOH- H_2O cocrystal-salt-solvate, obtained in EtOH and labelling of the atoms of interest.

Donor

Type

	N1	H1A	062	0.89	1.90	2.792(8)	178
Intra	N1	H1B	N8	0.89	2.37	2.787(9)	109
	N1	H1C	0161	0.89	1.85	2.735(8)	176
Intra	N11	H11A	N18	0.89	2.34	2.798(11)	112
	N11	H11B	071	0.89	1.98	2.862(8)	173
	N11	H11C	0171	0.89	1.90	2.759(9)	160
Intra	N21	H21A	N28	0.89(4)	2.52(10)	2.815(13)	100(7)
	N28	H28A	0152	0.89	1.90	2.785(8)	172
Intra	N28	H28B	N21	0.89	2.37	2.815(13)	111
	N28	H28C	0181	0.89	1.92	2.807(10)	172
	N31	H31B	0101	0.89	1.93	2.816(8)	170
	N31	H31C	0191	0.89	1.85	2.719(9)	164
	N38	H38B	0131	0.89(9)	2.42(9)	3.270(14)	162(6)
	041	H41	071	0.82	1.83	2.620(7)	161
	0171	H71B	062	0.91(8)	1.82(9)	2.702(8)	162(7)
	092	H92	062	0.82	1.87	2.613(7)	150
	0122	H122	0152	0.82	1.85	2.628(7)	157
	0131	H131	0101	0.82	1.87	2.612(7)	150
	0161	H161	071	0.82	1.78	2.601(7)	174
	0181	H181	0101	0.82	1.91	2.680(9)	157
	0191	H183	0152	0.82	1.85	2.636(8)	160

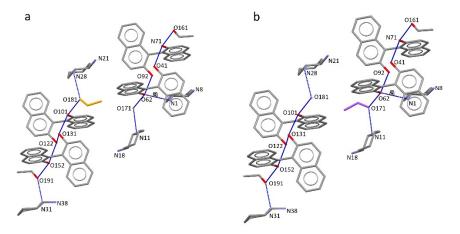
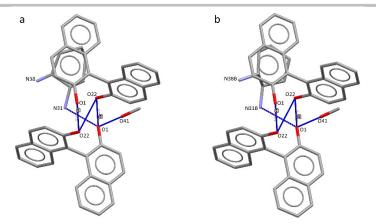
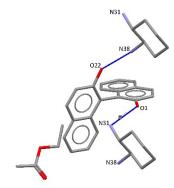


Figure SI-11. 4rac-4RR-3EtOH- H_2 O phase, view along b-axis. Of the three molecules of EtOH, one is disordered, the molecule of water is also disordered. The disordered molecule of EtOH and the molecule of water can be exchanged, with the major form accounting for 67.8% and the minor form for 32.2%. a) Major form, in orange, b) Minor form, in blue.

Table SI-9. Hydrogen bonds of the *rac-rac*-MeOH cocrystal-salt-solvate obtained in MeOH.

				Inter	Interatomic distances (Å)		
Type	Donor	Н	Acceptor	D-H	HA	DA	D-HA
	022	H22	01	0.97(3)	1.68(3)	2.617(2)	162(2)
Intra	N31	H31A	N38	0.89	2.38	2.798(15)	109
	N31	H31A	N38B	0.89	2.39	2.820(19)	110'
	N31	H31B	01	0.89	1.81	2.690(14)	171
	N31	H31C	041	0.89	2.01	2.891(16)	172
	041	H41	01	0.98(3)	1.69(3)	2.656(3)	173(3)

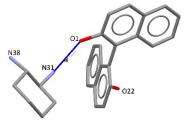

Figure SI-12. *rac-rac*-MeOH phase, view along a-axis. DACH molecule shows S-*R* disorder, as 51%-49%. a) Major form, b) Minor form.

Table SI-10. Hydrogen bonds of the *rac-rac*-EtOAc cocrystal-solvate, obtained by slow evaporation and labelling of the atoms of interest.

