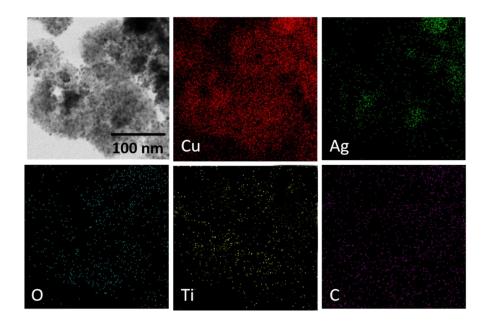
## **Supporting information**

Ag@Cu<sub>2</sub>O-MXene Core-Shell Nanostructures: Plasmonic Coupling and Charge Transfer for Ultra-Sensitive SERS Detection

Lei Chen<sup>1,2,\*</sup>, Rui Xu<sup>1</sup>, Zhi Yang<sup>2</sup>, Fuyu Chang<sup>1</sup>, Lu Yang<sup>2</sup>, Yoonseop Byun<sup>4</sup>, Eunsoo Song<sup>4</sup>, Eungyeong Park<sup>4</sup>, Lihui Liu<sup>3,\*</sup> Young Mee Jung<sup>4,\*</sup>


<sup>1</sup>School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, P.R. China.

<sup>2</sup>College of Chemistry, Jilin Normal University, Siping, Jilin 136000, P.R. China.

<sup>3</sup>Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, P.R. China.

<sup>4</sup>Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.

<sup>\*</sup>To whom correspondence should be addressed: <a href="mailto:liulh999@nenu.edu.cn">liulh999@nenu.edu.cn</a> (L. Liu); <a href="mailto:ymjung@kangwon.ac.kr">ymjung@kangwon.ac.kr</a> (Y. M. Jung)



**Figure S1.** TEM image and EDS mapping of the Ag@Cu<sub>2</sub>O-MXene composites, showing the distribution of Cu, Ag, O, Ti, and C.

Table S1. Band assignments of the MBA adsorbed on the Ag@Cu<sub>2</sub>O-MXene composites

| Wavenumber (cm <sup>-1</sup> ) | Band assignments                                                                     |
|--------------------------------|--------------------------------------------------------------------------------------|
| 1012                           | In-plane ring breathing $+\nu(C-O)$ , $b_2$                                          |
| 1075                           | In-plane ring breathing + $\nu$ (C–S), $a_1$                                         |
| 1138                           | v(C–H), b <sub>2</sub>                                                               |
| 1183                           | v(C–H), a <sub>1</sub>                                                               |
| 1352                           | $\beta$ (O–H) + $\nu$ (C–ph) + in-plane $\nu$ (C–C) + asymmetry $\nu$ (O–C–O), $b_2$ |
| 1582                           | In-plane $\beta(C-H)$ , $a_1$                                                        |

 $<sup>^{</sup>a}v$ , stretching;  $\beta$ , bending. For ring vibrations, the corresponding vibrational modes of benzene and the symmetry species under  $C_{2v}$  symmetry are indicated.

## Calculation of enhancement factor (EF)

To evaluate the SERS activity of the Ag@Cu<sub>2</sub>O-MXene composites, the enhancement factor (EF) of MBA adsorbed on the Ag@Cu<sub>2</sub>O-MXene composites was calculated. The Raman spectra of MBA obtained under 532 and 633 nm laser excitations are shown in Figure S2. The EFs of the Ag@Cu<sub>2</sub>O-MXene composites were determined using the

<sup>&</sup>lt;sup>b</sup> Wilson notation is employed.

following equation<sup>1</sup>:

$$EF = \frac{I_{SERS}}{I_{Bulk}} \times \frac{N_{Bulk}}{N_{SERS}}$$

where  $I_{SERS}$  represents the intensity of the SERS band at 1075 cm<sup>-1</sup>, and  $I_{Bulk}$  denotes the intensity of the Raman band at 1075 cm<sup>-1</sup> for solid MBA.

$$N_{Bulk} = A_{laser} h \rho N_A$$

Here,  $N_{Bulk}$  is the number of MBA molecules in the solid state irradiated by the laser,  $A_{laser}$  is the laser spot area (diameter = 1  $\mu$ m), h is the effective focusing depth of the laser (19  $\mu$ m at the excitation wavelength), and  $\rho$  is the density of MBA (1.34 g/cm<sup>3</sup>).

$$N_{SERS} = N_d A_{laser} A_N / \sigma$$

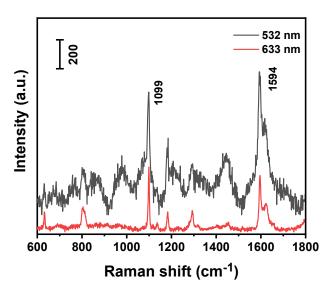
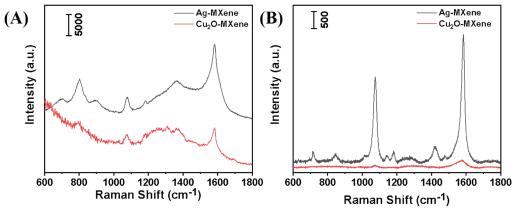
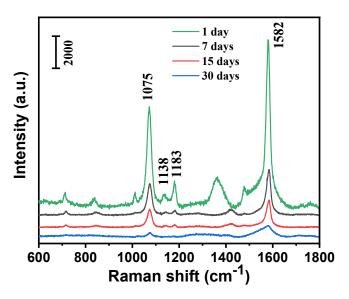
In this expression,  $N_{SERS}$  corresponds to the number of MBA molecules adsorbed on the SERS substrate within the laser spot (diameter = 1  $\mu$ m),  $N_d$  is the density of Ag@Cu<sub>2</sub>O particles within the laser spot,  $A_N$  is the surface area of an individual Ag@Cu<sub>2</sub>O particle, and  $\sigma$  is the area of a single MBA molecule (0.64 nm²/molecule) adsorbed on the Ag@Cu<sub>2</sub>O-MXene composites.

