Supplementary Information (SI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2025 Supporting information

Boosting alkaline hydrogen evolution *via* cobalt functionalization of organic-inorganic hybrid germanoniobate electrocatalysts

Xin-Rong Jin, Jin-Yang Li, Yong-Jiang Wang, Yan-Qiong Sun*, Xin-Xiong Li and Shou-Tian Zheng *

CONTENTS

Experimental section	2
Additional Tables	3
Additional Figures	6
References	14

1 Section S1 Experimental Procedures

1.1 Electrochemical characterization:

Electrochemical measurements were conducted using the Zennium-pro electrochemical workstation (Germany Zahner Instrument) in a standard three-electrode system. All electrochemical tests were performed at room temperature. The Hg/HgO electrode, graphite rod, and POM-modified carbon cloth were used as the reference electrode, counter electrode, and working electrode, respectively. To prepare the working electrode, 5 mg of catalyst was dispersed in a mixed solution containing 30 μ L of Nafion solution (10%, DuPont, Wilmington, Delaware, USA), and 300 μ L of water/isopropanol (v/v = 1:1) mixture. Then, the suspension was ultrasonicated for 30 minutes to form a homogeneous ink. The carbon cloth (CC) was first degreased by sonication in acetone, then carefully washed with 0.5 M HCl in an ultrasonic bath for 20 min to remove the surface oxidation layer. Finally, 66 μ L of catalyst ink was applied in a uniform drop onto a CC, achieving a controlled catalyst loading of 5 mg cm⁻².

In this study, the HER catalytic reaction was conducted in a 1 M KOH solution (pH = 13.9, 25 °C). All potentials mentioned in this study were calibrated using a reversible hydrogen electrode (RHE) as the reference, with the calibration equation: $E_{\rm RHE} = E_{\rm Hg/HgO} + 0.098 + 0.0591 \times \rm pH$. In particular, the cyclic voltammetry (CV) tests were first performed at a scan rate of 100 mV s⁻¹ for 20 cycles to attain a stable state. Then, linear sweep voltammetry (LSV) curves of HER were recorded at a scan rate of 10 mV s⁻¹ over a potential range of -0.9 to -2 V. The Tafel plots were graphed using the Tafel equation, $\eta = b$ (log |j|) + a, in which b is the Tafel slope, and j is the current density. For evaluating the electrochemically active surface area (ECSA), CV was performed between -0.8 and -0.9 V at scan rates from 20 to 100 mV s⁻¹. The Cdl values were estimated by plotting $\Delta j = (j_a - j_c) \times 0.5$, where j_a and j_c are the anode and cathode current densities, respectively. The EIS measurements were performed with an open-circuit potential using an AC voltage of 5 mV amplitude and a frequency range of 0.01 kHz to 100 kHz. In the end, the electrode stability was tested using the chronopotentiometry method at 10 mA cm⁻².

Section 2 Additional tables

 $Table~S1~\text{Crystal data and structure refinement parameters for}~\{Co_9(Ge_4Nb_{16})_2\}~\text{and}~\{Ge_4Nb_{16}\}\\ compounds$

compound	$\{Co_9(Ge_4Nb_{16})_2\}$	$\{Ge_4Nb_{16}\}$
Empirical formula	$C_{40}H_{172}Co_{9}Ge_{8}N_{40}Na_{2}Nb_{32}O_{138}$	$C_{10}H_{49}Ge_4N_{10}Na_4Nb_{16}O_{71}$
Formula weight	7552.3	3314.55
Crystal system	triclinic	triclinic
Space group	P-1	P-1
a (Å)	15.0280(7)	13.8461(9)
<i>b</i> (Å)	17.2493(8)	14.2158(10)
c (Å)	23.3720(12)	21.6549(15)
α (°)	92.648(2)	90.428(2)
β (°)	99.053(2)	99.138(2)
γ (°)	114.473(2)	98.546(2)
V (Å-3)	5403.6(5)	4159.5(5)
Z	1	2
$ \rho_{\rm calc}({\rm g~cm}^{-3}) $	2.268	2.620
μ (mm ⁻¹)	3.488	3.669
F(000)	3458.0	3150.0
Temperature/K	170.0	170.0
Reflections collected	93994	119674
R(int)	0.0490	0.0354
completeness	99.2%	99.9%
	-17 ≤ h ≤ 17,	-16 ≤ h ≤ 16,
Index ranges	$-20 \leqslant k \leqslant 20$,	$-16 \leqslant k \leqslant 16$,
	-27 ≤ 1 ≤ 27	-25 ≤ 1 ≤ 25
Data / restraints / parameters	19087/48/1226	14711/66/1059
GOF on F ²	1.029	1.027
$R_1[I>2\sigma]$	$R_1 = 0.0359, wR_2 = 0.0940$	$R_1 = 0.0330, wR_2 = 0.0815$
R_1 (all data)	$R_1 = 0.0426, wR_2 = 0.0984$	$R_1 = 0.0377, wR_2 = 0.0838$