				Interatomic distances (Å)			Angle (°)
Туре	Donor	Н	Acceptor	D-H	HA	DA	D-HA
	01	H1	N31	0.91(2)	1.96(2)	2.815(2)	154.8(15)
	022	H22	N38	0.96(2)	1.911(17)	2.763(2)	146.9(13)

Table SI-11. Hydrogen bonds of the *rac-rac* cocrystal obtained in ACN and labelling of the atoms of interest.

				Interatomic distances (Å)			Angle (°)
Туре	Donor	Н	Acceptor	D - H	HA	DA	D - HA
	01	H1	N31	0.88(3)	1.98(3)	2.786(4)	152(2)
	022	H22	N38	0.94(3)	1.98(3)	2.842(4)	152(3)

Thermogravimetric analysis

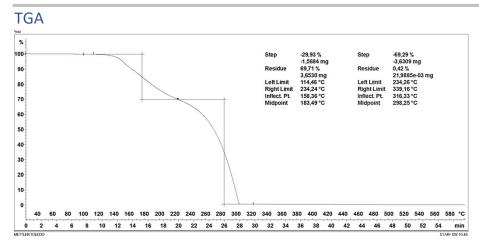


Figure SI-13. TGA of the R-RR (1:1) cocrystal, obtained by slurrying (R)-BINOL and (R,R)-DACH in a 1:1 ratio in MeOH. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a two-step mass loss starting at 114°C, consisting in the degradation of the product.

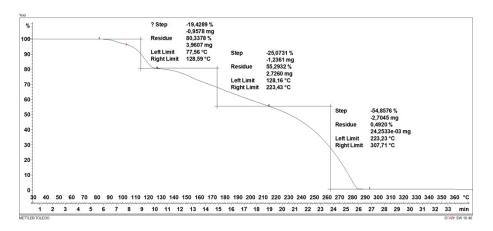


Figure SI-14. TGA of the R-RR-tolu (1:1:1) cocrystal-solvate, obtained by slurrying (R)-BINOL and (R,R)-DACH in a 1:1 ratio in toluene. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a three-step mass loss. The first one (starting at 78°C) consists in the drying of the powder and desolvation of toluene (loss of 1 equivalent of toluene), the second (starting at 128°C) and third (starting at 223°C) consist in the degradation of the R-RR compound.

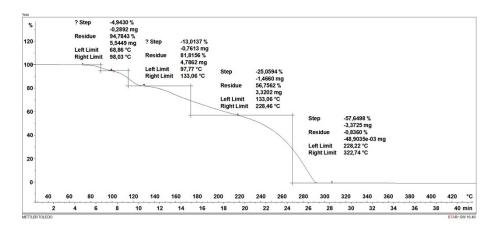


Figure SI-15. TGA of the R-RR-benz (1:1:1) cocrystal-solvate, obtained by slurrying (R)-BINOL and (R, R)-DACH in a 1:1 ratio in benzene. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a four-step mass loss. The two first ones (starting at 69°C) consist in the desolvation of benzene (loss of 1.1 equivalent of benzene), the third (starting at 133°C) and fourth (starting at 228°C) consist in the degradation of the R-RR compound.

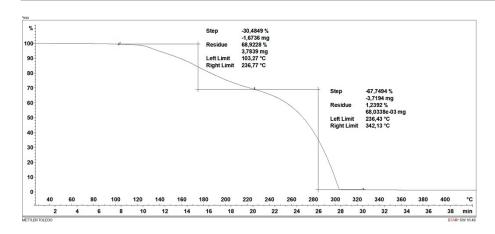


Figure SI-16. TGA of the S-RR (1:1) cocrystal, obtained by slurrying (S)-BINOL and (R,R)-DACH in a 1:1 ratio in EtOAc. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a two-step mass loss starting at 64°C, consisting in the degradation of the product.

