
Electronic Supporting Information

Dual-Responsive Benzylidene Indanone Crystals: Mechanical Flexibility Coupled with Reversible Acidochromism

^aDepartment of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.

^bPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India

^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

soumyajitghosh89@gmail.com (S.G.)

mishra mani07@yahoo.in, and mk.mishra.ncl@csir.res.in (M.K.M)

^{*} To whom correspondence should be addressed, Email:

Table of Contents	Page No
S1. Synthesis Scheme	S3
S2. Recrystallisation Table	S4
S3. Nuclear Magnetic Resonance (NMR) Analysis	S5 – S6
S4. Differential Scanning Calorimetry (DSC) Analysis	S7
S5. Crystallographic Information Table	S8
S6. Face Indexing Images	S9
S7. Stepwise Bending Images of Crystal 1	S9
S8. Elastic Strain Calculation	S10
S9. Solution State Absorption and Emission Studies	S11
S10. FTIR Spectra for Acidochromism	S12 – S13
S11. After Acid Fumigation Elastic Strain Calculation	S14
S12. Overall Elastic Strain calculation Table	S15
S13. References	S15

S1. Synthesis Scheme

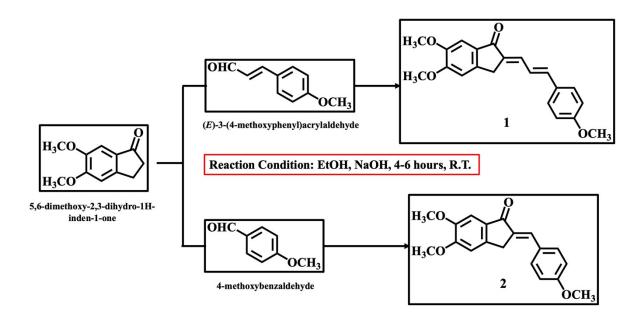


Fig. S1. Synthesis route of compound 1 and compound 2

Compounds 1 and 2 were synthesized following a previously reported procedure. Specifically, 4,5-dimethoxy-1-indanone (1 mmol) was dissolved in a 100 ml round-bottom flask containing 15 ml of ethanol and a sodium hydroxide solution. Subsequently, trans-4-methoxycinnamaldehyde (1 mmol) and 4-methoxybenzaldehyde (1 mmol) were added to the resulting solution, respectively. The mixture was stirred for 4-6 hours under ambient conditions, leading to the formation of precipitates of compounds 1 and 2 (Scheme S1) with satisfactory yields (Compound 1: ~85% and Compound 2: ~90%).

S2. Recrystallisation Table

Table S1. Results from the recrystallisation of Compounds 1 and 2 from one solvent or mixture of solvents.

S. No.	Solvents	Compound 1	Compound 2
1.	Methanol	Powder	Fine Needles
2.	Chloroform	Powder	Powder
3.	Acetone	Powder	Fine Needles
4.	Dichloromethane + Methanol (1:1)	Powder	Powder
5.	Methanol + Chloroform (1:1)	Fine Needles	Fine Needles
6.	Acetonitrile	Powder	Powder
7.	Acetone + Chloroform	Powder	Powder
8.	Acetone + Methanol (1:1)	Powder	Fine Needles
9.	Chloroform + Acetonitrile (1:1)	Fine Needles	Powder

S3. Nuclear Magnetic Resonance (NMR) Analysis.

¹H NMR spectra of both Crystal **1** and Crystal **2** were taken in CDCl₃ solvent. ¹H NMR spectra were collected under standard conditions. Chemical shifts (δ) were reported in parts per million (ppm) and referenced to the residual solvent peak at 7.26 ppm for the CDCl₃ solvent peak and 1.60 ppm for the CDCl₃ water peak.

Crystal 1: ¹H NMR (400 MHz, CDCl₃), δ 3.74 (s, 2H, methyl-H), δ 3.84 (s, 3H, methoxy-H), δ 3.94 (s, 3H, methoxy-H), δ 3.99 (s, 3H, methoxy-H), δ 7.02 – 6.82 (m, 5H, aromatic-H and vinylic-H), δ 7.39 – 7.24 (m, 2H, aromatic-H and vinylic-H), δ 7.47 (d, J = 8.7 Hz, 2H, aromatic-H). (Fig. S2).