 $R_1 = \sum ||F_{\rm o}| - |F_{\rm c}|| / \sum |F_{\rm o}|. \ w \\ R_2 = [\sum w (F_{\rm o}^2 - F_{\rm c}^2)^2 / \sum w (F_{\rm o}^2)^2]^{1/2}; \ w = 1 / [\sigma^2 (F_{\rm o}^2) + (xP)^2 + yP], \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$

 $Table~S2.~ \mbox{The bond valence sum calculations of the Nb, Ge and Co atoms in } \{Co_9(Ge_4Nb_{16})_2\}$

Atoms code	Bond Value	Valence state	Atoms code	Bond Value	Valence state
Nb1	5.01155	+5	Nb14	5.09401	+5
Nb2	5.06434	+5	Nb15	4.94703	+5
Nb3	5.04083	+5	Nb16	5.06028	+5
Nb4	5.12453	+5	Ge1	3.94674	+4
Nb5	4.96480	+5	Ge2	4.01125	+4
Nb6	5.07113	+5	Ge3	4.00384	+4
Nb7	5.00913	+5	Ge4	4.01029	+4
Nb8	5.11181	+5	Co1	2.85217	+3
Nb9	5.12308	+5	Co2	2.49251	+3
Nb10	5.06443	+5	Co3	2.47188	+3
Nb11	4.95253	+5	Co4	2.48255	+3
Nb12	5.05190	+5	Co5	1.82962	+2
Nb13	5.05084	+5			

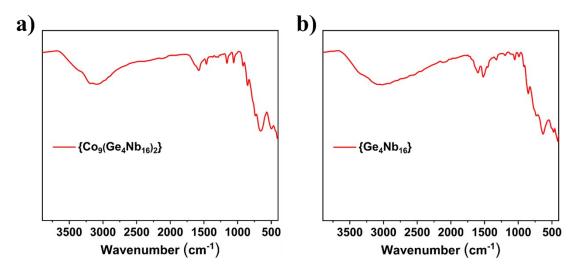
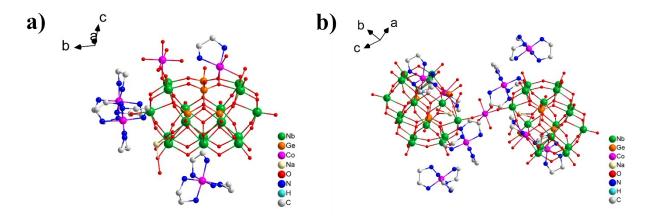
Table S3. The bond valence sum calculations of the Nb and Ge atoms in $\{Ge_4Nb_{16}\}$

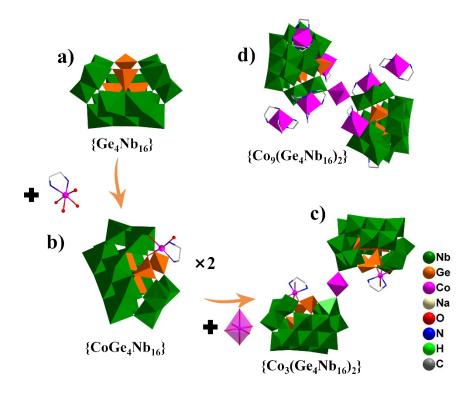
Atoms	Bond Value	Valence state	Atoms code	Bond Value	Valence state
Nb1	5.05677	+5	Nb11	5.05935	+5
Nb2	5.04123	+5	Nb12	5.07895	+5
Nb3	5.03584	+5	Nb13	5.00823	+5
Nb4	5.00827	+5	Nb14	5.01777	+5
Nb5	5.00694	+5	Nb15	5.01543	+5
Nb6	5.05374	+5	Nb16	5.00096	+5
Nb7	5.01238	+5	Ge1	4.03916	+4
Nb8	5.03703	+5	Ge2	4.01041	+4
Nb9	5.10303	+5	Ge3	3.98450	+4
Nb10	5.00883	+5	Ge4	4.02260	+4