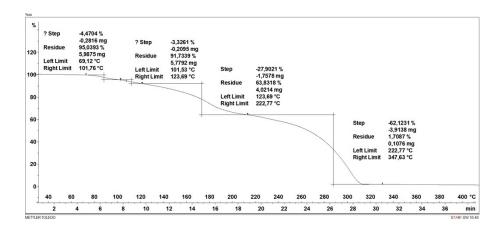


Figure SI-17. TGA of the *rac-RR*-MeOH (1:1:1) phase, obtained by slurrying (*rac*)-BINOL and (*R*,*R*)-DACH in a 1:1 ratio in MeOH. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a four-step mass loss. The two first ones (starting at 69°C) consist in the desolvation of methanol (loss of 1.1 equivalent of MeOH), the third (starting at 124°C) and fourth (starting at 223°C) consist in the degradation of the *rac-RR* compound.

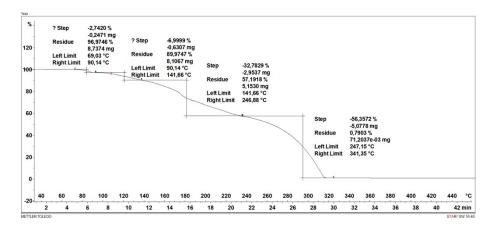


Figure SI-18. TGA of the 4rac-4RR-3EtOH- H_2 O (4:4:3:1) phase, obtained by slurrying (rac)-BINOL and (R, R)-DACH in a 1:1 ratio in EtOH. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a four-step mass loss. The two first ones (starting at 69°C) consist in the desolvation of ethanol and water, the third (starting at 142°C) and fourth (starting at 247°C) consist in the degradation of the rac-RR compound.

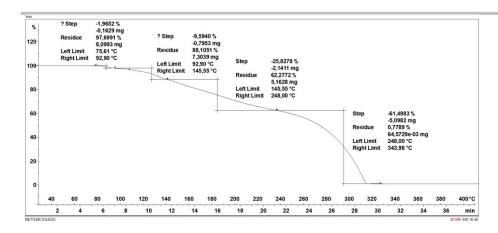


Figure SI-19. TGA of the new form, obtained by slurrying (*rac*)-BINOL and (*R*,*R*)-DACH in a 1:1 ratio in EtOAc. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a four-step mass loss. The two first ones (starting at 77°C) consist in the desolvation of ethyl acetate (loss of 0.6 equivalent of EtOAc), the third (starting at 170°C) and fourth (starting at 250°C) consist in the degradation of the *rac-RR* compound.

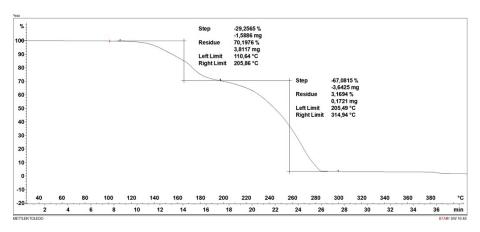


Figure SI-20. TGA of the newly crystal phase, obtained by slurrying (rac)-BINOL and (rac)-DACH in a 1:1 ratio in EtOAc. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a two-step mass loss starting at 111°C, consisting in the degradation of the product.

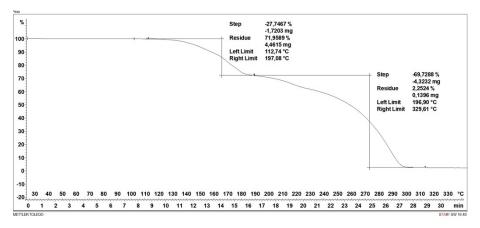


Figure SI-21. TGA of the *rac-rac* (1:1) phase, obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in ACN. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a two-step mass loss starting at 113°C, consisting in the degradation of the product.

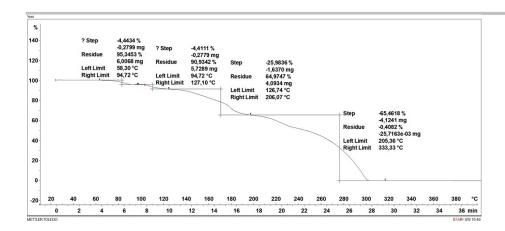


Figure SI-22. TGA of the *rac-rac*-MeOH (1:1:1) phase, obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in MeOH. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a four-step mass loss. The two first ones (starting at 58°C) consist in the desolvation of methanol (loss of 1.2 equivalent of MeOH), the third (starting at 127°C) and fourth (starting at 205°C) consist in the degradation of the *rac-rac* compound.

