Supporting Information

The empirical nitrogen equivalent equation is illustrated as follows:

$$\begin{cases} D = (690 + 1160\rho) \sum N_{\text{ch}} \\ p = 1.106 \left(\rho \sum N_{\text{ch}}\right)^2 - 0.84 \\ \sum N_{\text{ch}} = \frac{100}{M_r} \left(p_i N_{p_i} + \sum B_K N_{B_K} + \sum G_j N_{G_j}\right) \end{cases}$$

D: detonation velocity (m/s)

p: detonation pressure (GPa)

 ρ : crystal density of energetic material (g/cm³)

 $\sum N_{\rm ch}$: the total value of nitrogen equivalent coefficient of energetic material

 M_r : the molar mass of energetic material

 p_i : the total number of ith detonation product with 1 mol explosive exploded completely

 N_{p_i} : the total nitrogen equivalent coefficient of *i*th detonation product

 B_K : the total number of Kth chemical bond contained in explosive molecule

 $N_{B_{\kappa}}$: the total nitrogen equivalent coefficient of Kth chemical bond

 G_i : the total number of jth chemical groups contained in explosive molecule

 N_{G_i} : the total nitrogen equivalent coefficient of the jth chemical group.

Nitrogen equivalent coefficient for different detonation products

Detonation product	CO ₂	СО	С	H ₂ O	N ₂
Nitrogen equivalent coefficient	1.279	0.723	0.149	0.626	0.981

Nitrogen equivalent coefficient for different chemical bonds

Chemical bond	С—С	С—Н	C = C	C—N
Nitrogen equivalent coefficient	0.0628	-0.0124	0.0345	0.0090
Chemical bond	N—N	N—H	N O	C=N
Nitrogen equivalent coefficient	0.0321	-0.0578	-0.0023	-0.0077

Nitrogen equivalent coefficient for different chemical groups

Chemical group	$C-NO_2$	$N-NO_2$	
Nitrogen equivalent coefficient	0.0016	-0.0028	

The detonation equation of CL-20 ($C_6H_6O_{12}N_{12}$) and LLM-116 ($C_3H_3O_4N_5$) was illustrated as follows:

$$C_6H_6O_{12}N_{12} \rightarrow 3H_2O+3CO_2+3CO+6N_2$$

$$C_3H_3O_4N_5 \rightarrow 1.5H_2O+2.5CO+0.5C+2.5N_2$$

The molar mass of CL-20 ($C_6H_6O_{12}N_{12}$) and LLM-116 ($C_3H_3O_4N_5$) was illustrated as that:

$$M_r$$
 (CL-20) = $6 \times 12 + 6 \times 1 + 12 \times 16 + 12 \times 14 = 438$

$$M_r$$
 (LLM-116) = $3 \times 12 + 3 \times 1 + 4 \times 16 + 5 \times 14 = 173$