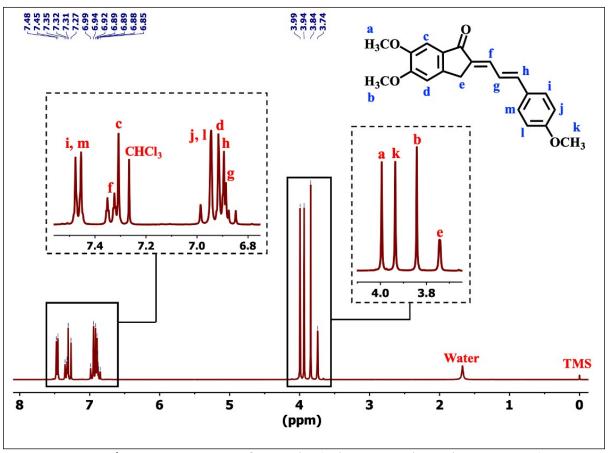


Fig. S2. ¹H NMR spectrum of Crystal 1 (solvent: CDCl₃, peak at 7.26 ppm).

Crystal 2: ¹H NMR (500 MHz, CDCl₃), δ 3.89 (s, 3H, methoxy-H), δ 3.95 (s, 2H, methyl-H), δ 3.97 (s, 3H, methoxy-H), δ 4.02 (s, 3H, methoxy-H), δ 6.99 (d, J = 8.4 Hz, 3H, aromatic-H), δ 7.36 (s, 1H, aromatic-H), δ 7.58 (s, 1H, vinylic-H), δ 7.64 (d, J = 8.7 Hz, 2H, aromatic-H). (Fig. S3).

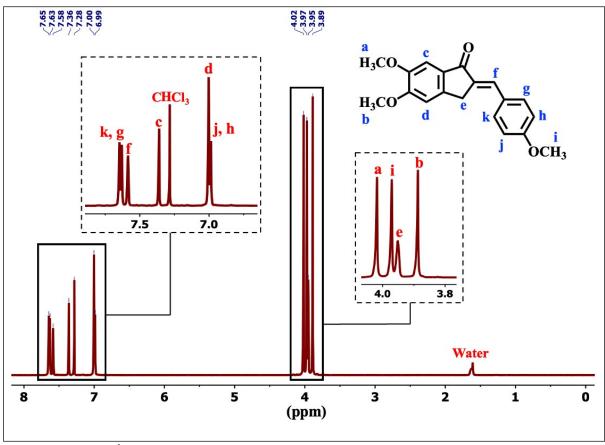


Fig. S3. ¹H NMR spectrum of crystal 2 (solvent: CDCl₃, peak at 7.26 ppm).

S4. Differential Scanning Calorimetry (DSC) Analysis.

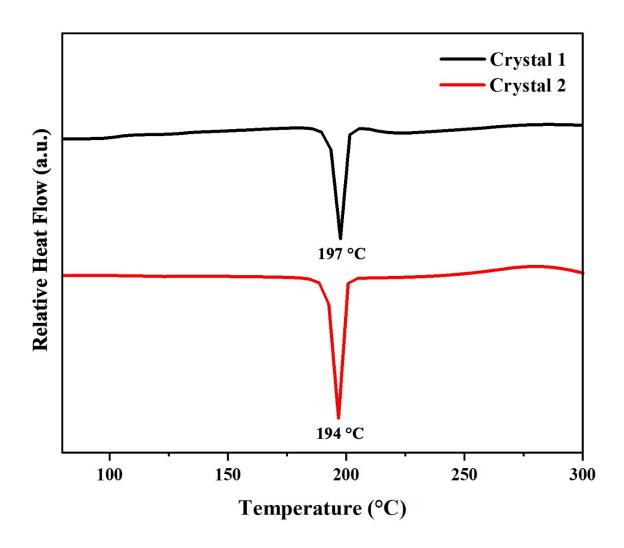


Fig. S4. Differential Scanning Calorimetry (DSC) overlay diagram of crystals 1 and 2.

S5. Crystallographic Information Table.

 Table S2: Crystallographic information table.

Compound	Crystal 1	Crystal 2
Formula	C ₂₁ H ₂₀ O ₄	C ₁₉ H ₁₇ O ₄
Molecular Weight	336.37	309.32
T/K	298	298
Crystal System	Monoclinic	Monoclinic
Space Group	P2 ₁ /c	P2 ₁ /c
a/Å	4.6803(9)	4.8459(8)
b/Å	40.269(7)	35.354(6)
c/Å	9.2487(17)	9.1074(15)
α/°	90	90
β/°	96.433(5)	97.576(5)
γ/°	90	90
Volume/Å ³	1732.1(6)	1546.7(4)
Z	4	4
ρ, Mg.cm ⁻³	1.290	1.328
μ /mm ⁻¹	0.089	0.093
Reflections Collected	32841	33608
Independent Reflections	3070	2655
R _{int}	0.1026	0.1492
GOF	1.135	1.061
Final R[I>2σ]	0.0962	0.0595
R ₁	0.2232	0.1380
wR ₂	0.2463	0.2108
CCDC Number	2492718	2492719

S6. Face Indexing Image.