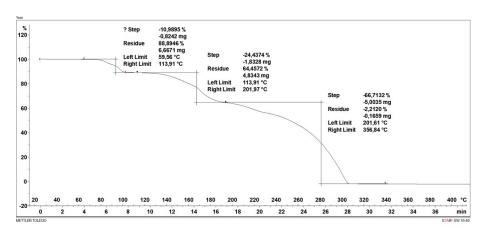


Figure SI-23. TGA of the newly crystal phase, obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in EtOH. The thermogram is expressed as the weight loss (%) with respect to temperature. It shows a three-step mass loss. The first one (starting at 60°C) consists in the desolvation of ethanol (loss of 1 equivalent of EtOH), the second (starting at 114°C) and third (starting at 202°C) consist in the degradation of the *rac-rac* compound.

DSC

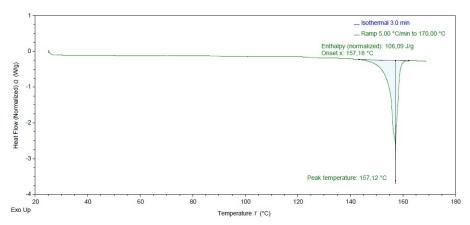


Figure SI-24. DSC of the R-RR (1:1) cocrystal, obtained by slurrying (R)-BINOL and (R,R)-DACH in a 1:1 ratio in EtOH. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one peak (157°C) consisting of the melting of the compound.

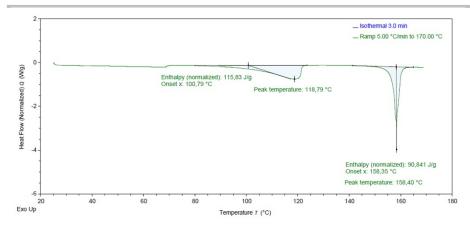


Figure SI-25. DSC of the R-RR-tolu (1:1:1) cocrystal-solvate, obtained by slurrying (R)-BINOL and (R, R)-DACH in a 1:1 ratio in toluene. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows two peaks. The first one (with an onset of 101°C) corresponds to the desolvation of toluene, the second one (with an onset of 158°C) consists of the melting of the R-RR compound.

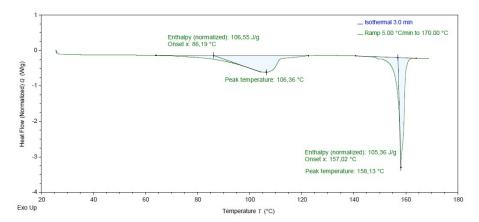


Figure SI-26. DSC of the R-RR-benz (1:1:1) cocrystal-solvate, obtained by slurrying (R)-BINOL and (R, R)-DACH in a 1:1 ratio in benzene. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows two peaks. The first one (with an onset of 86°C) corresponds to the desolvation of benzene, the second one (with an onset of 158°C) consists of the melting of the R-RR compound.

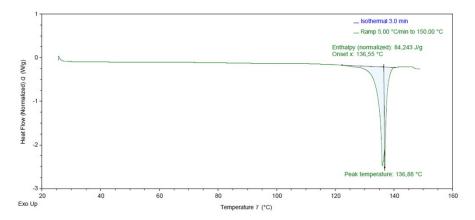


Figure SI-27. DSC of the S-RR (1:1) cocrystal, obtained by slurrying (S)-BINOL and (R,R)-DACH in a 1:1 ratio in EtOAc. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one peak (with an onset of 137°C) consisting in the melting of the compound.