Table S4. Comparison of HER catalytic activity with the reported systems

Samples	Electrolyte	Overpotential (mV)@10 mA·cm ⁻²	Ref.
Co/Mo-rGO	1.0 M KOH	488 mV@10	[1]
CoP-2ph-CMP-800	1.0 M KOH	360 mV@10	[2]
V ₃ Nb ₁₂	0.1 M KOH	258 mV@10	[3]
Co-P-300	1.0 M KOH	280mV@10	[4]
Co/CoP-NC	1.0 M KOH	260 mV@10	[5]
Co _{0.85} Se	1М КОН	288 mV@10	[6]
4N6Co-MoS ₂	0.1M KOH	307 mV@10	[7]
Co/NGC-3	0.1 M KOH	293 mV@10	[8]
Co(S _{0.46} Se _{0.54}) ₂ @C	1М КОН	251 mV@10	[9]
Co-NC	1М КОН	242 mV@10	[10]
{Co ₉ (Ge ₄ Nb ₁₆) ₂ }	1М КОН	240 mV@10	This work
(Fe _{0.75} Co _{0.25}) ₅ C ₂	1.0 M KOH	174 mV@10	[11]
Co ₃ -Ti ₂ Nb ₈	1.0 M KOH	172 mV@10	[12]
Co ₃ O ₄ @MoO ₃	1.0 M KOH	158 mV@10	[13]

Section 3 Additional Figures


Fig. S1 IR spectra of $\{Co_9(Ge_4Nb_{16})_2\}$ (a) and $\{Ge_4Nb_{16}\}$ (b).

As shown in Fig. S1a, for $\{Co_9(Ge_4Nb_{16})_2\}$, the broad peak centered at 3203 cm⁻¹ corresponds to the $\nu(O-H)$ stretching vibration of the water molecules, while peaks at 1575 cm⁻¹ are assigned to the $\delta(H-O-H)$ bending vibration. Peaks at 3096 cm⁻¹ are attributed to the $\nu(C-H)$ and $\nu(N-H)$ stretching vibrations, while the peaks at 1463 cm⁻¹ are ascribed to the $\delta(N-H)$ and $\delta(C-H)$ bending vibrations. Peaks at 1158 cm⁻¹ and 1058 cm⁻¹ mainly correspond to the $\nu(C-N)$. The characteristic peaks of Nb-O bonds appear in the range of 1000-600 cm⁻¹. The peak at 918 cm⁻¹ and 851 cm⁻¹ is attributed to the $\nu(Nb-O_t)$ stretching vibration. Peaks at 658 cm⁻¹ correspond to the $\nu(Nb-O_b-Nb)$ bending vibration. The peak at 507 cm⁻¹ is attributed to the $\nu(Co-O)$.

As shown in Fig. S1b, for $\{Ge_4Nb_{16}\}$, peaks at 3340 cm⁻¹ and 3024 cm⁻¹ are ascribed to the $\nu(O-H)$ and $\nu(N-H)$, while peaks at 1598 cm⁻¹ are assigned to the $\delta(H-O-H)$ bending vibration, while the peaks at 1520 cm⁻¹ ascribe to the $\delta(N-H)$ and $\delta(C-H)$ bending vibrations, Peaks at 1052 cm⁻¹ mainly ascribe to the $\nu(C-N)$. The peak at 989 cm⁻¹ and 851 cm⁻¹ is attributed to the $\nu(Nb=O_t)$ stretching vibration. Peaks at 631 cm⁻¹, 475 cm⁻¹ and 416 cm⁻¹ correspond to the $\nu(Nb-O_b-Nb)$ bending vibration.

 $Fig. \ S2\ (a)\ \text{Asymmetric unit of } \{Co_9(Ge_4Nb_{16})_2\}; (b)\ \text{Molecular structure of } \{Co_9(Ge_4Nb_{16})_2\}.$

 $Fig.~S3~\text{Schematic view of the structure of }\{Co_9(Ge_4Nb_{16})_2\}.$

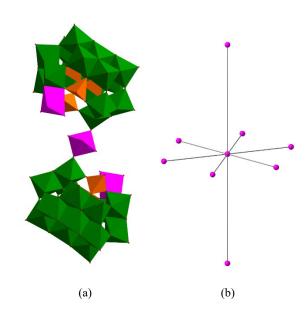
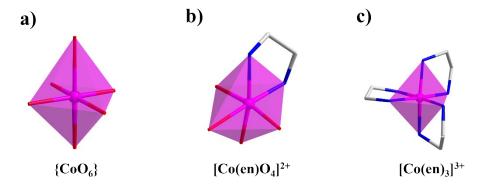



Fig. S4 (a) View of the $\{Co_3(Ge_4Nb_{16})_2\}$ cluster which links eight adjacent $\{Co_3(Ge_4Nb_{16})_2\}$ clusters via six bridged $[Co(en)^3]^{3+}$ units; (b) simplified uninodal 8-connected node in $\{Co_9(Ge_4Nb_{16})_2\}$. Color code: NbO₆ octahedron, green; GeO₄ tetrahedron, orange; CoO₆ octahedron, purple.