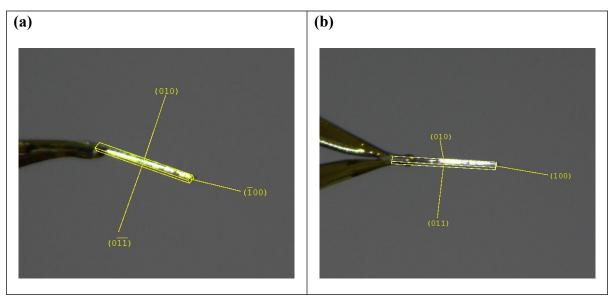


Fig. S5: Face indexing image of (a) Crystal 1, (b) Crystal 2.

S7. Stepwise Bending Images of Crystal 1.

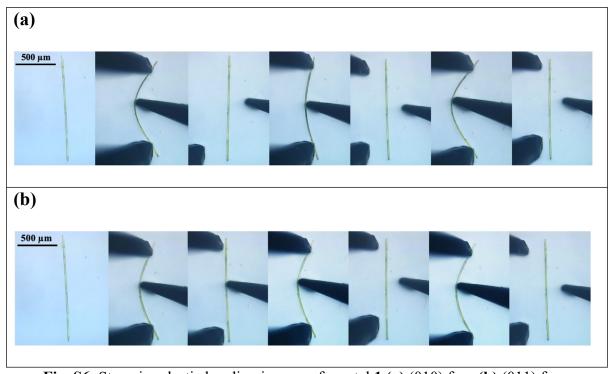
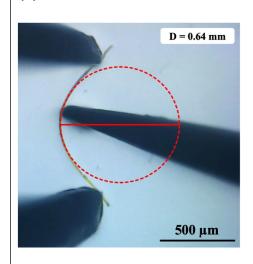
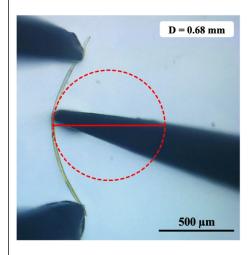



Fig. S6: Stepwise elastic bending images of crystal 1 (a) (010) face (b) (011) face.

S8. Elastic Strain Calculation.


 $\mathbf{R} = d/2 = 0.32$ mm, (where d is the diameter of the semicircle formed and so the radius is d/2)

For a beam with a thickness, t,

$$\varepsilon$$
 (%) = $\frac{t}{2R} \times 100 = \frac{0.02}{0.64} \times 100 = 3.1 \%$

where ' ϵ (%)' is the elastic strain of the crystal, 't' is the thickness of the crystal, and 'R' is the radius of the semi-circle formed by bending the crystal.

(b)

 $\mathbf{R} = d/2 = 0.34$ mm, (where d is the diameter of the semicircle formed and so the radius is d/2)

For a beam with a thickness, t,

$$\varepsilon$$
 (%) = $\frac{t}{2R} \times 100 = \frac{0.02}{0.68} \times 100 = 2.9$ %

where ' ϵ (%)' is the elastic strain of the crystal, 't' is the thickness of the crystal, and 'R' is the radius of the semi-circle formed by bending the crystal.

Fig. S7: Elastic strain calculation of Crystal 1 from (010) face (a) and (011) face (b).

S9. Solution State Absorption and Emission Studies.