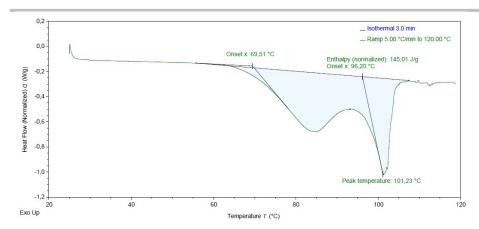


Figure SI-28. DSC of the rac-RR-MeOH material, obtained by slurrying (rac)-BINOL and (R, R)-DACH in a 1:1 ratio in MeOH. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows two peaks (with onsets of respectively 70°C and 96°C), the first one consists of the desolvation of methanol and the second consists of the melting of the rac-RR compound.

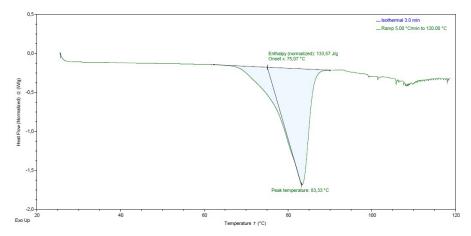


Figure SI-29. DSC of the 4rac-4RR-3EtOH- H_2O material, obtained by slurrying (rac)-BINOL and (R,R)-DACH in a 1:1 ratio in EtOH. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one shouldered peak (with an onset of 75°C), consisting of the desolvation and melting of the compound, before its degradation.

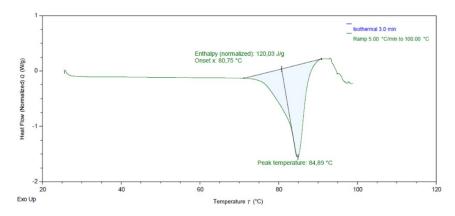


Figure SI-30. DSC of the material obtained by slurrying (rac)-BINOL and (R,R)-DACH in a 1:1 ratio in EtOAc. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one shouldered peak (with an onset of 81°C), consisting of the desolvation and melting of the compound, before its degradation.

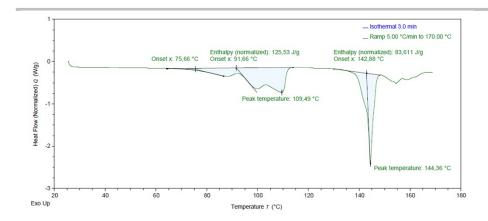


Figure SI-31. DSC of the material obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in toluene. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows three shouldered peaks (with an onset of 76°C), consisting of the drying and desolvation of the compound, before its melting (characterized by a peak with an onset of 143°C) and its degradation.

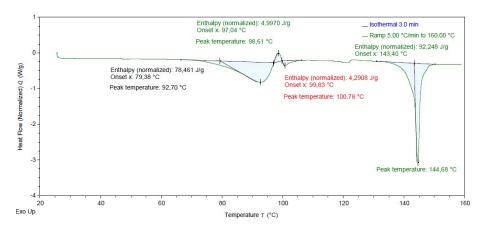


Figure SI-32. DSC of the material obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in benzene. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows different events. The first event (with an onset of 79°C) corresponds to the desolvation of benzene, The final compound melts melts at 143°C.

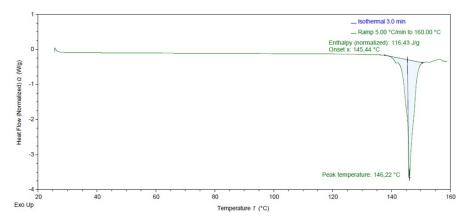


Figure SI-33. DSC of the material obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in EtOAc. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one peak (with an onset of 145°C) consisting of the melting of the compound.

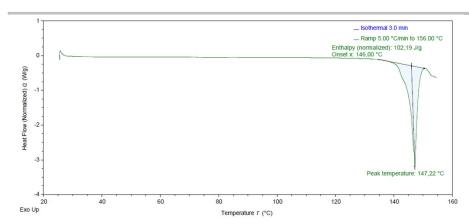


Figure SI-34. DSC of the *rac-rac* cocrystal obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in ACN. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one peak (with an onset of 146°C) consisting of the melting of the compound.



Figure SI-35. DSC of the *rac-rac-MeOH* compound obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in MeOH. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows different events. The first peak (with an onset of 71°C) corresponds to a desolvation event. The final *rac-rac* compound melts (characterized by a peak with an onset of 143°C).