 $\textbf{Fig. S5} \ \text{Coordination environments of cobalt ions (a) } \{CoO_6\}; \\ (b) \ [Co(en)O_4]^{2^+}; \\ (c) \ [Co(en)_3]^{3^+}.$

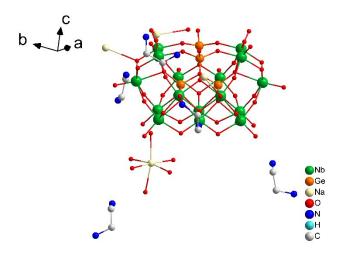


Fig. S6 View of the asymmetric unit of $\{Ge_4Nb_{16}\}.$

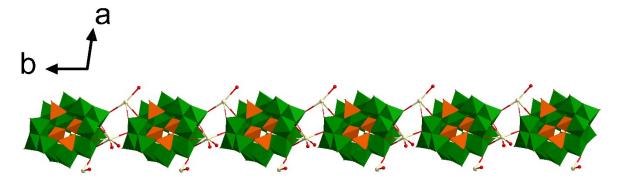


Fig. S7 View of a one-dimensional linear chain in $\{Ge_4Nb_{16}\}$ running along the b-axis.

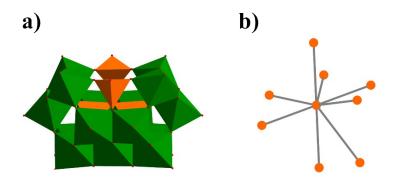
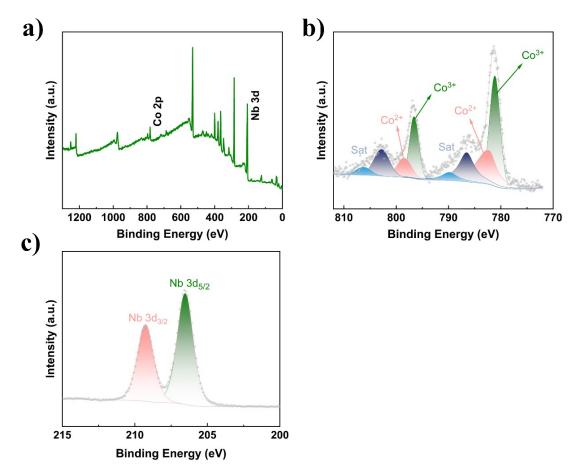



Fig. S8 (a) View of the $\{Ge_4(OH)_2Nb_{16}O_{54}\}$ cluster linking eight adjacent $\{Ge_4(OH)_2Nb_{16}O_{54}\}$ clusters via Na^+ , five H_2 en cations; (b) simplified uninodal 8-connected node in $\{Ge_4Nb_{16}\}$. Color code: NbO_6 octahedron, green; GeO_4 tetrahedron, orange.

 $\textbf{Fig. S9} \text{ XPS spectra of } \{Co_9(Ge_4Nb_{16})_2\}. \text{ a) survey spectrum; b) XPS spectrum of Co 2p; c) XPS spectrum of Nb 3d.$

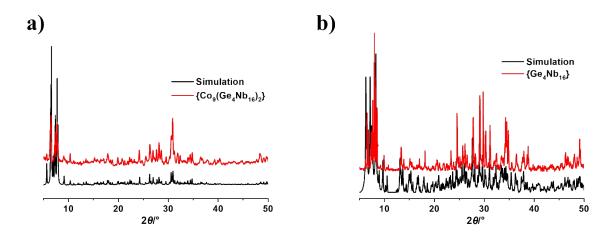


Fig. S10 The simulated and experimental PXRD patterns of $\{Co_0(Ge_4Nb_{16})_2\}$ (a) and $\{Ge_4Nb_{16}\}$ (b).

