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Density Functional Theory (DFT) Calculations

All spin-polarized density functional theory (DFT) calculations were conducted utilizing the Vienna Ab initio Simulation
Package (VASP) . To depict ion-electron interactions, the projector augmented wave (PAW) method? along with pseudopotentials
were adopted, while electron-electron interactions were addressed using the Perdew-Burke-Ernzerhof (PBE)? generalized gradient
approximation (GGA).

A vacuum layer with a thickness of 20 A was introduced above the slab surface. Subsequently, structural optimization was
carried out with relaxed lattice parameters for the slab configuration. Spin polarization was incorporated into all calculations,
employing a 2x3x1 k-point mesh and a plane-wave cutoff energy of 500 eV. The energy convergence criterion was set at 1x107°
eV, and the force convergence threshold was established as 0.05 eV/A.

The Van der Waals interaction was accounted for using the DFT-D3BJ method*. For structural visualization, VESTA’ was

employed, and post-processing was performed using the vaspkit toolkit®.
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Fig. S1 The PXRD pattern of FeRu-BDC/NF material.
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Fig. S2 High-resolution XPS spectra of C 1s for FeRu-BDC/NF.
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Fig. S3 The color change of the foam nickel during the synthesis process
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Table S1. HER comparison in 1.0 M KOH with the recently reported literatures.

Materials #1/mV Reference

FeRu-BDC/NF 54 This work
FeNi-MOF@NiMo-LDH 160 7
Ru-FeMn-MOF 86 8
0.04 Ru/FeCo-MOF 180 o
FeMnyCe( s-MOF-74/NF 186 10
Mn-MOF/NF 125 1
CdFe-MOF 148 12
Fe-MOF/Au-8/FF 130 13
VeNij osFeo s MOF/GO 90 14
FeS,«Se/CoS@CC 285.2 15




Table S2. OER comparison in 1.0 M KOH with the recently reported literatures.

Materials 150/mV Reference
FeRu-BDC/NF 230 This work
Ruw/FeCo-MOF 309 o

FeS, «Sey/CoS@CC 357.8 15
NiFeMo-MOF/NF 239 16
Fe@Co-MOF-3 248 17
Fe-MOF/NF 240 18

Fey ;-Ni-MOF/NF 243 19
Cog75Feg25-MOF 257 20
V-Ni MOF@FeOOH 267@?20 2
Ru@NiCo-MOF HPNs 78.8@10 2




Table S3. Summary of overall water-splitting electrocatalysts.

Materials Voltage/mV Reference
FeRu-BDC/NF 1.47 This work
FeNi-MOF@NiMo-LDH 1.62 7
CdFe-MOF 1.68 12
Fe-MOF/Au-8/FF 1.61 13
NiFeMo-MOF/NF 1.50 16
Ru@NiCo-MOF-4||Pt/C 1.57 2
NiRu-PTA/NF 1.54 23
FeNi;S,@NiFe-MOF/NF 1.6 2
Ce@NiFe-MOF-5 1.56 =
CoFe-MS/MOF 1.54 26
Ru/NiFe(OH),/NiFe-MOF||Pt/C 1.54 2
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Fig. S4 Faraday efficiency measured using the drainage setup. H> and O- gas volumes were collected at 0 min, 10 min, 20 min, 30

min, 40 min, 50 min, and 60 min.
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Fig. S5 Schematic model of FeRu-BDC
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