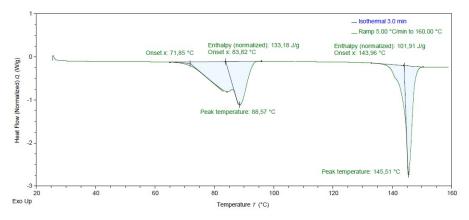


Figure SI-36. DSC of the material obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in EtOH. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows two shouldered peaks (with an onset of 72°C), consisting of the desolvation of ethanol, followed by an endothermic peak (with an onset of 144°C) consisting of the melting of the *rac-rac* compound.

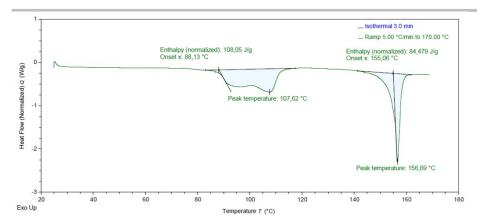


Figure SI-37. DSC of the *R-RR*-tolu compound obtained by slurrying (*R*)-BINOL and (*rac*)-DACH in a 1:1 ratio in toluene. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows two shouldered peaks (with an onset of 88°C), consisting of the desolvation of the toluene, followed by an endothermic peak (with an onset of 155°C) consisting of the melting of the *R-RR* compound.

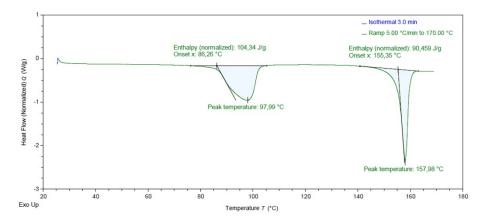


Figure SI-38. DSC of the R-RR-benz compound obtained by slurrying (R)-BINOL and (rac)-DACH in a 1:1 ratio in benzene. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one broad peak (with an onset of 86°C), consisting of the desolvation of the benzene, followed by an endothermic peak (with an onset of 155°C) consisting of the melting of the R-RR compound.

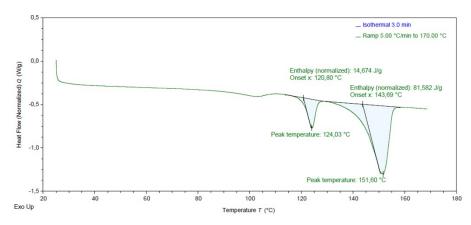


Figure SI-39. DSC of the compound obtained by slurrying (R)-BINOL and (rac)-DACH in a 1:1 ratio in EtOAc. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows a eutectic at 121°C followed by a liquidus.

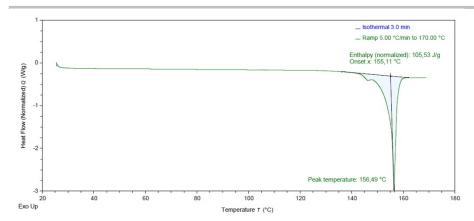


Figure SI-40. DSC of the R-RR compound obtained by slurrying (R)-BINOL and (rac)-DACH in a 1:1 ratio in ACN. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one peak (with an onset of 155°C), consisting in the melting of the R-RR compound.

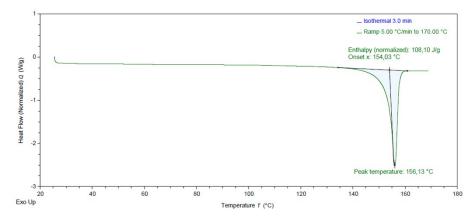


Figure SI-41. DSC of the *R-RR* compound obtained by slurrying (*R*)-BINOL and (*rac*)-DACH in a 1:1 ratio in MeOH. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one peak (with an onset of 155°C), consisting in the melting of the *R-RR* compound.