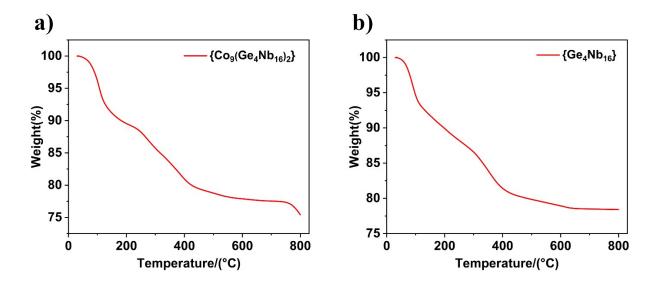


Fig. S11 TG curves of $\{Co_9(Ge_4Nb_{16})_2\}$ (a) and $\{Ge_4Nb_{16}\}$ (b).

Thermogravimetric analysis (TGA) of $\{Co_9(Ge_4Nb_{16})_2\}$ and $\{Ge_4Nb_{16}\}$ was performed from 30 to 800 °C at 10 °C/min under an argon atmosphere. As shown in Figure S11a, for $\{Co_9(Ge_4Nb_{16})_2\}$, the first weight loss of 7.28% between 30 and 125 °C, corresponds to the loss of 32 lattice water molecules (calc. 7.30%). The second weight loss of 15.24% is observed from 125 to 700 °C, which is attributed to the removal of 20 coordinated ethylenediamine molecules (calc.15.21%). For $\{Ge_4Nb_{16}\}$ (Fig. S11b), the initial weight-loss of 7.48% from 25 to 110 °C is primarily ascribed to the release of 15 free water molecules (calc. 7.65%). Subsequently, the second weight loss of 14.04% from 110 °C to 700 °C corresponds to the removal of 5 ethylenediamine molecules and the 10 coordinated water molecules (calc. 13.61%).

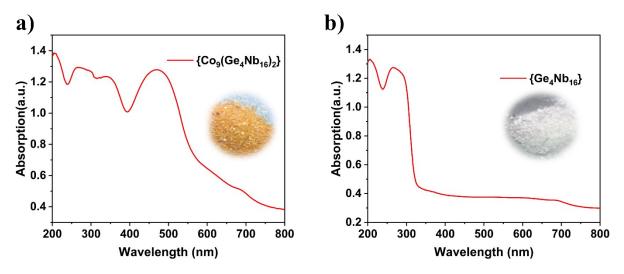


Fig. S12 UV-Vis absorption spectra of $\{Co_9(Ge_4Nb_{16})_2\}$ (a) and $\{Ge_4Nb_{16}\}$ (b).

Ultraviolet-visible (UV-vis) spectra of $\{Co_9(Ge_4Nb_{16})_2\}$ and $\{Ge_4Nb_{16}\}$ were shown in Fig. S12a, 12b, respectively. The absorption peaks in the range of 200-300 nm are attributed to the oxygen-metal (O \rightarrow Nb) charge-transfer transition (OMCT). Furthermore, as shown in Fig. S12a, for $\{Co_9(Ge_4Nb_{16})_2\}$, the wide absorption peaks in the 300 – 700 nm region can be attributed to the d–d transition of the cobalt ions.

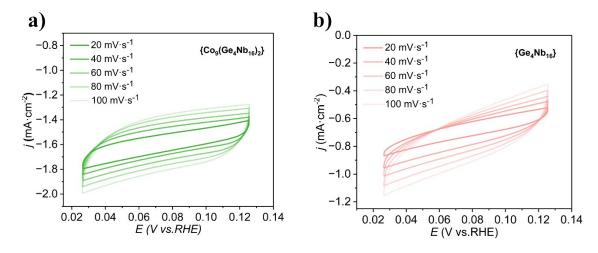


Fig. S13 Double-layer capacitance measurement. CV cycles of of $\{Co_9(Ge_4Nb_{16})_2\}$ (a) and $\{Ge_4Nb_{16}\}$ (b) at different scanning rates from 20 to 100 mV s⁻¹.

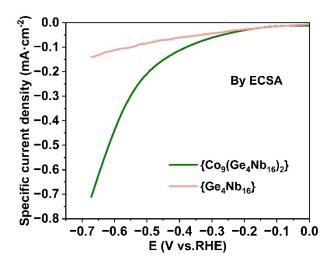


Fig. S14 LSV curves of $\{Co_9(Ge_4Nb_{16})_2\}$ and $\{Ge_4Nb_{16}\}$ normalized by ECSA.