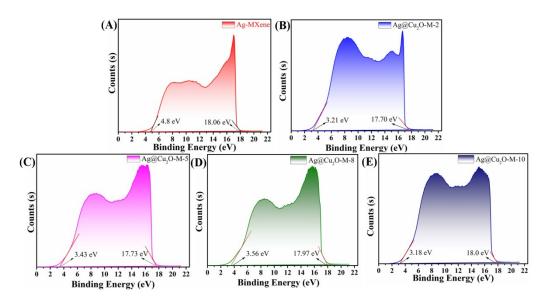
## Calculation of charge transfer degree $(\rho_{(CT)})$

Lombardi et al. proposed that charge transfer degree ( $\rho_{(CT)}$ ) can be used to quantitatively evaluate the CT effect<sup>2</sup>. To elucidate the underlying mechanism of Ag@Cu<sub>2</sub>O-MXene composites,  $\rho_{(CT)}$  was calculated using the following equation:

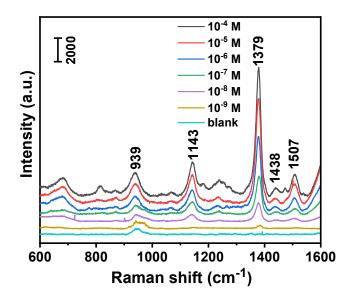
$$\rho_{(CT)} = \frac{I_{(CT)}^{K} - I_{(SPR)}^{K}}{I_{(CT)}^{K} + I_{(SPR)}^{0}}$$

Here, K represents the Raman spectrum of a single MBA molecule.  $I_{(CT)}^{K}$  and  $I_{(SPR)}^{0}$  correspond to the enhanced Raman intensities arising from CT effect and EM effect, respectively. The SERS band intensities of 1075 and 1141 cm<sup>-1</sup> were selected for the calculation of  $\rho_{(CT)}$ , corresponding to  $a_1$  mode associated with C–C bond stretching vibration and  $b_2$  mode associated with C–H bending, respectively.

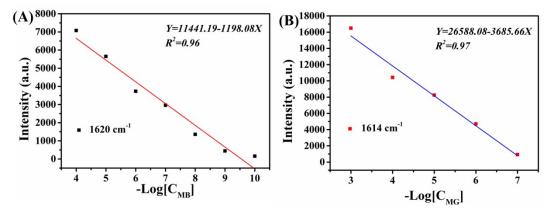






Figure S2. Raman spectra of MBA by using the 532 and 633 nm laser excitation.

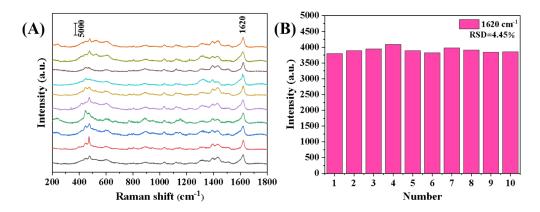



**Figure S3.** SERS spectra of MBA adsorbed on the Ag-MXene and Cu<sub>2</sub>O-MXene substrate under (A) 532 and (B) 633 nm laser excitations.




**Figure S4.** SERS spectra of MBA adsorbed on the Ag@Cu<sub>2</sub>O-MXene composites after storage for 1, 7, 15, and 30 days.




**Figure S5.** UPS spectra of (A) Ag-MXene and Ag@Cu<sub>2</sub>O-MXene composites with varying Cu(NO<sub>3</sub>)<sub>2</sub> concentrations of (B) 2, (C) 5, (D) 8, and (E) 10 mM.



**Figure S6.** SERS spectra of Ag@Cu<sub>2</sub>O-M-8 composites adsorbed with varying concentrations of sodium dimethyl dithiocarbamat under 633 nm laser excitation.



**Figure S7.** Linear correlation between logarithmic concentration and SERS intensity of the bands at (A) 1620 cm<sup>-1</sup> (MB) and (B) 1614 cm<sup>-1</sup> (MG).



**Figure S8.** (A) SERS reproducibility of the Ag@Cu<sub>2</sub>O-M-8 substrate. SERS spectra of MB  $(1.0\times10^{-6} \text{ M})$  were collected from 10 randomly selected points on the composite surface. (B) Histogram of the intensity distribution for the band at 1620 cm<sup>-1</sup> across the 10 spectra.

## References

- 1. X. Xue, L. Chen, C. Wang, C. Zhao, H. Wang, N. Ma, J. Li, Y. Qiao, L. Chang, B. Zhao, *Spectrochim. Acta A* 2021, **274**, 119126.
- 2. J. R. Lombardi, R. L. Birke, J. Phys. Chem. C, 2008, 112, 5605-5617.