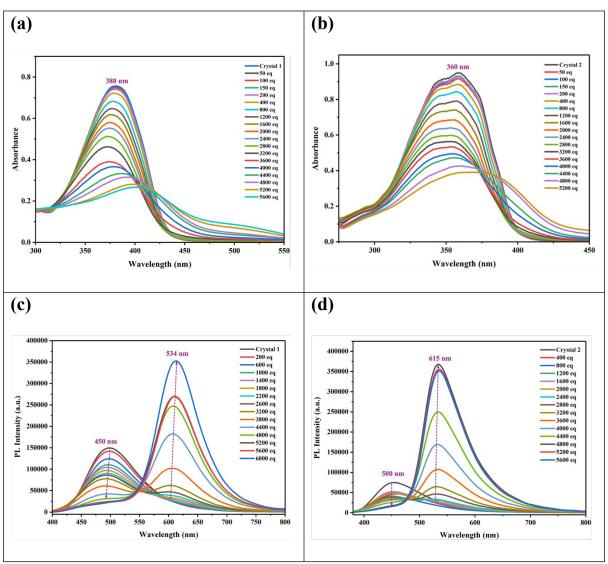
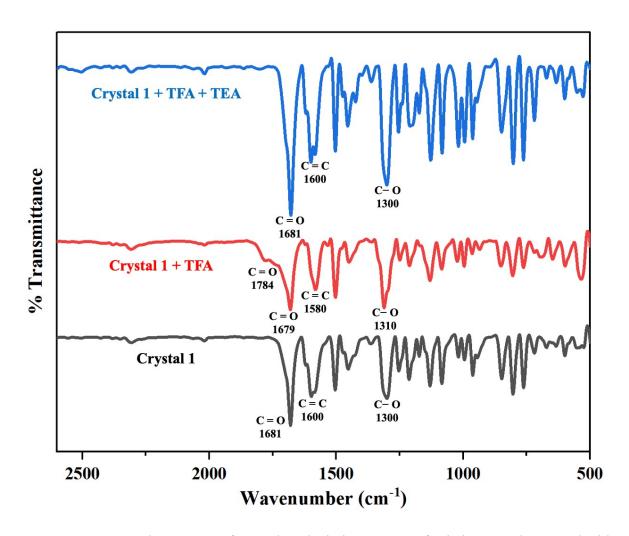
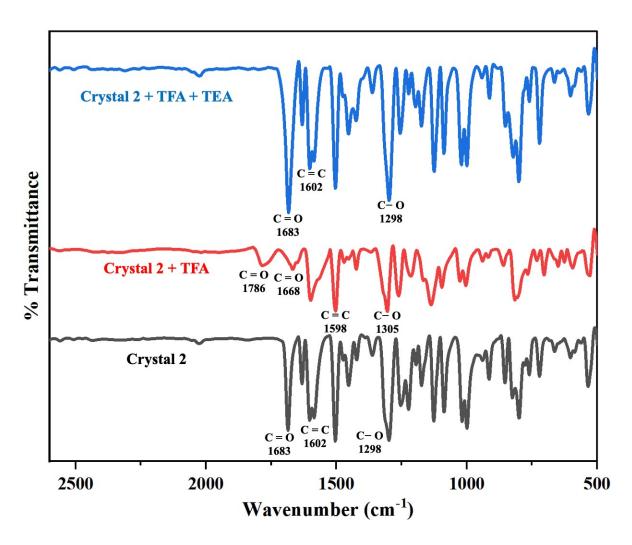




Fig. S8. (a) and (b) Solution state absorption, and (c) and (d) emission spectra (6 × 10⁻⁶ M) of crystals 1 and 2 as a function of TFA concentration in DMSO.

S10. FTIR Spectra for Acidochromism.

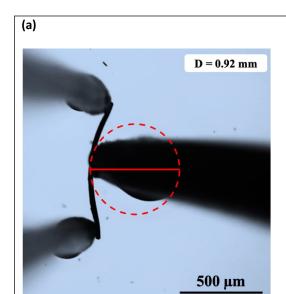
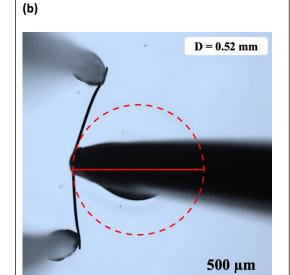


Fig. S9: FTIR overlay spectra of crystals **1** depicting spectra of pristine sample, treated with TFA and TEA.

Fig. S10: FTIR overlay spectra of crystals **2** depicting spectra of pristine sample, treated with TFA and TEA.

S11. After Acid Fumigation Elastic Strain calculation.



 $\mathbf{R} = d/2 = 0.46$ mm, (where d is the diameter of the semicircle formed and so the radius is d/2)

For a beam with a thickness, t,

$$\varepsilon (\%) = \frac{t}{2R} \times 100 = \frac{0.016}{0.92} \times 100 = 1.7 \%$$

where ' ϵ (%)' is the elastic strain of the crystal, 't' is the thickness of the crystal, and 'R' is the radius of the semi-circle formed by bending the crystal.

 $\mathbf{R} = d/2 = 0.26$ mm, (where d is the diameter of the semicircle formed and so the radius is d/2)

For a beam with a thickness, t,

$$\varepsilon (\%) = \frac{t}{2R} \times 100 = \frac{0.012}{0.52} \times 100 = 2.3 \%$$

where ' ϵ (%)' is the elastic strain of the crystal, 't' is the thickness of the crystal, and 'R' is the radius of the semi-circle formed by bending the crystal.

Fig. S11. Elastic strain calculation of Crystal 1 + TFA (a) (011) face (b) (010) face.

S12. Overall Elastic Strain Calculation Table.

Table S3: Overall Elastic Strain Calculation Table

S. No	Name	Elastic Strain Values 'ε (%)'	
	- \ - \- \- \- \- \- \- \- \- \- \- \- \- \-	(010) face (011) face	
1.	Crystal 1	3.1	2.9
2.	Crystal 1 + TFA	2.3	1.7

S13. References:

1. R. Ahamed, A. Bhowmik, M. K. Mishra and S. Ghosh, *Cryst. Growth Des.*, 2025, **25**, 4481 – 4493.