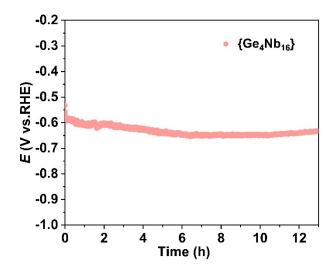


Fig. S15 HER stability of $\{Ge_4Nb_{16}\}.$

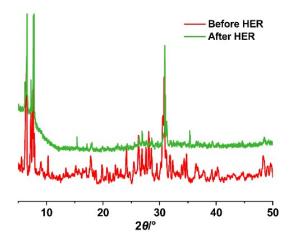


Fig. S16 Powder XRD patterns of $\{Co_9(Ge_4Nb_{16})_2\}$ before and after 24 hours HER.

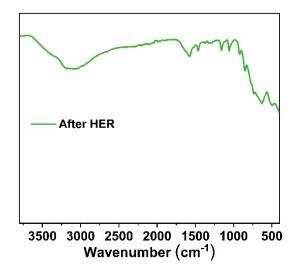


Fig. S17 FTIR patterns of $\{Co_9(Ge_4Nb_{16})_2\}$ after 24 hours HER.

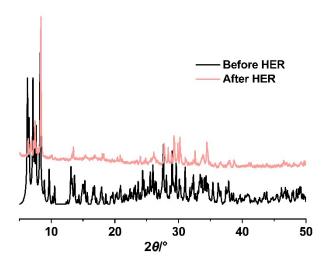


Fig. S18 Powder XRD patterns of $\{Ge_4Nb_{16}\}$ before and after 12 hours HER.

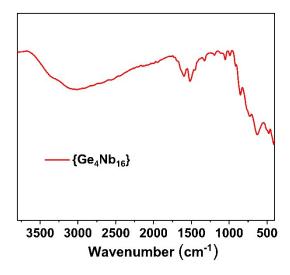


Fig. S19 FTIR patterns of $\{Ge_4Nb_{16}\}$ after 12 hours HER.

Section 4 References:

- 1. L. Zhao, S. Liu, L. Wei, H. He, B. Jiang, Z. Zhan, J. Wang, X. Li and W. Gou, *Catal. Lett.*, 2024, **154**, 5294-5302.
- 2. H. Jia, Y. Yao, Y. Gao, D. Lu and P. Du, Chem. Commun., 2016, 52, 13483-13486.
- 3. R.-Z. Sun, J.-X. Chen, S.-L. Huang, W.-T. Weng, H.-P. Wu, P.-W. Cai, Z.-H. Wen and S.-T. Zheng, *CCS Chem.*, 2025, 7, 1216-1226.
- 4. Y. Feng, X.-Y. Yu and U. Paik, *Chem. Commun.*, 2016, **52**, 1633-1636.
- 5. Y. Hao, Y. Xu, W. Liu and X. Sun, *Mater. Horizons*, 2018, **5**, 108-115.
- 6. J. Bai, Y. Wang, Y. Wang, T. Zhang, G. Dong and D. Geng, *Int. J. Energy Res.*, 2022, **46**, 12476-12484.
- 7. Y.-Z. Lu, S.-Z. Wei, S.-S. Yang, L.-P. Fu, J.-Q. Tang, Y. Liu and W. Liu, *Tungsten*, 2025, 7, 511-524.
- 8. J. Li, Y. Kang, D. Liu, Z. Lei and P. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 5717-5729.
- 9. J. Sun, G. Li, K. Zheng, Y. He, Z. Guo and C. Xu, *Appl. Surf. Sci.*, 2020, **517**, 146183.
- 10. Y. Wang, Y. Pan, L. Zhu, H. Yu, B. Duan, R. Wang, Z. Zhang and S. Qiu, *Carbon*, 2019, **146**, 671-679.
- 11. S. Li, P. Ren, C. Yang, X. Liu, Z. Yin, W. Li, H. Yang, J. Li, X. Wang, Y. Wang, R. Cao, L. Lin, S. Yao, X. Wen and D. Ma, *Sci. Bull.*, 2018, **63**, 1358-1363.
- 12. C.-X. Chen, S.-L. Duan, X.-Y. Zhang, R.-Z. Sun, P.-W. Cai, C. Sun and S.-T. Zheng, *Dalton Trans.*, 2025, **54**, 3591-3596.
- 13. C. Zhang, Y. Liu, J. Wang, W. Li, Y. Wang, G. Qin and Z. Lv, *Appl. Surf. Sci.*, 2022, **595**, 153532.