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Density Functional Theory (DFT) Calculations

All spin-polarized density functional theory (DFT) calculations were conducted utilizing the Vienna Ab initio Simulation 

Package (VASP) 1. To depict ion-electron interactions, the projector augmented wave (PAW) method2 along with pseudopotentials 

were adopted, while electron-electron interactions were addressed using the Perdew-Burke-Ernzerhof (PBE)3 generalized gradient 

approximation (GGA).

A vacuum layer with a thickness of 20 Å was introduced above the slab surface. Subsequently, structural optimization was 

carried out with relaxed lattice parameters for the slab configuration. Spin polarization was incorporated into all calculations, 

employing a 2×3×1 k-point mesh and a plane-wave cutoff energy of 500 eV. The energy convergence criterion was set at 1×10⁻⁵ 

eV, and the force convergence threshold was established as 0.05 eV/Å.

The Van der Waals interaction was accounted for using the DFT-D3BJ method4. For structural visualization, VESTA5 was 

employed, and post-processing was performed using the vaspkit toolkit6.
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Fig. S1 The PXRD pattern of FeRu-BDC/NF material.

Fig. S2 High-resolution XPS spectra of C 1s for FeRu-BDC/NF.



Fig. S3 The color change of the foam nickel during the synthesis process

Table S1. HER comparison in 1.0 M KOH with the recently reported literatures.

Materials η10/mV Reference

FeRu-BDC/NF 54 This work

FeNi-MOF@NiMo-LDH 160 7

Ru-FeMn-MOF 86 8

0.04 Ru/FeCo-MOF 180 9

FeMn6Ce0.5-MOF-74/NF 186 10

Mn-MOF/NF 125 11

CdFe-MOF 148 12

Fe-MOF/Au-8/FF 130 13

VeNi0.06Fe0.06MOF/GO 90 14

FeS2-xSex/CoS@CC 285.2 15



Table S2. OER comparison in 1.0 M KOH with the recently reported literatures.

Materials η50/mV Reference

FeRu-BDC/NF 230 This work

Ru/FeCo-MOF 309 9

FeS2-xSex/CoS@CC 357.8 15

NiFeMo-MOF/NF 239 16

Fe@Co-MOF-3 248 17

Fe-MOF/NF 240 18

Fe0.1-Ni-MOF/NF 243 19

Co0.75Fe0.25-MOF 257 20

V-Ni MOF@FeOOH 267@20 21

Ru@NiCo-MOF HPNs 78.8@10 22



Table S3. Summary of overall water-splitting electrocatalysts.

Materials Voltage/mV Reference

FeRu-BDC/NF 1.47 This work

FeNi-MOF@NiMo-LDH 1.62 7

CdFe-MOF 1.68 12

Fe-MOF/Au-8/FF 1.61 13

NiFeMo-MOF/NF 1.50 16

Ru@NiCo-MOF-4||Pt/C 1.57 22

NiRu-PTA/NF 1.54 23

FeNi3S2@NiFe-MOF/NF 1.6 24

Ce@NiFe-MOF-5 1.56 25

CoFe-MS/MOF 1.54 26

Ru/NiFe(OH)x/NiFe-MOF||Pt/C 1.54 27



Fig. S4 Faraday efficiency measured using the drainage setup. H₂ and O₂ gas volumes were collected at 0 min, 10 min, 20 min, 30 
min, 40 min, 50 min, and 60 min.

Fig. S5 Schematic model of FeRu-BDC
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