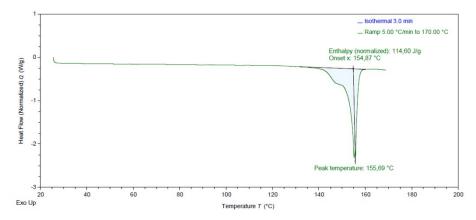


Figure SI-42. DSC of the R-RR compound obtained by slurrying (R)-BINOL and (rac)-DACH in a 1:1 ratio in EtOH. The thermogram is expressed as the heat flow (Q) with respect to temperature. It shows one peak (with an onset of 155°C), consisting of the melting of the R-RR compound.

NMR

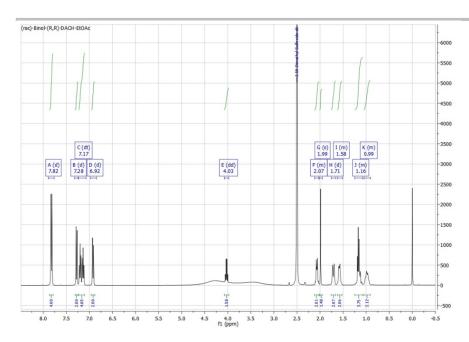


Figure SI-43. ¹H NRM of the newly crystal phase, obtained by slurrying (*rac*)-BINOL and (*R,R*)-DACH in a 1:1 ratio in EtOAc. The analysis shows a phase composed by 1 equivalent of BINOL, 1 equivalent of DACH and 0.5 equivalent of EtOAc.

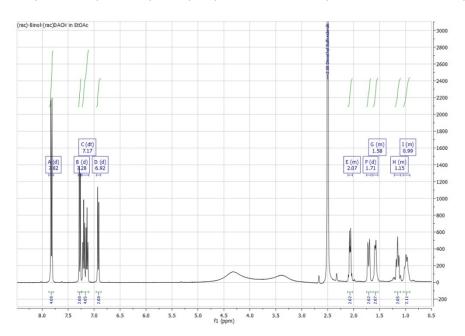


Figure SI-44. ¹H NRM of the newly crystal phase, obtained by slurrying (*rac*)-BINOL and (*rac*)-DACH in a 1:1 ratio in EtOAc. The analysis shows a phase composed by 1 equivalent of BINOL and 1 equivalent of DACH.

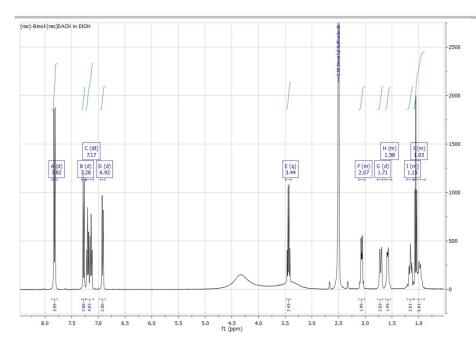


Figure SI-45. 1 H NRM of the newly crystal phase, obtained by slurrying (rac)-BINOL and (rac)-DACH in a 1:1 ratio in EtOH. The analysis shows a phase composed by 1 equivalent of BINOL, 1 equivalent of DACH and 1 equivalent of EtOH.

cHPLC

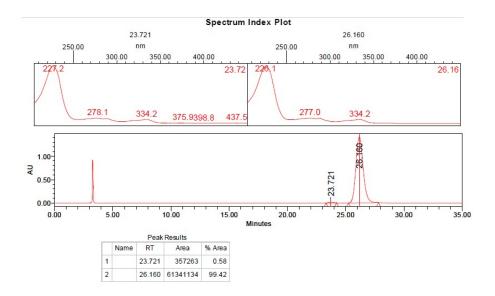


Figure SI-46. cHPLC analysis of the powder recovered from the resolution of (rac)-BINOL by (R,R)-DACH in toluene. The first peak corresponds to (S)-BINOL and the second to (R)-BINOL.

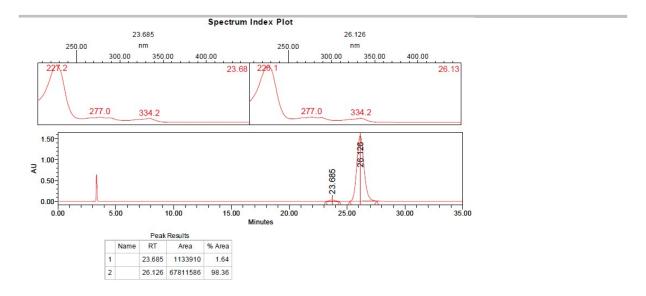


Figure SI-47. cHPLC analysis of the powder recovered from the resolution of (rac)-BINOL by (R,R)-DACH in benzene. The first peak corresponds to (S)-BINOL and the second to (R)-BINOL.

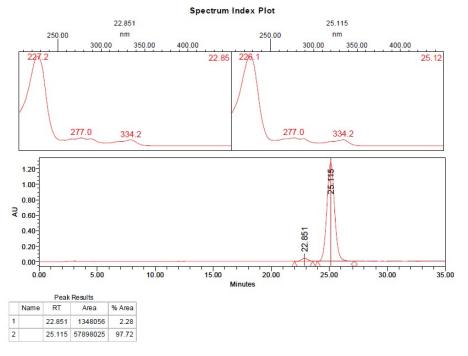


Figure SI-48. cHPLC analysis of the powder recovered from the resolution of (rac)-BINOL by (R, R)-DACH in ACN. The first peak corresponds to (S)-BINOL and the second to (R)-BINOL.

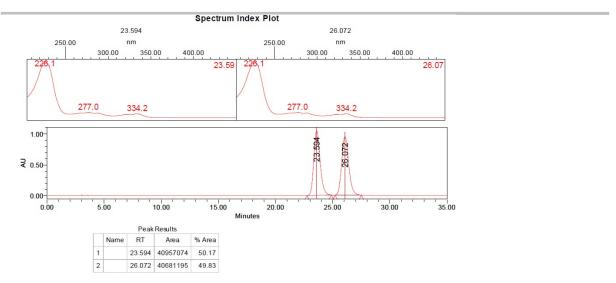


Figure SI-49. cHPLC analysis of the newly crystal phase, obtained by slurrying (rac)-BINOL and (rac)-DACH in a 1:1 ratio in EtOAc. The first peak corresponds to (S)-BINOL and the second to (R)-BINOL.

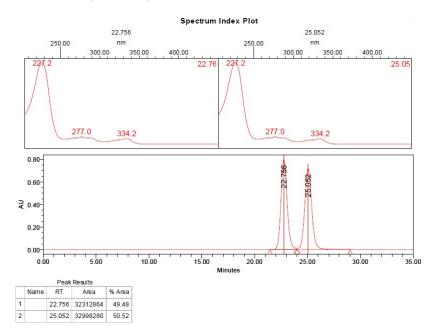


Figure SI-50. cHPLC analysis of the newly crystal phase, obtained by slurrying (rac)-BINOL and (R,R)-DACH in a 1:1 ratio in EtOAc. The first peak corresponds to (S)-BINOL and the second to (R)-BINOL.

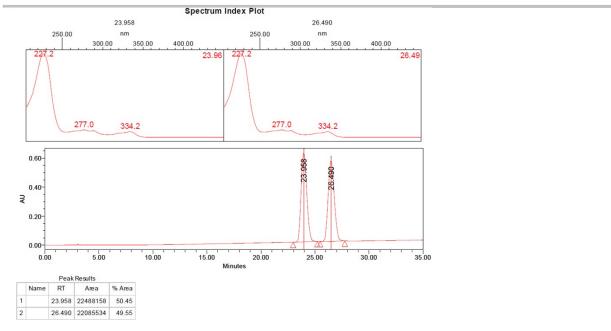


Figure SI-51. cHPLC analysis of the newly crystal phase, obtained by slurrying (rac)-BINOL and (rac)-DACH in a 1:1 ratio in EtOH. The first peak corresponds to (S)-BINOL and the second to (R)-BINOL.

Bibliography

1 M. Ratajczak-Sitarz, A. Katrusiak, K. Gawrońska and J. Gawroński, *Tetrahedron: Asymmetry*, 2007, **18**, 765–773.